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Air inequality: Global divergence in urban fine particulate matter trends
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Fine particle air pollution (PM:.s) is the largest global environmental risk factor for ill-
health and is implicated in >7% of all human deaths.!3 Improved air quality is a key policy
goal for cities, yet in-situ PMa.5s measurements are missing* for >50% of the world’s urban
population. Here, we apply satellite remote sensing to develop a 21-year time series of
ground-level PM: s concentrations for the 4231 urban areas with populations >100,000 (2.9
billion people) from 1998 -2018. Globally, we find the most polluted cities are generally
small (<1 million population) and lack PM:.s monitors. Since 1998, we observe a growing
divide in urban air quality between cities in lower and higher-income regions, with the
PM. s disparity increasing by >50% (from 25 to 39 pg m~) between the highest- and lowest
income quartiles of world cities. Within Asia, a sharp divergence is underway, with
sustained PM> s increases in South Asian cities (+48%) contrasted against dramatic
improvements in Chinese cities (-40% since 2011). While 85% of the world’s urban
population experiences PM> s higher than World Health Organization guidelines, urban
PMa:.5 concentrations are tightly linked to regional conditions, suggesting that city-level

efforts alone may be insufficient to address this major health threat.
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Urban air pollution has been a concern for human health and welfare since the dawn
of the industrial era,> and a major focus of modern environmental policy in countries around the
world for the past 70 years. Fine particulate matter (PMa.s) contributes >90% of the burden of
disease attributed to ambient air pollution,? or approximately 4-7 million premature deaths

127 shortening the average human life by ~1 year.® Despite the major public health

globally
burden of PM> s, careful assessment of global urban air quality trends has been hampered by the
general absence of an observational record for most cities on the planet.*® As of 2018,
approximately 1.5 billion people lived in ~2800 world cities with more than 100,000 people but
with no valid, continuous PM> s measurements'? (Extended Data Figure 1). Regions with
especially few PMz s monitors include large parts of Asia, Africa, and South America, where
PM, s concentrations are estimated to be especially high and changing rapidly.* Here, we develop
a time-series of urban PM, s estimates for each of the 4,231 worldwide urban agglomerations!!-!?
with more than 100,000 inhabitants (2.9 billion people in 2018), which account for ~69% of the
world’s overall urban population and 38 % of the global population. Our dataset encompasses
the period from 1998 to 2018, when the world’s urban population'® increased by 56% from 2.7

billion (46% of the total human population) to 4.2 billion (56%), including a doubling of the

urban population in Asia to 2.3 billion people.

Urban PM2 s dataset: global and regional patterns
As described in Methods, we use a high-resolution (0.01°x0.01°, ~ 1 km?) PM» 5 dataset!*

based on satellite remote sensing of aerosol optical depth!> (AOD) to develop annual-average
urban-level PMz s estimates for 4231 urban areas during the years 1998-2018 (Extended Data
Figure 2). For the ~1000 cities (~5000 city-years, ~12000 monitor-years) with valid in-situ PM2 5

measurements over this period, model performance is excellent, estimating measured annual-
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average PMz s with R? = 0.91, slope = 0.91, and mean absolute error of 3.6 ug m (16%,
Extended Data Figure 3). For 2018, the population-weighted mean (PWM) urban PM; s
concentration in our dataset was 31.3 ug m=. Overall, 84% of the urban population lived in 3504
cities where concentrations exceeded the annual-average World Health Organization (WHO) air
quality guideline of 10 pg m PMa s, and 35% of the urban population lived in cities where
PM, 5 exceeds the WHO interim target of 35 ug m=.

For year 2018, the highest urban PM 5 concentrations were in South Asia, China, and West
Africa, while many of the world’s least polluted cities were in North America, Brazil, and parts
of Europe. Considering the 400 (~10% of) cities with the highest PM 5 concentrations in 2018,
annual-average concentrations ranged from 62-165 ug m=> (PWM: 85 pg m, Extended Data
Figure 4). These most polluted cities were predominantly in India (50%), elsewhere in South
Asia (15%), Nigeria (17%), and China (11%). This group included 14 cities with more than 3
million people, including Delhi, Kolkata and Lucknow (India); Karachi (Pakistan); Dhaka
(Bangladesh); Accra (Ghana), Lagos and Kano (Nigeria); and Lima (Peru). However, the
majority of the world’s most polluted cities have populations less than 1 million, and only 20%
of these cities in the upper concentration decile have valid in-situ PM> 5 measurement data. This
finding stands in contrast to previous literature about the world’s most polluted cities,!¢ which
tends to emphasize larger and more prominent urban areas that have more extensive in-situ

monitoring.*!”

Regional divergence in PM2 s trends
Trend analyses for PM» s over the period of 1998-2018 paint a picture of a highly dynamic

evolution in urban air pollution around the world (Figure 1, Extended Data Figure 5). While a

single linear or exponential trend provides an incomplete summary of the complex dynamics of
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urban air pollution over two decades, 81% of the global urban population experienced
statistically significant upwards or downwards trends in PMa s.

