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In this paper we report how graph-theory can be used to analyze en ensemble of independent molecular trajectories
which can react during the simulation time-length and obtain structural and kinetic information. The method is totally
general and here is applied to the prototypical case of gas phase fragmentation of protonated cyclo-di-glycine. The
methodology allows to analyze the whole set of trajectories in an automatic computer-based way without the need
of visual inspection, but getting all the needed information. In particular, we not only determine the appearance of
different products and intermediates, but we can characterize the corresponding kinetics. The use of colored-graph
allow the correct characterization of the chemical species involved. In the present case, the simulations consist of an
ensemble of unimolecular fragmentation trajectories at constant energy, such that from the rate constants at different
energies the threshold energy can also be obtained for both global and specific pathways. This approach allows the
characterization of ion-molecule complexes, likely through a roaming mechanism, by properly taking into account
the elusive nature of such species. Finally, it is possible to obtain directly the theoretical mass spectrum of the
fragmenting species if the reacting system is an ion, as in the specific example.
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I. INTRODUCTION

Using dynamical simulations to understand chemical re-
activity represents a wide and important field in physical
chemistry.1–5 More recently, thanks to the improved com-
puter power and new developments in electronic structure
theory, it becomes possible to follow on-the-fly bond break-
ing/making processes also for relatively complex molecules,
like peptides, sugars or polycyclic aromatic hydrocarbons.6–8

While often fitted potential energy surfaces are used to un-
derstand in detail reactions of relatively small systems,9–13

the coupling between dynamics and electronic structure the-
ory made it possible to study the evolution on-the-fly of rel-
atively large systems. For example, uni- and bi-molecular
reaction dynamics simulations were largely studied with the
aim of understanding several processes, from combustion to
atmospheric chemistry, from interfacial reactions to photoly-
sis or astrochemistry.14–20 Unimolecular reactivity represents
an important class of reactions,21 with a relevant application
in the field of mass spectrometry.22

Recently, trajectories-based methods were used to under-
stand several gas-phase ion chemistry experiments, like elec-
tron ionization mass spectrometry,23–25 surface-induced dis-
sociation (SID)6,26,27 or collision-induced dissociation.28,29
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In particular, in the field of tandem mass spectrometry, simu-
lations were able to predict fragmentation products, propose
reaction mechanisms and quantify reaction energy thresholds
for both statistical and non-statistical processes.7 Statistical
unimolecular fragmentation kinetics of relatively large sys-
tems was obtained by activating the initial system with ex-
cess vibrational energy. By following the initial product’s
decay as a function of time, it was possible to obtain uni-
molecular rate constants and, from Arrhenius-like plots, the
corresponding activation energies.16,30–32

On-the-fly simulations are based on the time propagation
of atomic positions expressed in cartesian coordinates. Thus,
from the computational point of view, a molecule is a set
of atoms connected by chemical bonds. However, since the
system is represented by interacting nuclei and electrons, the
bonds are not directly defined. One can state the existence
and evolution of such bonds by geometrical and/or electron
density criteria. When systems are simple and trajectories
relatively few, the outcome of simulations can be analyzed
either by ad hoc quantifications (distances, angles, etc ...) or
by visual inspection of the resulting trajectories. However,
thanks to computational improvements over the last years, it
is now possible to run several and long trajectories of rela-
tively big systems for which different and complex behaviors
are possible. Of course, it is impossible to predict in advance
all the possible reaction pathways only based on chemical
intuition. The results, however, consist of a huge amount of
data from which advanced analysis tools, like graph-theory,
are needed to obtain physical properties. For this reason,
graph-theory-based methods were used and developed to bet-
ter understand the behavior of complex molecular systems
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from a relatively important amount of data. Examples can
be found in protein folding33, enzyme kinetics34, conforma-
tional analysis35, protein structure and flexibility identifica-
tion36,37, peptide structure and kinetics studies,38 or assign-
ment of vibrational normal modes.39

Molecular dynamics simulations are widely used in dif-
ferent fields, and they provide a huge amount of data from
which important molecular properties should be obtained.
To this end, several authors used graph theory to deter-
mine the different structures sampled during long simula-
tions. 40–44 Pietrucci and Andreoni developed another use-
ful application to drive biased molecular dynamics simu-
lations from reactants to products without imposing elabo-
rated geometrical constraints. 45,46 Recently, an original way
to reduce computational time when analyzing a large set of
data issues from molecular simulations using graph theory
was proposed by Bougueroua et al.47 Martinez-Nunez and
co-workers proposed a specific application to chemical re-
activity.48–50 It is based on molecular dynamics in which
the graph theory algorithms automatically determine minima
and saddle points along a reaction path. This method was
applied to photo-fragmentation,51 unimolecular fragmenta-
tion,52 and organometallic catalysis.53

We recently used graph theory to automatically detect if a
molecular system dissociates after internal energy activation
and obtain, from an ensemble of quasi-classical trajectories,
the distribution of molecular fragments.54 From this infor-
mation, an in silico mass spectrum can be obtained as well
as unimolecular rate constants.30,55 However, different steps
were determined ad hoc or not fully automatized.

In the present work, we show how graph-theory can be
developed to obtain the structural and kinetic information
needed to describe the reactivity of complex molecular sys-
tems as obtained from an ensemble of trajectories, here fo-
cusing in particular on gas phase unimolecular fragmenta-
tion. In particular, we consider the possibility that an initial
structure passes through intermediates before dissociating.
One important point is to correctly consider the possibility
that the system oscillates between intermediate(s) and reac-
tant before eventually dissociate. In mass spectrometry, it
is well known that ion-molecule complexes can be formed
before fragmentation.56,57 A recent study of L-cysteine frag-
mentation52 has shown that this can correspond to the dy-
namical mechanisms called roaming.58,59 The accurate de-
tection of such ion-molecule complexes’ formation can be
problematic due to their elusive dynamical nature. The spe-
cific analysis of trajectories to identify such states is dis-
cussed here.

The methodology is explained in general forms and ap-
plied to the prototypical case of fragmentation of protonated
cyclo-di-glycine, for which experimental mass spectra are
available and fragments known.60 It will serve as an example
to show how we can obtain from graph-theory structural and
kinetic information of fragmentation of a larger system. In
particular, peptides fragmentation represents a typical exam-
ple in which the correct identification of intermediate struc-
tures is crucial to explain reactivity: after activation, the ex-
cess proton often moves to different basic sites, weakening
the adjacent bonds and inducing fragmentation. This is the

so-called "mobile proton model," which was shown to be a
general mechanism typical of peptide fragmentation61–63 but
also relevant in other compounds, like nucleic acids.55,64 In
recent works, we have successfully applied some aspects of
the methodology proposed here to qualitatively disentangle
the complex dynamics in CID experiments of dipeptides that
contain the DKP motif, such as cyclo Tyr-ProH+65 and cyclo
Phe-HisH+.66

This work illustrates how graph theory can be applied
to quantitatively describe such complex unimolecular pro-
cesses, where the protonated cyclo-di-glycine is used as a
test case. We first explain how chemical dynamics simu-
lations are performed: they provide this specific example’s
trajectories, but the methodology is more general and does
not depend on how simulations are performed. In section
III, we show how graph theory formalism can be adapted to
analyze an ensemble of trajectories. We have then applied
it to a simple three-state kinetic model from which overall
properties can be obtained (e.g., rate constants and energy
barriers). In section V, we show how the model can be ex-
tended, including one specific pathway that one would like
to analyze in more detail, getting their kinetic properties. Fi-
nally, we demonstrate how the method can be used to ob-
tain a mass spectrum, including subtle processes typical of
gas-phase reaction of complex systems, like the formation of
ion-molecule complexes. Section VII concludes the article.

II. CHEMICAL DYNAMICS SIMULATIONS

Two isomers of cyclo-di-glycine were used as initial struc-
tures for the dynamical simulations: the most stable cyclic
structure (labeled CYC00) and a linear isomer (LIN00) which
is higher in energy and largely populated. They are shown in
Figure 1.

CYC00 LIN00

Figure 1. Schematic representation of the two structures used in
chemical dynamics simulations. CYC is for the cyclo-di-glicine
and LIN for its linear isomer. Both are protonated forms. The label
00 means that they are the most stable structures. The charge is
arbitrarily placed on the C atoms, another valence structure can be
drawn with the charge on the O atoms and C=O double bonds. The
simulations are done in the molecular orbital framework so this will
not have any impact.

Trajectories were propagated on-the-fly using the semi-
empirical Hamiltonian RM1-D67,68 to obtain energies and
gradients of the two systems. Note that this method was
shown to correctly characterize dissociation properties of
protonated peptides in the gas phase31,69,70 and includes dis-
persion corrections.

