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Over the past decade, the illicit drug market has been reshaped by the proliferation of clandestinely produced
designer drugs. These agents, referred to as new psychoactive substances (NPSs), are designed to mimic the
physiological actions of better-known drugs of abuse while skirting drug control laws. The public health bur-
den of NPS abuse obliges toxicological, police, and customs laboratories to screen for them in law enforcement
seizures and biological samples. However, the identification of emerging NPSs is challenging due to the chemical
diversity of these substances and the fleeting nature of their appearance on the illicit market. Here, we present
DarkNPS, a deep learning-enabled approach to automatically elucidate the structures of unidentified designer
drugs using only mass spectrometric data. Our method employs a deep generative model to learn a statistical
probability distribution over unobserved structures, which we term the structural prior. We show that the struc-
tural prior allows DarkNPS to elucidate the exact chemical structure of an unidentified NPS with an accuracy
of 51%, and a top-10 accuracy of 78%. Our generative approach has the potential to enable de novo structure
elucidation for other types of small molecules that are routinely analyzed by mass spectrometry.

The past decade has witnessed an explosive increase in the
availability of new psychoactive substances (NPSs), also
known as ‘designer drugs’ or ‘legal highs’1,2. NPSs are typ-
ically created by slight modifications to the chemical struc-
ture of existing drugs of abuse, generating derivatives that
circumvent drug control legislation while retaining their psy-
choactive properties3. Examples of well-known NPSs in-
clude synthetic cannabinoids (‘spice’), synthetic cathinones
(‘bath salts’), psychedelic tryptamines and phenethylamines,
and, more recently, synthetic opioids4.

NPSs are synthesized by clandestine chemists, who mine
the scientific and patent literature to identify compounds tar-
geting the same receptors as existing psychoactive drugs5.
The ingenuity of these chemists, and the lack of controls on
the distribution of these compounds, means that new NPSs
are continuously entering the ‘grey market,’ at a rate of
roughly one compound per week1. At the same time, es-
tablished drugs may rapidly disappear from the market in re-
sponse to legislation6. The pharmacology and toxicology of
NPSs have not been well characterized, and many have been
associated with life-threatening toxidromes and fatalities7.
Patients intoxicated with a NPS thus present a significant
burden to healthcare systems1,8,9. This public health bur-
den obliges forensic laboratories around the globe to screen
for NPSs in law enforcement seizures or biological samples.
However, the chemical diversity of these substances, and the

fleeting nature of their appearance on the illicit market, poses
a profound challenge to the detection and identification of
novel compounds, pitting forensic scientists against clandes-
tine chemists in a cat-and-mouse game10.

Identifying a new designer drug within a seizure or bi-
ological sample is challenging for several reasons. First is
the high degree of structural similarity between candidate
NPSs, which are often analogues from the same medicinal
chemistry series11,12. A second challenge is the rapid rate at
which novel compounds emerge onto the grey market, which
necessitates the development of new assays for previously
unknown substances13,14. Assay development requires sub-
stantial time and effort, and the inherent novelty of NPSs
means that analytical reference materials are rarely available
for NPSs that have recently entered the market15.

A number of analytical methods have been developed to
overcome these challenges. Historically, screening was ac-
complished predominantly by immunochemical approaches,
but these are limited by their low sensitivity, inability to
provide component-resolved drug profiles, and the time
and effort required to establish new assays16,17. More re-
cently, mass spectrometry (MS) has emerged as the method
of choice for NPS detection and identification18. High-
resolution mass spectrometry (HR-MS) can provide highly
accurate mass measurements for a given analyte, narrowing
the list of potential candidates and allowing for compari-
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son against a reference database. Tandem mass spectrom-
etry (MS/MS) provides additional information in the form
of diagnostic product ions, allowing for higher-confidence
molecule identification. However, a key shortcoming of mass
spectrometric approaches is that, in order to identify a NPS
by its exact mass or tandem mass spectrum, investigators
minimally require its chemical structure to be present in a ref-
erence database. This presents an obstacle to the identifica-
tion of new designer drugs that have just emerged on the mar-
ket, and whose structures are, by definition, unknown to law
enforcement or forensic laboratories. Elucidating the com-
plete chemical structures of these novel compounds is gener-
ally thought to require an orthogonal technique—most com-
monly, nuclear magnetic resonance spectroscopy (NMR)19,
which necessitates large amounts of NPS material as input,
is labour-intensive, and requires additional expertise. More-
over, due to its low sensitivity, NMR cannot be applied to
screen human tissues in cases of suspected NPS intoxication.