Our data reveal sharp global divergence in urban PM> s over the past two decades. Key
results from best-fit concentration trends for the full two-decade period are evident in Figure 1a:
~2% yr! reductions in PMz s in the Eastern US, Mexico, and Western Europe, and 1-3% yr!
increases in PM> 5 in South and Southeast Asia, the Middle East, and parts of South America and
East Africa. For most sub-Saharan African cities, evidence of a trend is obscured by large (+5-10
ug m™) interannual variability caused by episodic regional smoke and dust transport.'8 Notable
counterexamples to broader regional trends include PM> s reductions in Colombian and coastal
Brazilian cities contrasting with increases elsewhere in South America, and PMaz s increases since
2008 in smaller cities in the Western U.S. and Canada owing to the influence of wildfire smoke.

The divergent air pollution trends within Asia are shown in Figure 1b-c and Figure 2. Strong
upward concentration trends tracked closely for Chinese and South Asian cities from 1998-2011
(Figure 2a). In 2011, median PM2.s concentrations were virtually identical for Chinese and South
Asian cities. However, since 2011, nearly all major cities in China experienced sustained and
precipitous declines in PMa s of 15-30 ug m (-7% yr!), with more than 85% of Chinese cities
experiencing lower PM, s in 2018 than in 1998. This trend, as documented elsewhere,!*-2?
resulted from an extensive combination of energy and air pollution control policies enacted after
2011. Over the same period, upward trends in PM» s (~2% yr!) persisted in South Asian cities,
such that by 2018, the 25" percentile PM» s concentration in South Asian cities (48 pg m)
exceeded the 75" percentile in Chinese cities (45 pg m™). Reflecting the large-scale exodus of
Chinese cities from the ranks of the world’s most polluted, of the world’s 25 most polluted cities

for PM> s, 21 were in China in 1998, while 22 were in India in 2018 (Extended Data Figure 4).
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Conversely, since 2008, urban PM2.s grew most rapidly in South Asia, accounting for more than
90% of cities worldwide that experienced increases greater than 0.5 pg m y!. Notably, the most
rapid increases in PM> s in India were not in the heavily polluted cities of the Indo-Gangetic
Plain,? but rather in the less-polluted southern cities (Figure 1¢), including Pune and Bangalore,
which have become major economic hubs.

We find a growing divide in urban PM> s concentrations between lower and higher-income
countries over the past two decades (Figure 2). In 1998, the global distribution of urban PM s
was essentially unimodal with respect to the urban population. At that time, there was substantial
overlap in the concentration distributions of lower- and higher-income countries: relatively
polluted cities in the United States or Western Europe had similar PM 5 levels to comparatively
clean Indian or Chinese cities (Figure 2b). By 2011, concentrations had diverged sharply
between the higher- and lower-income countries, such that the global distribution of urban PM3 s
became distinctly bimodal (Figure 2b), removing nearly all overlap in the urban PM; s
distributions in the high- and low-income world. Notable changes between 1998 and 2011
(compare Fig 2b-c) include a large upward shift in the concentration distribution for already-
polluted Asian countries, resulting in a 70% increase in the urban population at PMzs > 35 pg m-
3; a large increase in the urban population living at PM>s5 < 10 pg m™; and steep declines in
PM: 5 concentrations in Mexico and Central America. Between 2011 and 2018, the storyline
becomes more complex, as the unprecedented PM» s improvements in China (Figure 2a) stand
out as a clear exception to the continued global trend towards increasingly unequal urban air
pollution. From 2011-2018, the share of China’s urban population meeting the national PMa s
standard (< 35 pg m™) quadrupled from 9% to 38%, resulting in a broad — but again unimodal —

global urban PM> 5 distribution (Figure 2d). Excluding Chinese cities from the visualization
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(Figure 2e-f) accentuates the increasing global divergence in urban air quality between the high-
income countries and the 5 largest low-income countries (India, Indonesia, Bangladesh, Pakistan
and Nigeria). Figure 2a highlights two equal city population groups corresponding to the lowest
and highest national income quartiles (Q1 and Q4). On a PWM basis, the concentration disparity
in urban PM» 5 among these lowest and highest income groupings grew by more than 50% from
1998 to 2018. Average concentrations in the low-income Q1 cities grew from 45 to 54 pg m,
while average urban PM: s declined from 20 to 15 pg™ for cities in high-income Q4 over the
same period. In sum, these data point to continued urban PMz s improvements in higher-income
countries, exceptional recent progress in China, and a sustained deterioration of urban air quality

in many of the world’s lower income countries.