To induce unimolecular fragmentations, the systems were
activated via excess vibrational energy through microcanon-
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ical normal mode sampling.71 We used several internal en-
ergy values in the 131-217 kcal/mol range, listed in Table I
(labeled as Ev). Rotational energy was incorporated via a
Boltzmann distribution at 300 K. For each system and total
energy, an ensemble of trajectories (about 10 000 per point)
was run, integrating Newton’s equations of motion numeri-
cally via the velocity Verlet algorithm with a time step of 0.1
fs, ensuring energy conservation. Each trajectory was prop-
agated up to 20 or 40 ps depending on the energy. Details
on simulation conditions are summarized in Table I, where
Λ is the simulation time of each trajectory. In the same table
we also report the average potential (〈V〉) and kinetic (〈K〉)
energies (with corresponding standard deviations) of the ac-
tivated structures obtained from simulations with the energy
decomposition method discussed in section IV B where they
will also be discussed. The zero of the potential energy was
set at the electronic energy of CYC00.

Λ N ET Ev 〈K〉 σ〈K〉 〈V〉 σ〈V〉
ps kcal/mol

CYC00

40 10000 158 157 78 25 80 25
40 9982 168 167 83 27 85 27
40 9980 178 177 88 28 90 29
20 11886 188 187 93 30 95 30
20 9856 198 197 97 32 101 32
20 11455 208 207 102 33 106 33
20 9121 218 217 107 35 111 35

LIN00

40 9651 158 131 66 21 92 21
40 9387 168 141 71 23 97 23
40 8930 178 151 76 24 102 24
20 7630 188 161 81 26 107 26
20 13792 198 171 86 28 112 28
20 11140 208 181 91 29 117 29
20 9026 218 191 96 31 122 31

Table I. Simulation details. Λ is the total integration time, N the
number of trajectories, ET, the total energy, Ev the initial excess
vibrational energy, 〈K〉 the average kinetic energy and 〈V〉 the av-
erage potential energy, where σ〈K〉 and σ〈V〉 are the corresponding
standard deviations.

All simulations were performed with the general chem-
ical dynamics software Venus72 which is interfaced with
MOPAC 5.022mn73 for electronic structure calculations.

III. GRAPH THEORY ANALYSIS OF AN ENSEMBLE OF
REACTIVE TRAJECTORIES

Chemical dynamics trajectories provide a huge amount of
data in terms of positions (and momenta) of the different
atoms as a function of time. We now define the key quan-
tities we can obtain by applying graph theory to this set of
data. These quantities will be used to obtain the different
physical quantities. In the present application we will focus
in particular on what is relevant to obtain rate constants and
(time dependent) theoretical mass spectrum.

A. Data storage

In all trajectories, the information is saved every τ steps.
In the present case we have chosen τ = 50 fs, and this will
depend on the characteristic time-scale of the process of in-
terest and on the storage capabilities. As a result of this time
discretization, several 2D-arrays are constructed to store and
analyze the information appropriately.

In the following, X [i, j] denotes a generic 2D-array where
i indicates the trajectory number (i ∈ [1,N]) and j the snap-
shot (j ∈ [1,M] with M = Λ/τ +1). We have, for example,
the atomic positions XYZ [i, j], the potential POT [i, j], the
kinetic KIN [i, j], and total energy of the system TOE [i, j].

In general, two kinds of arrays X [i, j] can be distinguished
according to the type of variable it might contain: continu-
ous or discrete. X [i, j] is said to be a continuous (discrete)
2D-array if and only if (iff) the elements Xij are continu-
ous (discrete). A continuous array can be transformed into
a discrete array through a discretization process, which will
consist of introducing threshold values. A typical example
used in this work is transforming the cartesian XYZ [i, j] ar-
ray into the adjacency ADJ [i, j] array, as explained in the
next subsection.

B. Building undirected κ-Coloured Graph

A critical aspect of the unimolecular fragmentation simu-
lation is to identify whether an isomerization or fragmenta-
tion event occurs from a computer analysis of time evolution
of cartesian coordinates without any visual inspection. At
this end we used different tools of graph theory.74

The analysis of a set of N-trajectories begins with the treat-
ment of the aforementioned XYZ [i, j]-array. It is a 2D-array
where each XYZij element contains the position of the atoms
for each trajectory i at the discretized time (j−1)τ .

The geometry contained in XYZij can be converted into a
simple undirected κ-colored graph G = (V,E) by following
a discretization criterion that establishes whether two atoms
are linked or not. The finite set of vertices V = {v1, . . . ,vλ}
denotes all the λ -atoms while the finite set E⊆ V×V of
edges (vn,vm) with m,n ∈ [1,λ ] indicates all the possible
connections between them. Each vertex vn is colored with
a suitable color C = {1,2, . . .κ} according to the type of
atom it represents. Therefore, the maximum number of dif-
ferent types of chemical atoms in the molecule defines the
color number κ of G. In addition, the coloring of the ver-
tices π ∈ V×C is known as a partition. These concepts are
directly taken from standard graph theory.74

A practical way of representing a graph G is through its
adjacency matrix A ∈ Rλ×λ where λ = |V|, the number of
vertices corresponding to the number of atoms. It is a sym-
metric (0,1)-matrix in which the diagonal elements are all
zeros. The rest of the elements Anm are one iff exists an edge
between vertex vn and vm, otherwise they are zero. To build
the A matrix for a given XYZij molecular geometry we de-
fine the threshold bond distances as the sum of the atomic
radii of the two atoms Rn +Rm involved in the bond, multi-
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plied by a factor α:

Anm =

 1→|~rn−~rm |≤ α · (Rn +Rm)

0→|~rn−~rm |> α · (Rn +Rm)

The α parameter allows for bond elongation during the
molecular dynamics, i.e., vibration around stables geome-
tries. It means that all the geometries around stable isomers
have the same G(V,E). The optimum α value of 1.264 was
determined in previous studies30,54 since it is able to provide
reasonable chemical structures avoiding unphysical atomic
valences. For the atomic radii, we used previously reported
values54, and notably:

H C N O
R (Å) 0.372 0.781 0.807 0.715

The α value remains constant in all the systems studied
in this work. To overcome the dependency of α with vibra-
tional energy, some corrections were introduced during the
definition of the states, as will be detailed in the section IV A.

Thus, for each XYZij, there exists a simple undirected
κ-coloured graph that can be represented by its adja-
cency matrix ADJij. The partition is built with the set
of atom types respecting the order of appearance in the
XYZ file; in our case a possible representation is thus
π = {HHHHHHHCCCCNNOO}. This representation was
chosen to address events such as isomerization and reactiv-
ity specifically. Simultaneously, structures that differ, for ex-
ample, by the rotation of one or more atoms or groups, will
not be considered different. Shape descriptors such as inertia
moments or radius of gyration could be used to discriminate
between rotamers, for example, but it is out of the scope in
this work which is devoted on describing chemical reactivity
and thus not considered presently.

In Figure 2, we show a snapshot extracted from the simula-
tions to illustrate all the steps of the methodology developed
here. Table II displays the adjacency matrix of the structure
sketched in Figure 2 constructed following the steps men-
tioned above.

C. Derived Information From ADJ [i, j]-array

The analysis of the 2D-array ADJ [i, j] through spectral
graph theory is a key point of this study. In the following
we detail some useful 2D-arrays that can be obtained from
ADJ [i, j].

• ADJ [i, j] + π → CAN [i, j]. Having defined the parti-
tion π of the graph ADJij and by using a graph iso-
morphism algorithm, one can get the canonical label,
CANij, of ADJij. Therefore, each CANij-element is
the canonical label of its corresponding ADJij. The la-
belling process was carried out by the use of the amtog
and labelg tools included in the NAUTY package75.
The introduction of this graph invariant allows to over-
come the isomorphism problem which otherwise will
occur in the automatic analysis of the trajectories.

Figure 2. A snapshot taken from the simulations used to illustrate
the graph decomposition method used in the text. CL stands for the
canonical label.

H1 H2 H3 H4 H5 H6 H7 C1 C2 C3 C4 N1 N2 O1 O2
H1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
H2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
H3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
H4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
H5 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
H6 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
H7 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
C1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0
C2 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0
C3 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0
C4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
N1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0
N2 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
O1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
O2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Table II. An adjacency matrix of the snapshot depicted in Figure 2.
In color is highlighted the connected subgraphs corresponding to
each fragment.

Therefore, one can count precisely the amount of dif-
ferent graphs that are formed during the dynamics.
This precise counting is impossible using only the ad-
jacency matrix formalism. The permutation of two
rows or two columns of the same atom type inherently
implies a change in the adjacency matrix. At the same
time, the resulting structure is chemically identical to
that of the precursor. A typical example is when two
hydrogen atoms exchange themselves. In other terms,
canonical labeling is an efficient way to identify if two
graphs are identical or not. Two graphs are said to be
identical iff they share the same canonical label; oth-
erwise, they are different. On the top of Figure 2 is
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represented the canonical label (CL) of the adjacency
matrix of the entire snapshot (Table II) by using the
partition introduced above. The Graph6 format was
used for the canonical representation.75

• ADJ [i, j]→ CLU [i, j]. Fruitful information can be ex-
tracted by taking into account the connectivity of the
graph. The graph ADJij can be classified as connected
or disconnected. A graph is said to be connected when
every pair of vertices in the graph is connected, it
means that there is a path between vn and vm. Chem-
ically speaking, this corresponds to an undissociated
molecule. Otherwise, they are called disconnected,
which corresponds to one or more distinct molecules.
Moreover, every disconnected graph is made by a set
of connected subgraphs. By identifying and counting
all the connected subgraphs in ADJij, using the depth-
first search (DFS) algorithm76, it is possible to decom-
pose ADJij into all the connected entities, such that,

ADJij =
D

∑
k=1

ADJk
ij (1)

where, D is the number of disconnected components
of the associated graph ADJij. An example of this de-
composition is given in Table II, where the full matrix
can be seen as the sum of the matrices of the three re-
sulting fragments, each labeled with a different color
(red, blue and green). Then, the canonical label of ev-
ery ADJk

ij is calculated by using the same partition π

previously defined (labeled CL1, CL2 and CL3 in Fig-
ure 2). The latter allows an adequate count of the
different fragments.