Urban PM:sis influenced by regional conditions

We explore here how PM; 5 concentrations in the world’s cities relate to their surroundings.
Three key considerations are relevant. First, PMz 5 sources are distributed across the entire urban-
to-rural landscape. Many key emitters of PM> s and its precursors are found at the urban
periphery or in rural areas, including electric power generation, domestic fuel combustion, some
types of industry, agriculture, and fires. Second, PM s consists of both primary particles (which
local sources may strongly influence) and of secondary organic and inorganic material (for
which regional emissions and atmospheric chemistry play a decisive role). In most urban areas,
secondary particle mass typically exceeds primary particle mass.?**> Characteristic atmospheric
reaction and transport timescales of hours to days impose a spatially diffuse footprint for
secondary PM, 5.2627 Third, cities influence their surroundings, as “urban plumes” elevate PM s

concentrations in downwind areas.?%2°
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We characterize here the relationship between urban and regional concentrations using high-
resolution 1-km PM> s data by computing isotropic (directionless) concentration decay profiles
away from the center of each city in the dataset (see Methods). Figure 3a illustrates how, on
average, concentrations decrease moving away from the city center for cities of all sizes, with
increasingly strong decay patterns for cities of increasing size. The urban increment in PMa s
relative to regional surroundings is generally modest and reflects the regional nature of PM>.s and
the importance of secondary formation. Considering the decrease in concentration out to 300 km
from a city center, average PM: s concentrations decay by 12% for smaller cities sized 100-400k
(~25% of urban population), and by 30% for the world’s largest cities with > 5.6 M inhabitants
(~25% of urban population). These patterns are similar for cities in both cleaner and more
polluted regions, and are robust to the specific year analyzed.

Relative to smaller cities, larger cities are both somewhat more polluted, and have PMx s
concentrations that are more elevated relative to regional background. However, the effect is
subtle. Figure 3b presents the ratio of city-center to 300-km radius concentrations as a function
of city population. Cities in the highest population bin in Figure 3b have PM> 5 levels that are on
average only 50% greater than their regional surroundings. Globally, there is little association
between city population and PMz s (» = 0.03). The half of the world’s urban population living in
the larger cities (population > 1.6 M) experiences PMz s levels only moderately elevated relative
to smaller cities (crude and regionally-adjusted differences: 1.9 and 1.8 ug m).

Over the past 40 years, there has been extensive scientific emphasis on poor air quality in

megacities, 303

which we consider here as the 39 global agglomerations with population of more
than 10 million (~600 M inhabitants in 2018). While some megacities are notorious for air

pollution extremes, we find that globally, megacities have annual-average PM2 s (PWM: 37 ng
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m™) that is only moderately elevated (3-4 pg m=, ~10-20%) relative to non-megacities in their
regions. These findings imply that the traditional emphasis on heavily polluted megacities may
be an example of an observational bias (the “streetlight effect”): attention gravitates to those
larger cities that have available monitoring data.

Temporal trends in PM2 s concentrations tend to be broadly similar for cities and their
regional surroundings. For more than 80% of all cities, we find high time-series correlation (» >
0.8) between urban PMz 5 and concentrations in surrounding 100-300 km regions. This result is
consistent with the practice of air quality management in the U.S., China, and Europe, where
regional strategies have been used in conjunction with city measures to improve urban air
quality. Two key ingredients to these strategies have included controlling regional emissions
sources (e.g., power generation, rural household solid fuel use) and reducing secondary aerosol
precursor emissions (e.g., SOz from coal use) 1*223*35 In combination, our findings emphasize
how past and future trends in urban PM3 s require consideration of the broader context of
regional sources and atmospheric processes.

By overcoming major global data gaps in the in-situ observational record, we find a clear
picture of global divergence in urban PM; s, with increasing “air inequality” for PM2.s between
cities in lower- and higher-income countries. Prior theoretical and empirical scholarship has
described inconsistent relationships between economic development and local environmental
quality.”-36-38 Policy choices also matter. Across a diverse range of economic conditions, a
common theme for notable reductions in urban PM3 s is the role of strong policy
measures.!?22313940 The striking contrast between unprecedentedly rapid PMz s reductions in
Chinese cities and increasingly severe urban air pollution in South Asia illustrates how

comprehensive policy efforts can sharply redirect air pollution trends even while sustaining rapid



192

193

194

195

196

197

198

199

200

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

economic expansion. Still, roughly a billion people in mostly lower-income countries reside in
cities with increasing PMzs. Several high-profile global and national environmental policy

41-44 often emphasizing the strong co-benefits between

efforts focus on city-led actions,
greenhouse gas emissions reduction and improvements in localized air pollutants. Our findings,
however, emphasize how urban PM> s is tightly coupled to surrounding conditions, suggesting
that coordinated regional or national policies ¢£- 44 may also be needed to bring cleaner air to
an increasingly urbanized world. These data use a consistent methodology which, with future

updates, will help track the effectiveness of air quality management actions at regional, national

and city levels.
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Methods
Characterizing the global distribution and evolution of ambient PM> s concentrations in cities

globally is constrained by two factors: (i) the widespread absence of in-situ PM> s measurements
in most urban areas, especially in lower-income countries (Extended Data Figure 1); and (ii) the
absence of a consistent long-term observational record of PM 5 in the many cities that have
recently begun to monitor PMz 5. To estimate PMa.s concentration time series for worldwide
cities, we combined two key datasets, described briefly here and in detail below. First, we
employ a dataset'* recently developed by members of this group and others that estimates a 20-
year time series (1998-2018) of annual-average PM> s concentration using a combination of
satellite remote sensing of aerosol optical depth (AOD) and modeled and observational
constraints. Data are available for all major areas of the earth’s land mass, gridded at 0.01° x
0.01° resolution, comparable to 1 km at mid-latitudes. We then obtained a comprehensive dataset
of the world’s major urban centers — the Universe of Cities dataset!!'>47 — which enumerates
4231 worldwide urban areas (“cities”) that had year-2010 populations greater than 100,000,
accounting for ~70% of the global urban population in that year. Next, we developed a simple
geospatial routine for estimating urban-average PM» 5 concentrations for each of these 4231
cities using the gridded global dataset and validated these estimates against a global collection of
in-situ PM 5 observations maintained by the World Health Organization.!° Finally, we
conducted trend analyses to characterize the time evolution of ambient PMa s in cities and

regions around the world.

12
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Datasets
Global gridded PM: s dataset

We use here a global time series of ground level annual-average PM, 5 for the years 1998-
2018 recently developed by Hammer et al. (2020).!# This dataset is the latest refinement of a
global gridded PM, s product developed by van Donkelaar et al. over the past decade.!>*® We
provide here an overview of those methods and refer the reader to Hammer et al. (2020) and
references therein for a full description. First, daily overpass aerosol optical depth (AOD)
measurements are acquired from four satellite instruments (MODIS-Terra [operational 2000-
present] and MODIS-Aqua [2002- present], MISR [2000 — present], and SeaWiFS [1997-2010]).
A detailed summary of the specific retrieval algorithms used for each instrument is presented in
Hammer et al. (2020). This dataset incorporates several recent refinements to the AOD retrievals
for the individual instruments, including the MAIAC (Multi-Angle Implementation of
Atmospheric Correction) algorithm* that provides AOD at a spatial resolution of 1 km globally
for the entire MODIS record. Next, the individual daily remotely sensed AOD products are
calibrated to a network of high-accuracy ground-based sun photometer AOD observations from
the AERONET (Aerosol Robotic Network) system. Following calibration, the individual daily
AOD products are combined into a single product based on a weighted average that most
strongly emphasizes the AOD data sources with the best agreement with nearby AERONET
sites. This combined satellite AOD product is highly consistent with AERONET observational
constraints (e.g., for 638 monthly-averaged observations in 2015, R*> = 0.84, slope = 0.97).14

To estimate surface PM2 s concentrations from satellite observations of the columnar AOD
(AODsaT), Hammer et al. simulate the local and temporally coincident ratio of these two
properties (N = PMa.s,sim / AODsiv) , such that:

PMz 5= n x AODsar

13



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

The  parameter'” is spatiotemporally variable, and depends on factors including aerosol
composition, aerosol size, relative humidity, diurnal variation, and the vertical atmospheric
profile of aerosol extinction. Hammer et al. (2020) employ v11-01 of the GEOS-Chem chemical

transport model (http://geos-chem.org) and meteorological data from the MERRA-2 assimilated

reanalysis to simulate temporally coincident surfaces of # globally from 1998-2018. The GEOS-
Chem simulation incorporated 47 vertical layers at a global grid resolution of 2°x2.5°, with a
nested resolution of 0.5°x0.625° over Europe, North America, and China. The Hammer et al.
dataset includes several refinements to the GEOS-Chem simulations relative to earlier

datasets!>*8

including: (i) improved parameterizations for secondary organic aerosol and dust;
(i1) updated anthropogenic emissions inventories for the US, Europe, China, India, and elsewhere
in Asia, and (iii) increased global coverage at finer resolution for biomass burning and crustal
dust emissions.

The PM; 5 estimates produced with Equation 1 above are referred to as a geophysical
estimate, given that they are derived strictly from observational constraints and a mechanistic
simulation. To evaluate the geophysical model, Hammer et al. (2020) employed the latest version
of the World Health Organization ambient air quality database, which provides a comprehensive
and harmonized global dataset of all available annual-average PM> s measurements from
scientific or regulatory-grade instruments from 2010 onwards. Hammer et al. (2020) selected
from this dataset a total of ~23,000 measurements in 66 countries that had 75% or greater data
coverage in their given measurement year for validation of the annual-average geophysical PMa s
product. In recent measurement years, approximately 3500-4000 sites are available for

evaluation of the dataset, reflecting expansion of global monitoring coverage in China, India, and

other lower-income countries. The annual mean geophysical product is consistent with ground-

14



372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

based monitors, with R?> = 0.81 and slope = 0.90 for 2015. Few regions of the world have
consistent, long-term datasets available for evaluating the trends of the geophysical product. For
the eastern US, US EPA monitoring data are available for evaluating the entire 1998-2018
period, and show excellent agreement in monthly and annual PM; s trends.'* The historical record
of PM2 5 is considerably shorter for data in Europe and China, but trends are broadly consistent
and agree to within the uncertainty bounds of the dataset.