Having determined the atoms that belong to a given
fragment, we calculate (in the case of a disconnected
graph) the centers of mass of every connected sub-
graph and the distances between them (labeled d12,
d23, and d13 in Figure 2). This is an important infor-
mation for determining the formation of ion-molecule
complexes as explained further below.

All this information is stored in the CLU [i, j] array.

• ADJ [i, j]→ CLU [i, j] + M→MAS [i, j]. Once all
connected subgraphs are identified in ADJij, their cor-
responding vertices are sum-weighted by the atom
mass. Then, each MASij-element corresponds to
the set of mass recognized in ADJij. For exam-
ple, MASij = {M1,M2,M3} where M1 > M2 > M3
if three different connected subgraphs were detected
in ADJij, as in Figure 2. In the present work we used
the following masses:

H C N O
M (uma) 1.00782 12.00000 14.00307 15.99490

which correspond to what used in the dynamics.

• ADJ [i, j]→ CLU [i, j] + M→MAS [i, j]→ CMAS [i, j].
Similar to the α parameter, we introduce a cut-off dis-
tance (dclus) between the centers of mass to determine

whether two connected subgraphs form a complex or
not. Then, by inspecting the corresponding adjacency
matrix B ∈ RD×D, we can detect such events. The B
matrix is defined as,

Bpq =


1→|~RCM

p −~RCM
q |≤ dclus

0→|~RCM
p −~RCM

q |> dclus

where p and q run from one up to the number of dis-
connected graphs identified in the snapshot. Once
the formation of an ion-complex is detected, their
masses are calculated and stored in CMAS. As a con-
sequence consequence, each CMASij-element corre-
sponds to the set of cluster mass recognized in ADJij.
For example, CMASij = {M1+M2,M3} if a complex
is formed between M1 and M2 as in the example of
Figure 2.

The dclus parameter was obtained from the analysis
of trajectories which form disconnected graphs, and in
particular the CYC00 simulations at 177 kcal/mol and
LIN00 at 151 kcal/mol. For the two sets we calculate
the distances between the centers of mass of the dif-
ferent disconnected graphs obtained from which we
get a distribution function. The normalized distribu-
tion functions (PDF) are shown in Figure 3. The
two PDFs show a maximum at around 3.75 Å which
corresponds mainly to the transient separation of hy-
drogen atoms from the main structure as detected by
the algorithm (this does not correspond to a physical
phenomenon of dissociation, but to a hot vibrational
state), and sketched in Figure 3. Thus, this 3.57 Å
distance can be seen as an effective radius of all the
connected graphs, and it can serve as a reference to
establish the cut-off for ion-molecule complex detec-
tion, which must be larger than it. A cut-off of 8 Å is
more than twice this value and, as shown in Figure 3
can represent a good estimation of a distance to au-
tomatically identify ion-molecule complexes from the
analysis of an ensemble of trajectories.

• ADJ [i, j]→ CLU [i, j]→ CYC [i, j]. The cyclomatic
number of the graphs can give the number of rings
present in the structure, c = |E|− |V|+D where |E|,
|V| and D are the number of edges, the number of
vertices and the number of disconnected components
of the associated graph, respectively. The number of
edges can be computed directly from the adjacency
matrix, such that:

|E|= 1
2

|V|

∑
n=1

|V|

∑
m=1

Anm (2)

while the value of D was already obtained in CLU [i, j].
Therefore, the CYCij-element account for the number
of cycles contained in the adjacency matrix ADJij. For
example, if c = 1 the graph (and so the corresponding
molecule) has one ring.
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Figure 3. The PDF of the distance between disconnected graphs
normalized at its maximum value as obtained from two simula-
tions: CYC00 with an internal energy of 177 kcal/mol (blue line)
and LIN00 at 151 kcal/mol (green line). The two vertical lines high-
light the maximum of the PDF and the dclus value used. The sketch
summarizes the origin of the major contributors to the peak of the
PDF.

Table III summarizes all the information described and ex-
tracted from the simulations. With all of them in our hands, it
is possible to identify several events occurring in the simula-
tions, such as isomerization, fragmentation, or ion-molecule
complex formation.

Before entering into the detailed analysis of the trajecto-
ries, we will present some properties of the 2D arrays that
will be essential for the analysis and further discussion.

Information Matrix
The position of the atoms XYZij
The potential energy of the graph POTij
The kinetic energy of the graph KINij
The adjacency matrix of the graph ADJij
The total energy of the graph TOEij
The partition of the graph π

The canonical label of the graph CANij
The number of connected subgraphs in the graph

CLUij
The adjacency matrices of the subgraphs
The canonical labels of the subgraphs
The distances between connected subgraphs
The masses of the connected subgraphs MASij
The masses of the clusters CMASij
The number of cycles contained in the graph CYCij

Table III. Summary of all the information derived and stored from
the present analysis conducted on the ensemble of trajectories.

D. Properties of a discrete X [i, j]

All the discrete X [i, j] 2D-arrays described previously ful-
fills the following properties:

1. Maximum number of different items. X [i, j] has a
maximum number of different items ρX ∈ [1,N ·M].

The minimum value of ρX corresponds to one if all
the elements of X [i, j] are identical while its maximum
value correspond to N ·M if all the items are different.
Therefore, the sample space of X can be defined as
ΩX ∈ {X1,X2, ...,Xρ}.

2. Appearance. For any of the ΩX-items, there is a (0,1)-
matrix, i.e. Xω | X [i, j] where ω ∈ [1,ρX], that ac-
counts for the appearance of Xω in X [i, j], such that:

(Xω | X)ij =

 1→ Xij = Xω

0→ Xij 6= Xω

3. Residence time distribution. The residence time of a
given Xω is the amount of time that it appears contin-
uously in a given trajectory; therefore, the residence
time distribution (RTD) is the frequency distribution
of the residence time for the whole ensemble of trajec-
tories. It should be noted that the resolution of RTD is
related to the value of τ employed.

4. Maximum-residence time distribution. The
maximum-residence time distribution (MRTD) is the
frequency distribution of the maximum residence time
value per trajectory. Note that, only those values
for which RT > 0 and MRT > 0 are useful for the
analysis.

5. Time-dependent probability and standard devia-
tion. All the items in ΩX have associated 1D-matrices
which account for the probability Pω [j] with the asso-
ciated standard deviation σω [j] of the appearance of
Xω in X [i, j] along the discrete time (j−1)τ for an
ensemble of N-trajectories, such that:

Pω
j =

1
N

N

∑
i=1

(Xω | X)ij (3)

It corresponds to a reduction of dimensionality of
Xω | X [i, j] by calculating the average over the trajec-
tories.

6. Mean value or hierarchy. The average value of Pω [j]
is expressed directly by:

〈Pω〉= 1
N ·M

N

∑
i=1

M

∑
j=1

(Xω | X)ij (4)

This value can be used as a criterion to identify
whether an item is more important than others during
the simulations. The item Xµ is more relevant than Xν

iff the 〈Pµ〉 is greater than 〈Pν〉.

7. Shannon’s entropy. The disorder of X [i, j] can be
measured by using Shannon’s entropy formula, such
that:

SX =−
ρX

∑
ω=1
〈Pω〉 · ln〈Pω〉 (5)
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8. Closure. As a matter of consequence from the prop-
erty 6, the closure condition can be written as,

ρX

∑
ω=1
〈Pω〉= 1

N ·M

ρX

∑
ω=1

N

∑
i=1

M

∑
j=1

(Xω | X)ij = 1 (6)

IV. THREE-STATE KINETIC MODEL

We now consider the evolution of an ensemble of trajecto-
ries which initial conditions were set in order to reproduce a
specific physical condition. In the present case is the vibra-
tional activation under microcanonical conditions. The fol-
lowing refers to the application of the general graph-theory
approach described previously to the reactivity of an ensem-
ble of microcanonical trajectories (all trajectories have the
same internal energy). The method is general and can be ap-
plied without loosing generality to canonical simulations, for
example. Since the system has at t = 0 enough energy to re-
act, we now describe the different steps necessary to follow
the graph modification in time and then obtain the kinetic
properties.