To further improve the fidelity of the AOD product, Hammer et al. (2020) develop a
“hybrid” dataset where the geophysical PM> s data are statistically fused to the global dataset of
in-situ observations by means of geographically weighted regression (GWR). Briefly, the GWR
bias correction is parameterized to minimize the difference between in-situ annual-average PMa s
measurements and the geophysical PM 5 surface concentrations at monitor locations. Predictor
variables for the GWR are properties that are associated with uncertainties in #: fine-scale
topography, simulated aerosol composition (mineral dust, sulfate, nitrate, ammonium, organic
carbon), and urban land cover. Application of the GWR improves the performance of the hybrid
model relative to the geophysical model (10-fold cross validation R? 0.90-0.92, slope 0.91-0.97
for years 2014-2016). Overall, geophysical PMy s is still the principal driver of the hybrid PMz s
surface, with statistical fusion explaining only 11% of the variance in the PMa 5 surface.'* Here,
for our core estimates of urban PMaz 5, we rely on the hybrid PM2 s surface, and in sensitivity
analyses consider how our conclusions would be affected if we had instead employed the

geophysical PM; 5 surface.

Global data on urbanized areas
To characterize the global distribution of urban areas, we rely on a dataset developed by

Angel et al. that seeks to produce a globally consistent description of the population and urban
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form of human settlements.!!'2°% The core Angel et al. dataset, termed the “Universe of Cities”,
provides information on year-1990, 2000, and 2010 populations for 4231 global urban areas,
along with the geographic coordinates of the approximate center of each city, derived using
global and national demographic datasets and constrained by satellite imagery. Herein, we follow
the practice of Angel et al., and use the term “city” interchangeably with the more formalized
concept of an urban area. For each urban area in the Universe of Cities, Angel et al. conducted
quality assurance to ensure that population estimates refer to the urban agglomeration, rather
than to individual administrative subunits, and similarly ensure that constituent cities / subunits
are excluded as separate entries when part of a larger urban agglomeration. Overall, this dataset
of cities > 100,000 people incorporates a year-2010 population of 2.49 billion urban inhabitants,
roughly ~72% of the year-2010 global urban population estimated by the UN World
Urbanization Prospects dataset.!® For the purposes of analysis, we subdivide these cities into four
groups (approximately quartiles) with nearly equal population: 0.1 — 0.4 M people (24%, N =
3073 cities), 0.4 —1.6 M people (26%, N = 890), 1.6 — 5.6 M people (25%, N =215), and > 5.6
M people (25%, N = 53).

In addition to the full “Universe” of 4231 global urban areas, Angel et al. use a stratified
sampling frame based on world region, income category, and city size to select 200 individual
cities (“Atlas of Urban Expansion”) for detailed time-series analysis. For each of these 200 cities,
Angel et al. provide high-resolution GIS shapefiles that correspond to the urban boundaries over
multiple time periods, including year-2010. Here, we employ the detailed data for these 200
cities for developing and validating a geospatial data analysis method that we subsequently

applied to all 4231 worldwide urban areas.
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To estimate regional urban population growth between 1998 and 2018 at finer temporal
resolution than the year-2000 and year-2010 data available for individual cities from Angel et al.,
we performed the following routine. First, using city-specific population estimates for years 2000
and 2010, we derived annual population estimates between 1998 and 2010 using the decadal-
average population growth rate for 2000-2010. For years 2010 onward, city-specific population
estimates were not available. For each country, we obtained estimated national growth rates in
urban population for the periods 2010-2015 and 2015-2020 from the UN World Urbanization
Prospects database!® and applied these growth rates uniformly to each city in a country.
Population estimates for individual cities may therefore be substantially uncertain post-2010, but
we expect the overall trends in combined urban population for groupings of many cities to reflect

well the UN urbanization estimates.

Estimating urban PM2.s from gridded data
To estimate urban PM; 5 from gridded data, we employed two approaches. First, for the 200

individual cities of Angel et al.,!! we used detailed urban boundary data for circa-2010 to
estimate an area-weighted PMz 5 concentration from the gridded dataset. Specifically, we assign
each grid cell that is partially or fully intersected by a given city’s urban boundary a weighting
factor in proportion to the fraction of that grid cell’s area encompassed by the urban boundary.
Given the relatively high spatial resolution of the gridded PM» s data (0.01°, ~ 1 km), the
footprints of even the smallest and most compact cities in the dataset (~10 km? urbanized land)
intersect dozens of pixels, while there are hundreds to tens of thousands of pixels in the larger
cities evaluated here.

Second, we consider a highly simplified approach, wherein PM> s is estimated on the basis of

a circular buffer around each city’s centroid. For this latter approach, we sized each city’s
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circular buffer to correspond to the mean urbanized land area for the full set of cities in its
population quartile (respectively 125, 265, 951 and 2190 km?; radii of 6.3, 9.2, 17.4 and 26.4
km). For the set of 200 cities, the simplified circular approach estimates the area-weighted
concentrations using urbanized boundaries with remarkably high fidelity: R? = 0.997, slope =
1.001, normalized mean absolute error 2.3%, normalized root-mean-square error (NRMSE)
3.9%, and mean fractional bias -0.8% (see Extended Data Figure 3a). We speculate that this
simplified circular buffer approach performs well for many cities because (i) the spatial gradients
of PM> 5 across an urban region are generally moderate (varying by tens of percent, not by
multiples), given the importance of secondary/regional PM2 s; (ii) both spatial analysis methods
involve smoothing over hundreds to thousands of grid pixels; and (iii) a crudely drawn circle
roughly approximates the urban form of many cities. Given the success of this simplified
method, we then applied the circular buffer approach to all 4231 global urban areas in the

Universe of Cities dataset.

Evaluation of urban PM. 5 estimates

To evaluate the performance our urban PMa s dataset in estimating in-situ measurements of
ambient concentration, we matched the cities in our dataset to the World Health Organization
(WHO) ambient air quality dataset. First, following Hammer et al., we restricted the dataset to
include only the measurement data with >75% temporal coverage for a given year. Then, for
each city, we identified (i) all monitors available within a 30 km radius of the city center and (ii)
all monitors available within the specified radius of the city center that we used for analyzing
gridded PM> 5 concentrations (6.3 — 25.4 km, see above). Overall, 1387 cities (33%) had valid
monitoring data from sites within 30 km of the city center, and 1007 cities (24%) in 66 countries

had monitors within the narrower 6.3-26.4 buffer radius we used for analyzing the gridded PM; 5
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data. For this latter set of cities, there were ~12,600 valid measurements, reflecting multiple
monitors per city in multiple years. We then analyzed the relationship between the in-situ
measurement and remotely sensed PM» 5 data sets in two ways. First, we considered the
correlation between individual monitoring sites’ annual average PMz s concentration and the
corresponding year’s PM; 5 estimate. Second, to reduce the monitor-to-monitor differences in
cities with multiple monitors, we evaluated the relationship between the median concentration
computed over all measurement sites in each city for a given year, and our corresponding
estimate for the same year. For this second approach, our dataset was reduced to ~5600
measurements. In each case, we employed orthogonal distance (Deming) regression. Regression
results were broadly similar for both analysis approaches for the monitoring data, as illustrated in
Extended Data Figure 3. The city-averaged approach estimated available measurements of
ambient PM> s with good fidelity: R? = 0.91, normalized mean absolute error (NMAE)= 16%,
normalized root-mean-squared error (NRMSE) = 26%, with regression slope = 0.91 (Extended
Data Figure 3). As an additional test of our results, we considered an alternative approach to the
hybrid PM> 5 dataset, where the GWR correction was applied based on an out-of-sample
prediction from the 10-fold cross-validation scheme of Hammer et al. This approach ensures that
local monitoring information is withheld from our hybrid model estimates while still maintaining
the overall benefit of the GWR correction. Here, evaluation results were nearly identical. Thus,
we can conclude that our product estimates urban-average PMz s with moderate to high precision,
at least on the basis of the extant measurement datasets. Consider for context that our precision
metrics (~15-25%) are comparable in magnitude to the typical level of spatial variation of PMa s
within a city, whereas variation in PM s concentrations among cities within many countries can

span a factor of 2 to 5. Of course, we anticipate that the GWR correction scheme would benefit
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from additional monitoring data, especially for regions with comparatively few urban
measurements. As shown in Extended Data Figure 3b, we observe somewhat greater dispersion
in our estimates for cities in the low-income countries. This result may arise from a combination
of factors: (i) fewer data available to train the GWR in regions with limited in-situ monitoring,
(i1) fewer monitors per city, (iii) the difficulty of siting “background” ambient monitors at a
distance from high-emitting pollution sources in dense low-income cities and (iv) QA/QC
considerations in the monitoring data.'®

Globally, we find that the population-weighted mean urban PM»s concentration is somewhat
lower than the PWM PM: s concentration for the entire global population (i.e., urban + non-
urban combined). For 2015, using the core dataset of Hammer et al.,'* we find a global PWM
PM2> 5 concentration of 38.6 ug m=, as compared with an urban PWM concentration 34.9 pg m™.
This counter-intuitive result arises because of regional differences in the urban share of the
population: on average, more polluted regions of the world are less urbanized, and therefore
contribute less urban population to the PWM. Controlling for regional differences in urban
population share (i.e., if the regional distribution of urban population matched the total
population), our dataset would find hypothetical urban PWM concentrations of ~39-40 pug m-

for 2015, or ~1-3% higher than the global PWM.

Trend analyses
To characterize the evolution of PM> 5 for the 1998 to 2018 period, we employed a least-

squares fitting approach to quantify temporal trends and their associated statistical significance.
We first considered three time-windows for trend analyses: the 1998-2008 and 2008-2018
decades, and the combined two-decade period. In addition, given the sharp inflection point in

PM: s trends over East Asia beginning in 2011, we considered 2011 as an alternative breakpoint
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in our analysis for cities in East Asia. For each city and evaluation period, we fit two simple
models: a linear model (concentration trend in ug m™ y!) and an exponential model
(concentration trend in % y!). For each model and city, we report the trend coefficient and the
coefficient of determination (R?) and p-value of the regression relationship. Given the large
dynamic range in global PM> 5 concentrations, we emphasize the percentage change trends to
facilitate global comparisons in our key figures (Figure 1, Extended Data Figure 5), and include
additional reference to absolute concentration trends in our discussion. While the selection of an
evaluation period in any trend analysis ultimately involves an analyst’s discretion, an advantage
of reporting trends — rather than the change in concentration between a pair of two specific

annual point estimates — is that multi-year analyses are less sensitive to interannual variability.!*