The sample space ΩCAN covers all the physically possible
graphs ρCAN that can be formed considering the λ -atoms.
This number depends on the number of bonds of the λ -atoms
and increases exponentially with their number. Nevertheless,
during the dynamics only a reduced number of graphs are
reached as a function of the total energy of the system, the
starting activated graph (SAG), the total simulation time (Λ),
and the number of propagated trajectories (N).

The selection of ΩCAN as a work-space avoids counting
as different graphs those snapshots in which the system ex-
change identical functional groups (H, H+, CH3, etc). The
features of ΩCAN can be extracted directly from the prop-
erties of the CAN [i, j] described previously iff the number
of propagated trajectories is large enough. For example, the
number of visited graphs ΩCAN (Eν ,N,Λ) during the simu-
lations for a given Eν , N and Λ is ρCAN.

We should note that if we use the simple adjacency matrix
space, ΩADJ, the description of the dynamics could be prob-
lematic from a chemical point of view. In fact, two graphs
representing the same chemical structure could have differ-
ent adjacency matrices, and thus, some additional informa-
tion should be included. The use of canonical label avoids
this further complication.

A. Partitioning of the Work-Space and Definition of the
States

The first element of an ΩCAN is the canonical label (CL) of
the starting activated graph (SAG). It corresponds to the CL
CAN1 of the equilibrium starting geometry Q0. The visited
graphs during the simulations can be divided into two re-
gions. The first one covers all the connected graphs. Chem-
ically speaking, it accounts for all the possible isomers or
intermediate states before the system breaks eventually into
two or more parts. The second zone encompasses all the dis-
connected graphs. In this region, the primary fragmentations

happen. All the related information to this classification is
stored in the CLU [i, j] array. For a given trajectory i at time
(j−1)τ , the

(
CLU=1 | CLU

)
ij element is one when we have

a connected graph and analogously
(
CLU>1 | CLU

)
ij ele-

ment is one when a disconnected occurs, otherwise they are
zero. The label "= 1" is used when one connected subgraph
is detected while "> 1" when they are two or more. Figure 4
shows the resulting Venn diagram of ΩCAN accordingly to
the partitioning we employ.

Figure 4. Venn diagram of ΩCAN displaying the definition of the
states.

The primary fragmentation process of the SAG can be ana-
lyzed from the time-evolution of three different global states:

• Primary fragmentation state |PF〉. A trajectory is said
to provide a primary fragmentation event if the sys-
tem stays a given amount of time, ∆, in the discon-
nected region continuously. The ∆ value must be large
enough to account for only those trajectories that once
they reach the disconnected region never recross to
the connected one. Of course, the time discretization,
∆/τ = β ∈ N, due to the storing frequency time holds
(and in any case it will be valid since computer tra-
jectories are always time discretized). The |PF〉 as-
signment starts by building the primary fragmentation
guess matrix (PFG), such as:

PFG [i, j] = CLU>1 | CLU [i, j] (7)

Subsequently, the (0,1)-matrix that represents |PF〉 is
obtained. Note that here we are dealing with gas
phase fragmentation for which once the |PF〉 is ob-
tained it typically does not come back to the |SP〉 state.
The approach can be in principle extended with phys-
ical conditions in which a chemical equilibrium is ob-
tained between reactants and products with some (mi-
nor) modification. However, this will not be discussed
in the present work.

Note that a trajectory to be classified as being in the the
primary fragmentation region has to be a disconnected
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graph for a given amount of time. The use of ∆ implies
a reduction in the dimensionality of the PF-matrix,
N× (M−β ), compared to PFG-matrix, N×M. Then,
a key point is the proper estimation of ∆. Using a too
small value will increase the number of incorrect as-
signment of PFs, while a too large value will decrease
the statistics in the analysis at the same computational
cost. In other words, a larger value of ∆ will pro-
vide fewer ion-molecule complexes wrongly assigned
as primary fragmentation.

To evaluate in the present case a reasonable value of ∆

and provide an approach which can be used for other
problems, we consider the maximum residence time
distribution of PFG [i, j], previously defined. This gives
the information about the maximum time the system
stays in the disconnected region before re-entering into
the connected one. Figure 5 illustrates the MRTD of
the PFG matrix for two simulations of CYC00 and
LIN00 at 177 and 151 kcal/mol, respectively. Using
∆ = 5 ps the error is than 1%, which can be consid-
ered as a good compromise and used in the follow-
ing. Note that this allows to remove only 5 ps from the
analysis, thus providing 15 and 35 ps that can be ana-
lyzed from trajectories long 20 and 40 ps, respectively.
Using a larger ∆ will imply to run longer simulations
or to have a smaller statistical sampling for the analy-
sis (so a larger uncertainty).

Figure 5. Maximum residence time distribution of PFG-matrix as
obtained from to set of simulations: a) CYC00 at 177 kcal/mol and
b) LIN00 at 151 kcal/mol. The dashed red-lines show the ∆-value
used.

• Starting point state, |SP〉. It corresponds to the
set of CLs which have the same chemical struc-
ture of the geometry considered as initial state:
SP = {CAN1,CAN2, ...,CANη}. This problem can
arise because the initial structure is activated randomly
and differently for each trajectory. The automatic al-
gorithm can find a different connectivity and thus a
different CAN, while they represent the same physical
state and one should analyze them together.

Three types of subsets can be distinguished. The first
one is simply SPSAG = {CAN1} ⊆ SP, corresponding
to the CL of SAG, with the corresponding appearance

matrix:

SPSAG [i, j] = CAN1 | CAN [i, j] (8)

This is the major contributor to the starting points
state, nevertheless, during the microcanonical normal
mode sampling of initial conditions, Q0 +∆Q, some
other canonical labels are inherently populated and
recognized as different in the analysis. Of course, they
depend on the α parameter used in the construction
of the connectivities. However, it will be simpler and
more practical to keep α constant and elaborate a strat-
egy to identify the other CANs. They can be of two
kinds which we list in the following.

– SPC = {CAN2,CAN3, ...,CANδ} ⊆ SP: ensem-
ble of CL of connected (C) graphs that have a
similar structure to the SAG. It includes those
graphs barely populated directly from the SAG
that contain unphysical atomic valencies and, in
some cases, those graphs directly populated from
the SAG by a fast dynamical process such as pro-
ton transfer – this is likely to occur when treating
protonated peptides, for example, in which com-
pact structures are common in the gas phase. The
corresponding appearance matrix is:

SPC [i, j] =
δ

∑
q=2

CANq | CAN [i, j] (9)

– SPD = {CANδ+1,CANδ+2, ...,CANη} ⊆ SP:
set of canonical labels of disconnected (D)
graphs formed as a result of bond breaking
directly from SAG when Ev increases. Typi-
cally, these disconnected graphs result from the
X−H bond rupture due to the fixed value of
α . A crucial requirement is that any of these
graphs should not be involved in the primary
fragmentation event, e.g., dehydrogenation or
deprotonation. Therefore, the appearance matrix
becomes:

SPD [i,k] =
η

∑
q=δ+1

CANq | CAN [i,k]◦{J [i,k]−PF [i,k]}

(10)
where k ∈ [1,M−β ] and J [i,k] is a all-ones ma-
trix. The circle represents the Hadamard product
between matrices. As can be seen directly, the
SPD matrix shows a reduction in the dimension-
ality due to its dependence on PF.

The (0,1)-matrix of the starting point state can be di-
rectly obtained by summing all of its components and
considering the reduction of the dimensionality:

SP [i,k] = SPSAG [i,k]+SPC [i, j]+SPD [i,k] (11)

Figure 6 summarizes the chosen set of graphs of the
starting point state for CYC00 system (the ones for
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LIN00 are reported in the Supporting Information, Fig-
ure S1). As can be seen, a proper selection of SPC

and SPD makes |SP〉 mostly independent on the α

value. Only the trajectories that after the vibrational
normal-mode sampling used to generate initial condi-
tions, provide (so for t = 0) a canonical label equals to
SP were propagated, being SP [i,1] = 1∀i. This proce-
dure allows to control the activation process, avoiding
that the automatic analysis identifies some unphysical
isomerization or fragmentation at t = 0. Finally, we
can obtain the time-evolution probability and the asso-
ciated standard deviation of |SP〉.

CAN1 CAN2 CAN3 CAN4

CAN5 CAN6 CAN7 CAN8

CAN9 CAN10 CAN11 CAN12

CAN13

Figure 6. Set of graphs that belongs to the SP of CYC00. The
representation is based on a 4-color graph where the coloring refers
to different atom types such that: red = oxygen atoms, gray = carbon
atoms, blue = nitrogen atoms, and white = hydrogen atoms.

We show in Figure 7, as an example, the time evolu-
tion of the different starting points defined previously
(SPSAG, SPC and SPD) for two simulations: CYC00

at 217 kcal/mol and LIN00 at 191 kcal/mol. As ex-
pected, the SPSAG represents the major contribution to
the starting-point state while SPC and SPD represent a
limited fraction.