Spatial analysis

To characterize the spatial relationship of PMz s between urban areas and the regions that
surround each city, we conducted the following distance decay analysis. For each city in the
dataset, we constructed a series of 10-km wide annular buffers at sequentially increasing
distances from the city center: 5-15 km, 15-25 km, 25-35 km, ... , 295 — 305 km. Then, for each
annular buffer, we computed the area-weighted average PMz s concentration over all grid cells in
the buffer. As a sensitivity case to our core analysis, excluded those grid cells that included other
nearby cities when computing these spatial averages. For most cities, concentrations in each ring
decreased monotonically with increasing distance from the city center. Following the method of
Karner et al.>! for distance-decay analyses, we normalized each city’s decay profile to the city-
center concentration, and then averaged these individual profiles over all cities within the four

population size quartiles (Figure 3). Through the sensitivity case described above, we determined
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that, on average, the distance-decay relationship was not strongly sensitive to the contribution of

other nearby cities.
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Figure 1. Best-fit trends of annual percentage change in urban PM: s for a.1998-2018,

b. 1998-2008, and ¢. 2008-2018. Only cities for which the regression p-value < 0.25 are plotted,

with more rapid PM2 s changes and higher levels of statistical significance plotted with more

intense colors. Compare b vs. ¢ to note the sharp reversal in the trend of PM; 5 in urban China
between the first and second decades of the dataset. Markers proportional to logarithm of city
population. Extended Data Figure 5 presents detailed trend analyses for several world regions.
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Figure 2. Regional trends in urban PM: s air quality exhibit divergence between higher and
lower-income countries. a. Trends in population-weighted mean urban PM: s for selected major
world regions 1998-2018, illustrating the contrasting trends between East Asia and South Asia
after 2011. Concentrations diverged increasingly between cities in the lowest and highest income
quartiles (Q1 and Q4, based on year-2018 GDP per capita < $3200 or > $16,400) over this two-
decade period. b-d. Population-concentration distributions for 1998, 2011, and 2018 for the
world’s largest countries. Plots illustrate the distribution of the national urban population over
the PM> 5 concentration spectrum for individual countries, with axes scaled to present equal
populations with equal plotted areas. Panels b-d illustrate an increasing divergence in the
concentration distributions between high-income and lower-income countries, and reveal the
rapid shift towards lower PM3 s in China post-2011. Panels e-f plot all world countries except
China, revealing how the distribution of urban PM: 5 has become strongly bimodal, separating
less polluted middle- and high-income countries from more polluted lower-income countries.
Despite increasing global divergence in population weighted PM2 s, the global population-
weighted PM> s concentrations (a) have varied by less than 20% over the full time period.
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Figure 3. Urban PM:s concentrations are modestly elevated above the regional
background. a. Isotropic radial distance-decay functions for urban PM> s normalized to the city-
center concentration. Lines show geometric mean decay profile for four groups of increasing city
size, each with ~25% of global urban population. b. Distributions of the ratio of city-center PMa s
to concentrations in the 300+5 km distance band for cities of increasing size. Global distribution
of city population is divided into 12 equal-population groupings, with geometric mean and 25%-
75 percentile range of this ratio plotted for each grouping. Marker color shows population-
weighted mean PM: 5 concentration for each city size grouping.
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Extended Data Figure 1 — Global in-situ PM».s monitoring gaps. a. Cities in the 2020 WHO
Urban Air Quality Database with and without monitors, defined here as at least one valid (>75%
complete data) annual-average PM» s measurement present within 30 km of the city center. b.
For cities without valid PMz s monitoring data, the distance to the closest monitor in the WHO
dataset with at least one year of valid PM> s data.
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N data points (city-years [i] or monitor-years [ii])
N cities

Total year-2010 Pop (billions)

% of urban dataset population

R-Squared

Normalized mean absolute error (NMAE)
Normalized root mean squared error (NRMSE)
Normalized Mean Bias

Mean at monitors (ug/m3)
Mean of city estimates

Orthogonal distance regression slope
Orthogonal distance regression intercept (ug/m3)

5626 12588
1007 1007
1.20 1.18
48% 48%
0.91 0.91
15.8% 15.9%
26.0% 20.9%
-5.3% -6.3%
22.8 284
21.6 26.6
0.78 1.08
0.91 0.90