• Intermediate state |INT〉: all snapshots that are not
classified neither |SP〉 nor |PF〉. The (0,1)-matrix is
defined as:

INT [i,k] = J [i,k]−SP [i,k]−PF [i,k] (12)

where k ∈ [1,M−β ] and J [i,k] is an all-ones matrix.
As a matter of fact, the INT matrix also shows a reduc-
tion in the dimensionality due to its dependence on the
PF-matrix.

There are two types of intermediate states, and no-
tably:

Figure 7. Time evolution probability of the starting-point state
as obtained from simulations at the highest activation energy: a)
CYC00 at 217 kcal/mol and b) LIN00 at 191 kcal/mol.

i. Connected intermediates INTC: they are the set
of connected graphs (isomers) reached by the
system before it reacts, for which

INTC [i, j] = CLU=1 | CLU [i, j]−SPSAG [i, j]−SPC [i, j]
(13)

or

INTC [i, j] =
ξ

∑
q=η+1

CANq | CAN [i, j] (14)

where {CANη+1,CANη+2, ...,CANξ} is the
canonical labelling of the connected graphs
reachable in the simulation.

ii. Disconnected intermediates INTD: it is a dis-
connected area where the primary fragmentation
requirement is not fully accomplished. These
structures in fact will come back to a connected
graph after a given time. In the case of ion
fragmentation, this region is where ion-molecule
complexes take place. More in general, this re-
gion identifies the formation of (transient) com-
plexes, which can occur also in the case of neu-
tral fragmentation and can be related to a roam-
ing mechanism.58,59 We thus have:

INTD [i,k] = CLU>1 | CLU [i,k]−PF [i,k]−SPD [i,k]
(15)

Given the definition of these three states it is possible to
follow their evolution as a function of time from which rate
constants can be extracted, as we will show in Section IV C.
Before, we will show in the next section that also energetic
information can be obtained.

B. Energy Decomposition

The energy information stored in the POT [i, j]-array can
be decomposed into three different arrays according to the
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defined states, such as:

POTSP [i, j] = SP [i, j]◦POT [i, j]

POTINT [i,k] = INT [i,k]◦POT [i,k]

POTPF [i,k] = PF [i,k]◦POT [i,k]

(16)

The ◦ denotes the element-wise product (Hadamard mul-
tiplication) as introduced before. Each term corresponds to
the potential energy of the three states: starting point, inter-
mediate and primary fragmentation, respectively. The same
decomposition can be applied to KIN [i, j]-array. From these
newly defined continuous arrays the energy gap between the
states can be obtained.

The 〈V〉-value can be used to provide an estimation of the
relative stability of the two structures during the dynamics.
The potential energy difference between CYC00 and LIN00

at 0 K is about 26 kcal/mol at RM1-D level of theory which
is used in the trajectories, while from the simulations it is be-
tween 11 and 12 kcal/mole depending on the activation en-
ergy, as shown in Table I. This will correspond to an effective
energy difference which will be discussed later when com-
paring the threshold energies obtained from the fragmenta-
tion simulations.

In Figure 8 we show for each state the average (over the
different trajectories per each snapshot) potential energy of
the three states as a function of time as well as the corre-
sponding probability density function (PDF). As an exam-
ple, we display values for simulations of CYC00 and LIN00

at two activation energies (177 and 151 kcal/mol, respec-
tively). Note that by considering the energy difference be-
tween the minimum energy geometries of the two structures
(26 kcal/mol), the two sets have the same excess energy..

In the CYC00 system the three states are very-well re-
solved in energy. The maximum values of the PDF are
located at 90.5, 103.5 and 121.5 kcal/mol for |SP〉, |INT〉
and |PF〉, respectively. The LIN00 has the |SP〉 located 11
kcal/mole above the |SP〉 of CYC00, while the |PF〉 has the
same energy as in CYC00. This reflects that the fragmenta-
tion products are in average very similar for the two systems.
This is because LIN00 is the most populated isomer during
the fragmentation of CYC00 (as we will detail later). The
average potential energy of |INT〉 in LIN00 varies along the
time because the system will isomerize going to the most sta-
ble graph, CYC00. That explains why the distribution goes
below the |SP〉 energy distribution. Similar behaviors were
obtained for other internal energies.

The same energy decomposition can be applied to every
canonical label. Thus, the mean values of the potential en-
ergy of a given graph CANq can be determined by:

POTq [i, j] = CANq | CAN [i, j]◦POT [i,k] (17)

The same holds for kinetic energy.
This approach will provide mean values of kinetic and po-

tential energies of the states defined by the state partitioning.
They can be used to determine the stability of the different
states and/or canonical labels from an average and dynamical
perspective.

Figure 8. Average potential energy as the function of time (left
panel) and corresponding probability density function (right panel)
as obtained from chemical dynamics simulations at two activation
energies : a) CYC00 at 177 kcal/mol and b) LIN00 at 151 kcal/mol.

C. Kinetic model for a three-state system

By using the three states defined and determined as de-
tailed previously, we can now set up a kinetic scheme from
which "effective" microcanonical rate constants can be ob-
tained. We call them effective because they reflect the simpli-
fication of a complex kinetic network to a simple three-state
model. In other words, the intermediate and product states
do not correspond to specific molecules or geometries, but to
a global definition. The kinetic scheme can be constructed
directly from the Venn diagram previously introduced. From
it a three-state Markov model (shown in Figure 9) describes
the statistical kinetic process of primary fragmentation in the
gas phase.

The |SP〉 state is represented by a filled blue circle to indi-
cate that at t = 0, it is the only populated state. Previously we
have highlighted that the choice of the ∆-parameter guaran-
tees that once the system reacts, either from the initial state or
from the intermediate state, it never returns back to reactant
or intermediate state. This is a typical situation of gas-phase
reaction, in which the fragmentations are not reversible since
the probability that the two fragments encounter each other
in vacuum is almost zero. This means that a given trajectory
will cross the Γ3 or Γ2 dividing surfaces only once and there
are no reverse rate constants from PF to SP or INT. As we
have discussed in the definition of INT state, if two (or more)
molecules are formed but they form back one molecule the
state is labeled as INT. In other words PF state cannot by def-
inition comes back to reactants, and the choice of ∆ is crucial.
Of course, further fragmentations are possible, but they are
not discussed here. They can be treated with the same ap-
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Figure 9. Markov diagram for the three-state system that models
the unimolecular dissociation in the gas phase.

proach using a specific fragmentation product as initial state.
The kinetic equations of this general scheme can be writ-

ten as:

dNSP

dt
= kSI ·NINT− (kIS +kPS) ·NSP

dNINT

dt
= kIS ·NSP− (kSI +kPI) ·NINT

dNPF

dt
= kPS ·NSP +kPI ·NINT

(18)

where NSP, NINT and NPF denotes the abundance of the start-
ing point, intermediate and primary fragmentation states, re-
spectively while kSI, kIS, kPS and kPI are the corresponding
"effective" rate constants which for the present simulations
are microcanonical. In general, for each kij, "i" indicates
the destination state and "j" the source state. The diago-
nal elements can be expressed as: kSS =−(kIS +kPS) and
kII =−(kSI +kPI). From now on, the word "effective" is
suppressed from the discussion for simplicity.

The solution of the system of linear first-order differen-
tial equations assuming that at t = 0 the only populated state
is NSP (0) = N0, can be obtained using the Laplace-Carson
transform method,22,77 such that:

NSP

N0
=

γ2
1 − γ1(kSI +kPI)

γ1(γ2 + γ1)
exp(−γ1 · t)+

γ2
2 + γ2(kSI +kPI)

γ2(γ2 + γ1)
exp(γ2 · t)

NINT

N0
=− kISγ1

γ1(γ2 + γ1)
exp(−γ1 · t)+

kISγ2

γ2(γ2 + γ1)
exp(γ2 · t)

NPF

N0
=

kPS(kSI +kPI)+kISkPI−kPSγ1

γ1(γ2 + γ1)
exp(−γ1 · t)+

kPS(kSI +kPI)+kISkPI +kPSγ2

γ2(γ2 + γ1)
exp(γ2 · t)

−kPS(kSI +kPI)+kISkPI

γ2γ1

where

γ1 = 0.5 · [k2
IS +2kIS(kSI−kPI +kPS)+k2

SI +2kSI(kPI−kPS)

+k2
PI−2kPIkPS+k2

PS]
0.5 +0.5 · (kIS +kSI +kPI +kPS)

γ2 = 0.5 · [k2
IS +2kIS(kSI−kPI +kPS)+k2

SI +2kSI(kPI−kPS)

+k2
PI−2kPIkPS+k2

PS]
0.5−0.5 · (kIS +kSI +kPI +kPS)

(19)

Since the energy is conserved and enough to pass the bar-
rier, the limit for t→ ∞ is NSP/N0 = 0, NINT/N0 = 0 and
NPF/N0 = 1.

The microcanonical rate constants are obtained by mak-
ing a simultaneous fit using the solutions of the dif-
ferential equations system from the population of the
states obtained in simulations. The simultaneous fit was

made using a home-made program developed in C++
through the modular scientific software ROOT. The MI-
NUIT library was employed during the minimization pro-
cedure. The ROOT scripts are provided a public repository
(https://github.com/afperezmellor?tab=repositories).

To obtain all the kinetic parameters we employed two ap-
proaches: (A) all the rate constants are obtained from the
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simultaneous fit; (B) the primary fragmentation rate constant
is obtained from the reaction flux, and the others from the fit.
We now show how we obtained the rate constants using the
two approaches and how they compare each other.

1. Full simultaneous fit (method A)

The microcanonical rate constants are obtained from each
ensemble of trajectories as a function of the activation en-
ergy by fitting the populations of SP, INT and PF using the
kinetic equations described above by a simultaneous fit. In
Figures 10 we report the resulting fits together with the popu-
lation evolution obtained from CYC00 simulations at the dif-
ferent activation energies (the same from LIN00 are reported
in Supporting Information, Figure S2). As can be clearly
seen, the fit is very good and thus the rate constants can be
extracted safely. This shows that the simple three-state ki-
netic model can globally catch the fragmentation dynamics
of this system.

2. Reaction flux and partial fit (method B)

In the second approach used (method B) we first estimate
the most relevant reactive rate constant from the simulations
by a direct measure using the flux.78

In fact, the primary fragmentation can be described as a
reaction flux in sample space across the dividing surfaces,
Γ2 (∆) and Γ3 (∆). The role of the ∆ parameter is crucial
to minimize the flux through these surfaces. We should no-
tice that Γ2 (∆) and Γ3 (∆) do not correspond to any sad-
dle point geometry, but they represent abstract dividing sur-
faces. This has the advantage of getting rate constants which
represent the overall kinetics, independently on geometrical
details which can, in general, make impossible to conceive
and analyze the full set of reaction pathways characteristic
of fragmentation of complex systems. We will discuss how
a specific pathway of particular interest can be studied out
from the global pathway description in section V.

In this framework, the reactive rate constants can be ob-
tained as a function of time from the flux of reactive graphs
passing across the critical region divided by the remaining
graphs in the departure state, such that:

kPI (t) =
1
τ

|INT→ PF〉
|INT→ INT〉

kPS (t) =
1
τ

|SP→ PF〉
|SP→ SP〉

(20)

In the systems studied here, there are only a few trajecto-
ries that react directly from the starting point, so the sampling
will not be enough to get a converged value. Therefore, we
have calculated only kPI directly from the flux.

We report in Figures 11 and 12 the rate constants obtained
via the flux method for CYC00 simulations at low and high
activation energies. The rate constants are here time depen-
dent and we observe a not negligible spread. At low energies
this spread is larger, probably because the fragmentation is
not fully converged. LIN00 simulations show a similar be-
havior.

Figure 10. Populations of the three states (gray lines) at different
vibrational energies (reported in kcal/mol) of CYC00 system fitted
by the simultaneous fit, method A. Blue: starting point state; black:
intermediate state; red: primary fragmentation state.

We have then used the maximum value of the probabil-
ity distribution functions as kPI and fitted the other rate con-
stants. As previously, the fit results describe very well the
simulation data (see Figure S3 in the Supporting Informa-
tion). We should notice that this approach has the disadvan-
tage that a huge number of trajectories is necessary to have
a convergence in the flux calculations, while less are needed
when using only the solution of the kinetic scheme from pop-
ulation evolution.
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Figure 11. Microcanonical rate constantt kPI of CYC00 system es-
timated by calculating the flux of reactive graphs across the divid-
ing surface Γ2 for Λ = 40 ps . Left Panels: Time evolution. Right
Panels: Probability density function of kPI. The straight red lines
represent the maximum value of the PDF, while the curve red line
is the Gaussian distribution fit. It should be noted that y-axes are in
a logarithmic scale.

D. Rate Constants

The rate constants obtained at different energies and with
the two methods are reported in Table IV. As we can notice,
the two methods are in very good agreement providing very
similar results.

For both systems, the rate constant values increase mono-
tonically with internal energy. Only the kSI of CYC00 are
almost energy independent. In the CYC00 system, the kIS
is always larger than kPI. A different trend is observed for
LIN00 system, where at low activation energy kIS is higher
than kPI and vice-versa for larger internal energy.

The kPI values for LIN00 system are always higher than its
counterpart CYC00 at the same total energy. This observa-
tion is easily explained by the fact that the primary fragmen-
tation state is found on average at the same potential energy
level for both systems for the same total energy (see Fig-
ure 8). In addition, the starting point state CYC00 is lower in

Figure 12. Microcanonical rate constantt kPI of CYC00 system es-
timated by calculating the flux of reactive graphs across the divid-
ing surface Γ2 for Λ = 20 ps . Left Panels: Time evolution. Right
Panels: Probability density function of kPI. The straight red lines
represent the maximum value of the PDF, while the curve red line
is the Gaussian distribution fit. It should be noted that y-axes are in
a logarithmic scale.

energy by 11-12 kcal/mol (as obtained by the simulations at
different activation energies) with respect to LIN00. There-
fore, the energy gap between the two states, |PF〉− |SP〉, is
smaller in LIN00 simulations than in CYC00. We should re-
mind that they share the same reactive basin and, then, the
system LIN00 will have more primary fragmentation events
than its counterpart CYC00 under the same total energy con-
dition.
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Ev Method kIS ekIS kSI ekSI kPS ekPS kPI ekPI σkPI χ2
red

kcal/mol 10−5fs−1

CYC00

157 A 2.963 0.006 1.423 0.016 1.046 0.003 3.18
B 2.835 0.012 1.096 0.031 1.318 0.034 1.408 12.09

167 A 5.274 0.010 1.768 0.014 2.269 0.004 3.16
B 5.296 0.010 1.799 0.014 2.235 0.063 2.389 3.26

177 A 8.612 0.014 1.857 0.014 4.468 0.005 2.97
B 8.557 0.014 1.818 0.014 4.525 0.026 3.083 3.13

187 A 13.137 0.022 2.286 0.027 7.692 0.012 1.75
B 13.126 0.021 2.275 0.026 7.717 0.088 4.187 1.75

197 A 18.713 0.046 2.080 0.042 12.428 0.023 3.39
B 18.756 0.044 2.107 0.041 12.360 0.137 5.255 3.41

207 A 24.696 0.091 2.041 0.054 2.084 0.054 16.905 0.062 5.79
B 25.284 0.108 1.945 0.068 1.113 0.038 18.276 0.166 7.533 8.46

217 A 30.975 0.185 1.984 0.095 5.002 0.117 23.012 0.117 9.49
B 31.631 0.187 1.969 0.104 4.022 0.071 24.230 0.403 13.461 10.46

LIN00

131 A 8.035 0.031 4.337 0.036 2.295 0.007 9.57
B 8.228 0.035 4.506 0.041 2.122 0.069 2.462 12.58

141 A 9.769 0.036 4.709 0.041 4.340 0.009 8.13
B 9.762 0.034 4.705 0.041 4.345 0.043 3.531 8.13

151 A 13.395 0.052 6.971 0.061 7.767 0.014 6.54
B 13.608 0.053 7.041 0.063 7.574 0.119 5.637 7.16

161 A 17.719 0.081 9.536 0.123 13.736 0.037 4.29
B 17.543 0.078 9.393 0.126 14.000 0.269 7.528 4.50

171 A 21.576 0.116 10.354 0.174 20.586 0.058 9.54
B 21.291 0.112 10.167 0.180 21.049 0.230 8.900 10.13

181 A 25.524 0.051 10.345 0.076 28.674 0.029 7.23
B 25.129 0.135 10.133 0.216 29.429 0.201 11.673 7.85

191 A 31.058 0.311 12.979 0.381 1.079 0.142 38.227 0.285 9.88
B 31.920 0.295 13.534 0.397 0.317 0.078 40.054 0.894 22.904 10.26

Table IV. Microcanonical rate constants obtained following the two simultaneous fit approaches. For each value we report the estimated
error (e). For kPI we report also the width of the distribution (σ ). In the last column we report the χ2 obtained from the global fit.

E. Threshold Energies

Using the two approaches described previously, we ob-
tained the rate constants as a function of excess energy for
the two systems. The rate constants are obtained from mi-
crocanonical simulations and thus their energy dependence
should follow the classical RRKM theory (also called RRK
theory):21

k(Ev) = ν

(
1− Ea

Ev

)s−1

(21)

where ν and Ea are the effective frequency and threshold
energy, respectively, while s is the number of vibrational de-
grees of freedom of the reactant. ν and Ea are two adjustable
parameters that can be obtained by fitting the rate constants at
different energies via Equation 21. Figure 13 shows how rate
constants behave as a function of energy, Ev, with the corre-
sponding RRK fits. As previously discussed, a clear energy
dependence was observed for kIS and kPT in both CYC00 and
LIN00 simulations, and kSI in LIN00 simulations. Note that
for kPS we have too few points to obtain a reasonable fit. As
already noticed, the kSI in CYC00 simulations do not show
any energy dependence. This is probably due to the fact that

the threshold energy is too low and that there is no time for
energy randomization of the INT state before reaction.