Extended Data Figure 3. Validation statistics for estimating urban PM: s via the satellite
remote sensing (RS) method. a. Validation of circular buffer approach for estimating urban-
average PM 5 against a detailed urban boundary shapefile for a subset of 200 cities in the
Universe of cities dataset. b. Scatterplot comparing the annual-median of available WHO PMa s
monitors with >75% data completeness with the corresponding core RS estimates of annual-
average PM s estimate from this database. A total of 5626 annual-average estimates from 1998-
2018 are available for 1007 cities with ~ 1.2 billion inhabitants. Dashed line indicates best-fit
orthogonal distance regression relationship (R? = 0.91, slope 0.91). Marker proportional to
logarithm of city population. ¢. Validation statistics comparing this analysis’s core RS city
annual-average estimates against (i) the median of all in-situ monitors in a city for each year and
(i1) against annual average concentrations recorded at individual in-situ monitors in a city.
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a. 400 most-polluted cities, 1998 400 most-polluted cities, 2018 d. Highly polluted major cities (pop > 1 M, 2018)
200———T—T—T—T—T— T 200———T1— —T T PMss Pl Rank Rank
Pop-wt mean 1998 Pop-wt mean 2018 City Country 2018 1998 2018 1998

85 pg m? 84 pg m? Delhi IND 1276 911 6 135

180k | Aligarh IND 1254 974 8 %8

Lucknow IND 1219 109.1 13 39

Meerut IND 1210 924 15 126

Kanpur IND 1143 1141 29 29

Agra IND 1100 796 43 201

Bareilly IND 107.2  79.4 48 202

Allahabad IND 1048 856 56 164

Moradabad IND 1087 734 61 252

— Patna IND 1021 716 65 268
? Varanasi IND 99.3 75.1 7 234
IS Kolkata IND 974 543 77 647
o Asansol IND 88.3 58.4 132 525
2 Khulna BGD 88.2 39.4 133 1269
© Dhaka BGD 88.1 43.1 134 1081
s Gazipur BGD 865 418 147 1157
T Hyderabad PAK 84.9 70.1 156 286
o Dhanbad IND 84.7 56.8 158 576
o Chandigarh IND 84.5 60.8 160 457
© Ludhiana IND 833 633 167 386
[ Onitsha NGA 826 102.5 174 77
2 Kano NGA 81.9 91.9 180 131
- Palembang IDN 81.9 20,9 181 2666
S Benin City NGA 81.4 101.6 187 79
c Gwalior IND 81.0 54.2 195 651
c Jamshedpur IND 80.8 54.7 197 638
< llorin NGA 80.2 103.7 202 69
Lagos NGA 76.9 95.6 231 108

Jaipur IND 765 48.4 234 829

Ibadan NGA 755 100.6 243 86

Jalandhar IND 742 595 255 488

Baoding CHN 73.7 74.5 256 241

Karachi PAK 735 66.9 260 335

Abuja NGA 723 106.7 271 54

20 8 Lome TGO 72.2 96.1 272 104

Lima PER 70.7 75.4 290 229

Quetta PAK 68.4 4.5 303 1169

Multan PAK 67.3 495 319 798

0 e 0 e - L Handan CHN 67.3 62.7 321 404

98 00 02 04 06 08 10 12 14 16 18 98 00 02 04 06 08 10 12 14 16 18 Kaduna NGA 67.1 95.2 327 110
Xinxiang CHN 66.6 57.6 331 558

Shijiazhuan, CHN 66.2 54.7 338 637

b. Bangladesh Amarg TGN 657 619 342 428
7% Guwahati IND 652 479 348 840

Ranchi IND 64.5 46.2 358 924

Bogor IDN 63.8 116.7 368 23

Dammam SAU 63.6 44.6 369 1002

Indonesia Accra GHA 62.9 90.8 378 136

1% Bhubaneswar  IND 62.8 363 387 1441

Aba NGA 62.7 90.4 388 140

Zhengzhou CHN 62.4 57.9 393 544

Kota IND 62.3 37.6 394 1368

Amritsar IND 623 489 396 817

Jabalpur IND 62.2 36.5 397 1425
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640  Extended Data Figure 4. PM, s trends in the world’s most polluted cities. a. Time evolution of PM, s
641  for the 400 cities with the highest concentrations in 1998 and 2018, equivalent to the top decile of their
642  respective distributions. Line width is proportional to the logarithm of urban population and colored by
643  country (black line is pop-wt average). Plots b-¢ show the regional distribution and location of the most
644  polluted cities in 1998 and 2018, illustrating in conjunction with a how most Chinese cities in the top
645  decile in 1998 experienced substantial reduction in PM, s by 2018, and were replaced mostly by

646  increasingly polluted South Asian cities. Average PM, s for the top decile of cities changed little between
647 1998 and 2018 (average ~ 85 pg m™). The 54 individual cities in the top decile for 2018 with population
648 > 1 M are listed in d, with rankings pertaining to the overall distribution of 4231 cities.

649
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651  Extended Data Figure 5 — PM; s trends 1998-2018 for six major world regions. Annual evolution of PM> 5
652  for all individual cities in each region plotted as a grey line with width proportional to the logarithm of

653  population. Best-fit annual-percentage-change trends are computed for each city for individual time periods,
654  and plotted and mapped for cities where the regression slope p < 0.1. Time trends are either plotted for two
655  individual decades (1998-2008, 2008-2018), or for alternative time periods where a marked inflection point
656  existed. Trend plots display the mean time evolution for all cities (black line), and for those N cities with

657  regression p < 0.1, the mean fitted time trend and accompanying R>.
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