From the RRK fits, we obtained frequency factors, ν , and
threshold energies, Ea, which are listed in Table V.

As can be seen, the RRK model explains properly the evo-
lution of the microcanonical rates constant, obtained from
the simulations, as a function of the excess energy. As ex-
pected, the LIN00 system needs less energy to form the pri-
mary fragmentation products than CYC00 system. The dif-
ference between the threshold energies, 11 kcal/mol, corre-
sponds to the energy difference between the starting point
states obtained from the potential energy average (between
11 and 12 kcal/mol as a function of the activation energy).
This result strengthens the picture for which the stability of
the states is better described by the expectation value of the
potential energy from the simulations rather than from the
difference between potential energy values at minima.

Concluding, the proposed three-state model gives a gen-
eral overview of the description of the primary fragmentation
events providing quantitative information on rate constants
and threshold energies.
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CYC00 LIN00

Method Method
A B A B

νIS 0.110 ± 0.014 0.111 ± 0.016 0.005 ± 0.0006 0.005 ± 0.0009
Ea

IS 30.480 ± 0.517 30.518 ± 0.561 13.845 ± 0.561 13.725 ± 0.675
νSI 0.001 ± 0.0004 0.001 ± 0.0007
Ea

SI 11.147 ± 1.116 11.850 ± 1.619
νPI 0.400 ± 0.096 0.263 ± 0.037 0.113 ± 0.009 0.133 ± 0.013
Ea

PI 37.859 ± 0.919 36.169 ± 0.919 26.375 ± 0.919 26.915 ± 0.362

Table V. Effective frequencies factors (in fs−1) and energy thresholds (in kcal/mol) obtained following the methods to obtain the rate
constants and then fitted using the RRK model.

Figure 13. Microcanonical rate constant values (symbols) of the
different processes as a function of the internal energies. The col-
ored line represents the RRK fit from which the energy threshold
and the effective frequency factors are obtained.

F. Structures of the Intermediate States

The intermediate state is defined as a state which is differ-
ent from the reactant but not (yet) a fragmentation product.
We now show that our approach can provide more molecular
information on this state from graph-theory based analysis.
First we can consider three subsets: linear connected inter-
mediates, cyclic connected intermediates, and ion-molecule
complexes (IMC). The first and the second subsets account
for the linear and cyclic structures reached after the start-
ing structure is activated. The latest are those disconnected
structures that do not accomplished the primary fragmenta-
tion requirement.

The branching ratio of the intermediate state as a function
of time as obtained at a given energy (the same total energy)
from CYC00 and LIN00 simulations is shown in Figure 14.
For the CYC00 system, the linear structures represent almost
90% of the intermediate state while the cyclic structure is

Figure 14. Branching ratio decomposition of the intermediate state
between linear, cyclic, and IMC structures at the same total energy.
a) CYC00 simulations at 177 kcal/mol. b) LIN00 simulations at
151 kcal/mol.

around 7% and IMC 3%. A completely different picture is
observed for LIN00 system. The linear structure drops down
up to 47% while the cyclic formation grows up to 47%. The
IMC represents around 7% of the intermediate state.

The explanation of such difference lies in the nature of
the isomerization process. The CYC00 system, which is the
global minimum, has a cyclic structure. Once it is activated,
the ring opens and thus the mostly formed intermediates are
linear, such as LIN00. Note that in Figure 14 we show the
ratio between three classes of intermediate states (INT) and
thus the initial state (SP) is not included. After the ring open-
ing, several proton transfers take place populating many lin-
ear structures. On the other hand, when the linear, LIN00, is
activated, the main isomerization event is the formation of a
cyclic structure, and notably CYC00, which is the most stable
isomer.

It is possible to follow the time-abundance of the different
structures of the intermediates. We report in Figure 15 the
evolution of the most relevant ones (the corresponding struc-
tures are reported in the Supporting Information, Figure S4,
together with the other intermediates). We can notice that
the linear structures mostly populated correspond to differ-
ent tautomers: the proton transfer is a key reaction occurring
to these intermediate structures, in particular for linear struc-
tures, following the mobile-proton model.61–63 On the other
hand, once a cyclic structure is formed this is much more sta-
ble than the linear counterpart. These processes are typical of
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peptide fragmentation and we have noticed some of them in
previous simulations:6,7,30,31,52,69,70,79–83 here our approach
is able to automatically characterize them and provide infor-
mation on the different structures before their visual inspec-
tion.

Figure 15. Branching ratio of the three most relevant structures of
the intermediate state as obtained from simulations: a) CYC00 at
177 kcal/mol and b) LIN00 at 151 kcal/mol.

The structures of the ion-molecule complexes (IMC) ob-
tained during the simulations are reported in Figure S5 of
the Supporting Information. They appear as pairwise
fragments; one entity is charged while the other is neutral.
During the dynamic, they may interchange some functional
groups, as observed here, resulting in different IMC struc-
tures: IMC01

01, IMC01
02, IMC01

03 and IMC01
04. This is an indica-

tion that a roaming mechanism took place.

V. PROPERTIES OF A SPECIFIC PATHWAY

Up to now, the kinetic properties were obtained for the
primary fragmentation products without any differentiation
on their structure. We now show how the kinetic scheme can
be adapted to obtain the desired properties for one specific
product of interest. The approach is totally general, and of
course if more specific products are interesting the procedure
should be repeated for each pathway. Of course, one needs
to have enough trajectories leading to a specific pathway to
have statistically significative information.

When a primary fragmentation is identified, we can distin-
guish three classes of events:

1. Direct primary fragmentation : M+→M+
1 +M2. It

occurs when the molecule reacts directly forming two
entities of masses M1 and M2. The information re-
lated to this events can be extracted from the MAS ar-
ray. It is then useful to focus on a particular event, say
Mα = {M1,M2} which can be monitored during sim-
ulation using the properties described previously. The
condition that a specific fragmentation occurs formally
corresponds to :

MASD [i,k] = MASα |MAS [i,k]◦PF [i,k] (22)

Then, MASD (0,1)-array displays whether a given
snapshot contains an event of direct primary fragmen-

tation or not, and the time evolution can also be ob-
tained.

2. Ion-Molecule formation : M+→M+
3 · · ·M4 +M2

where M+
3 +M4 = M+

1 . This process occurs when
a complex is obtained during the fragmentation that
gives M+

1 . This event can be followed through the
CMAS array which, as previously seen, takes into
account the formation of clusters. Similar to what
done for direct events, and considering the same
Mα = {M1,M2} event, it can be stated that:

MASC [i,k] = MASα |CMAS [i,k]◦PF [i,k] (23)

Note that this is not an intermediate ion-molecule
complex, but a case in which one (at least) product
is itself a complex.

3. Higher-order of fragmentation event: they are struc-
tures which are neither direct fragmentation nor ion-
molecule formation events. These events are predom-
inant when the activation energy is too high and the
system breaks suddenly in many pieces.

The formation of a given mass channel Mα = {M1,M2}
via primary fragmentation can be obtained by:

MASG [i,k] = MASD [i,k]+MASC [i,k] (24)

This approach will provide the different fragmentation
channels, in terms of clusters and fragments (an example is
given in Table S1 of the Supporting Information). This infor-
mation will be useful to build the theoretical mass spectrum,
as we will show in section VI. Before, we will show how the
kinetic parameters of a specific fragmentation product can be
obtained.

Once we monitor the appearance of specific fragmentation
channels, it is then possible to determine their unimolecular
kinetics. Similar to how it was done to explain the global
process of primary fragmentation, to extract the rate con-
stants we first built a kinetic model with four states, shown
in Figure 16. The primary fragmentation state is now di-
vided into two new states, |A〉 and |B〉. The first takes into
account the process of interest, for example, the formation
Mα = {M1,M2} while the second all the other processes, so
that |B〉= |PF〉− |A〉.

After establishing all possible interconnections between
the states and considering that once the system reacts it does
not return to the precursor state, the system of ordinary dif-
ferential equations will be :

dNSP

dt
= kSI ·NINT− (kIS +kAS +kBS) ·NSP

dNINT

dt
= kIS ·NSP− (kSI +kAI +kBI) ·NINT

dNA

dt
= kAS ·NSP +kAI ·NINT−kBA ·NA

dNB

dt
= kBS ·NSP +kBA ·NA +kBI ·NINT

(25)
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Figure 16. Markov diagram for a particular four-state system that
explains the formation of a given fragmentation product by primary
fragmentation in the gas phase.

The analytical solution (reported in the Supporting Infor-
mation) of this system was obtained in a similar way to
that of three-state model using the Laplace-Carson transform
method. It is important to note that there are four totally in-
dependent populations NSP, NINT, NA, and NB and seven
rate constants to be determinated: kIS, kSI, kAS, kBS, kAI,
kBI and kBA. However, two have already been obtained in
the three-state system kIS and kSI together with the sum of
two of them as, kPS = kAS +kBS and kPI = kAI +kBI. There-
fore the problem is reduced to four populations and three rate
constants, kAS, kAI and kBA. The rate constant kAI accounts
for the formation of the mass channel through a global inter-
mediate while kAS does the same but from the starting point.
Finally, the rate constant kBA corresponds to the secondary
fragmentation of the channel of interest if there is any.

A simultaneous fit of the populations, following the
method A, was performed to obtain the rate constants in-
volving the |A〉 state, kAS, kAI and kBA. The remaining rates
constants, kIS, kSI, kPI and kPS, are constrained to the values
obtained during the simultaneous fit, by using the approaches
A or B, of the three-state scheme.

We applied this approach to two primary fragmentation
products, which were the most abundant observed: (i) the
loss of neutral CO and (ii) the formation of methaniminium
cation (H2NCH+

2 ). As previously, we obtained the rate con-
stants from the time evolution of the states and then we fit
their energy dependence using the RRK model. The RRK
fit results are reported in Table VI. As for the global fit, the
values obtained with method A and B are very similar. For
simplicity we will comment in the following the values ob-
tained with method A.

Interestingly, in the case of CO-loss we can follow two
reactions: (i) the formation of the CO-loss product from an
intermediate state (characterized by νAI and Ea

AI) and (ii) the
degradation of it forming other products (characterized by
νBA and Ea

BA). For the |INT〉 → |A〉 reaction, the threshold
energy (Ea

AI) is slightly lower than the corresponding global

threshold energy (Ea
PI), which is what expected since this

channel is the most abundant one. The same picture is ob-
tained for CYC00 and LIN00 simulations, just the barrier of
these lasts is lower. Notably, the differences in threshold en-
ergy reflect also in this case the difference of 11-12 kcal/mol
obtained from average potential energy analysis.

For the H2NCH+
2 formation we do not observe any sec-

ondary fragmentation and the energy threshold from CYC00

simulations are about 14.5 kcal/mol higher than the one ob-
tained from LIN00 simulations. This is slightly higher than
the average energy difference between the two states, but not
large enough to suggest that other processes are relevant.

VI. THE THEORETICAL MASS SPECTRUM

We now show how this approach can finally provide a the-
oretical mass spectrum. Experimentally this is obtained by
counting the number of structures as a function of their mass-
to-charge (m/z) ratio. Theoretically we can obtain it in the
same way using the rigorous definition of a primary fragmen-
tation product given before. Also an estimation can be made
by counting the elements in the ΩCMAS work-space. Every
item in ΩCMAS includes the set of cluster mass formed dur-
ing the simulations.

All the different items ρCMAS are directly related to
the possible reactions. For any of these different items
ω ∈ [1,ρCMAS], the charge distribution is calculated a poste-
riori from the expectation values of the electrostatic potential
(ESP) of the molecule on a uniform distribution of points as
implemented in Mopac.73

Experimentally, the most abundant m/z products observed
in fragmentation of protonated cyclo-di-glycine are:60 90.0,
87.0, 70.1, 59.0, 58.1, 41.9 and 30.1. We obtained all of
them from the different simulations (results for the two ini-
tial species and the different excess energies are summarized
in Tables S2 and S3 of the Supporting Information) as well
as other products. The description of the observed ions is
reported in Table VII. Note that from simulations we obtain
a high-resolution spectrum with no additional cost. Further-
more, it would be eventually possible to consider isotopic
abundances, assuming that the fragmentation process is not
largely affected by difference in atomic masses (which is
what generally is done when doing isotopic labeling in mass
spectrometry).

Similarly to experiments, it is now easily possible to report
the relative abundance of the species of interest as a function
of activation energy. In Figure 17 we report the abundance
of the precursor ion (m/z 115.05) and the most character-
istic product, corresponding to the CO-loss (m/z 87.06), as
obtained from CYC00 and LIN00 simulations.

As expected, the higher energy conformer LIN00 reacts
more than the global minimum CYC00, in particular at low
energies. The two reactivities become almost equal at higher
energies. The loss of carbon monoxide, in both cases, in-
creases with the total energy until a maximum value is
reached and then it decreases. The position of the two max-
imum energy values are shifted by about 11 kcal/mol which
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CYC00 LIN00

Method Method
A B A B

- CO

νAI 0.063 ± 0.024 0.036 ± 0.010 0.010 ± 0.002 0.012 ± 0.002
Ea

AI 33.829 ± 1.456 31.602 ± 1.109 21.267 ± 0.589 21.756 ± 0.620
νBA 0.018 ± 0.012 0.0099 ± 0.0055 0.0049 ± 0.0015 0.0045 ± 0.0013
Ea

BA 23.890 ± 2.824 21.443 ± 2.440 14.861 ± 1.199 14.571 ± 1.094

H2NCH+
2

νAI 0.0069 ± 0.0030 0.0052 ± 0.0017 0.00042 ± 0.00013 0.00072 ± 0.00023
Ea

AI 31.006 ± 1.791 29.759 ± 1.347 16.477 ± 1.088 18.606 ± 1.050

Table VI. Effective frequencies factors (in fs−1) and energy thresholds (in kcal/mol) extracted by fitting the microcanonical rate constants
using the RRK model.

m/z Formula From Description of Neutral Loss(uma) Simulation
115.05 C4H7N2O+

2
113.04 C4H5N2O+

2 H2
98.02 C4H4NO+

2 NH3
97.04 C4H5N2O+ H2O
88.04 C3H6NO+

2 HCN
87.06 C3H7N2O+ CO
86.02 C3H4NO+

2 CH3N
85.04 C3H5N2O+ CH2O
73.04 C2H5N2O+ C2H2O
72.04 C3H6NO+ CHNO

70.03 C3H4NO+ CH3NO
CO NH3

69.05 C3H5N+
2 CO H2O

68.01 C3H2NO+ CH3N H2O
60.05 C2H6NO+ CO HCN
59.06 C2H7N+

2 CO CO

58.03 C2H4NO+ C2H3NO
CH3N CO

57.05 C2H5N+
2 CH2O CO

46.03 CH4NO+ C2H3N CO

42.03 C2H4N+ CH3NO CO
CO CO NH3

30.03 CH4N+

C3H3NO2
C2H3NO CO
CHNO C2H2O
CH2O CO HCN
CH3N CO CO

29.00 CHO+ C3H6N2O
28.02 CH2N+ CH2O CH3N CO
18.03 NH+

4 C2H3N CO CO

Table VII. A general description of the theoretical mass spectrum
obtained from the different simulations.

corresponds to the average energy difference obtained previ-
ously.

VII. CONCLUSIONS AND OUTLOOKS

In this work, we have reported a new application of graph
theory to analyze an ensemble of reactive trajectories of a
complex system. We focus our attention on the gas-phase
unimolecular dissociation related to mass spectrometry, but
the approach is totally general. One key aspect is the use of
the canonical labeling which allows to automatically classify

Figure 17. Relative abundances of two m/z signals as a function of
energy as obtained from CYC00 (in red) and LIN00(in blue) simu-
lations. a) precursor ion (m/z 115.05) b) CO loss (m/z 87.06).

as the same molecular structures two graphs with different
adjacency matrices.

Based on this approach, which was described in detail, it
is possible to obtain kinetic properties, in terms of rate con-
stants and, after a typical RRK fit, threshold energies. Here
we assumed that the products cannot form back the reactants,
as it is pertinent in gas phase fragmentation, but a particular
care is given in identify transient species which can be ob-
tained, as the ion-molecule complexes, this being relevant to
point out possible roaming mechanisms. The method, how-
ever, could be extended to physical conditions (and typically
reactions in solution) in which a dynamical equilibrium be-
tween reactants and products is reached. The main limita-
tions will be in having enough direct dynamics trajectories
to have a good statistical sampling. Also the kinetic scheme
should be adapted in this case. Future applications and de-
velopments of the present method in that direction are surely
welcome.

Both general three-state and specific four-state models can
be used, this last allowing a more specific analysis of a par-
ticular fragmentation product. We should also note that we
obtained rate constants also from the flux: results are similar
to the simple fit of the population while this last needs less
trajectories to have a good convergence. We thus suggest in
future to use it when possible.

A particularity of the approach is the general definition
of an intermediate state, which is rather abstract (this is
useful to obtain rate constants of fragmentation products)
but molecular details can also be extracted. Specifically to
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ion fragmentation is the possibility to identify ion-molecule
complexes which are often suggested when explaining prod-
ucts observed in mass spectrometry.

Finally, we have coupled the graph theory analysis to a
charge localization method leading to a full theoretical mass
spectrum which can be obtained automatically. We have ap-
plied it to a prototypical system representative of peptide
fragmentation, we now plan to use to more complex and new
systems in order to describe not only qualitatively but also
quantitatively (thanks to the access to threshold energies) the
fragmentation processes.

ADDITIONAL CONTENT

Supplementary material is available, were we report: (I)
five additional figures, (II) three additional tables and (III)
the analytical solution of 4-state kinetic system. The scripts
used in the kinetic fits are reported in a public GitHub repos-
itory (https://github.com/afperezmellor?tab=repositories).
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