Here, we present DarkNPS, a deep learning-enabled sys-
tem to automatically elucidate the chemical structures of
unidentified NPSs using only mass spectrometric data. Our
approach is based on the use of a deep generative model of
chemical structures. Models of this family have attracted in-
tense interest within the fields of chemistry and deep learn-
ing for their potential to generate molecules with arbitrary
physicochemical or biological properties on demand20–24,
thereby solving what has been termed the ‘inverse design’
problem25. Much of this work has focused on the possibility
of generating ligands active against a particular receptor26.
Here, we seek instead to generate NPS-like molecules that
match one or more analytically measured properties. We
achieve this by using strategies adapted to the low-data
regime27,28 to learn a robust generative model of designer
drugs from only ~1,700 examples15. Sampling from this
model allows us to stochastically generate new molecules
that populate the same chemical space as existing designer
drugs. We validate DarkNPS using a held-out set of 194
NPSs that were received by forensic laboratories after our
training set was finalized, demonstrating that our model suc-
cessfully anticipated >90% of NPSs that subsequently ap-
peared on the illicit market. We then show that the frequency
at which novel molecules are sampled from the model can be
used to suggest the chemical structure most likely to explain
an observed exact mass. Integration of the generated struc-
tures with tandem mass spectrometry data further improves
the accuracy of structure elucidation. We demonstrate the
application of DarkNPS to elucidate the structure of a novel
designer drug that first appeared in Europe in February 2021,
and which at the time of writing had not been described in
the peer-reviewed literature.

Results
A deep generative model of novel psychoactive substances.
A number of computational tools have been developed to en-
able the automated identification of drugs and their metabo-
lites within mass spectrometric data29. However, all of these
tools require a database of known chemical structures as in-

put, against which to compare the observed mass spectromet-
ric data. As a result, these tools cannot be used to identify
newly synthesized designer drugs that are not found in exist-
ing databases. We reasoned that by generating a database of
novel, NPS-like chemical structures, we could automate the
identification of entirely unknown NPSs. We therefore set
out to learn a deep generative model of NPS chemical struc-
tures, from which we could then stochastically sample novel
NPS structures (Fig. 1a-b).

We obtained a training dataset of NPS chemical structures
from HighResNPS, a database developed to facilitate NPS
screening using mass spectrometry15. Contributors from
dozens of forensic laboratories around the world submit data
to HighResNPS when new substances are detected in bio-
logical samples or law enforcement seizures, making this
database arguably the most up-to-date and comprehensive
resource of NPS structures. Despite this crowdsourced ef-
fort, however, the database contained only 1,753 unique NPS
structures at the beginning of June 2020.

The limited size of this dataset reflects the number of
NPSs that have appeared on the illicit market and sub-
sequently been detected by forensic laboratories. How-
ever, it is orders of magnitude smaller than the datasets
that have typically been used to train generative models of
chemical structures, which are generally thought to require
training datasets comprising hundreds of thousands—if not
millions—of examples26.

We hypothesized that this small training dataset could
nonetheless provide a basis to learn a robust generative model
of NPS chemical structures. We recently carried out a sys-
tematic analysis of deep generative models of molecules in
the low-data regime27, and showed that it is possible to learn
robust models from far smaller datasets than has been widely
assumed. We also identified strategies that facilitate learning
from a small number of examples. One of the most effec-
tive such strategies takes advantage of the fact that a single
molecule can be represented by multiple SMILES strings,
depending on the order in which the atoms in the graph
are traversed. This redundancy opens up an opportunity for
data augmentation, by enumerating multiple non-canonical
SMILES for each molecule in the training dataset (Fig. 1c)28.
However, we also identified a risk of ‘over-augmentation,’ in
which excessive non-canonical SMILES enumeration actu-
ally degrades the performance of the trained model.

To empirically determine the optimal degree of data aug-
mentation, we trained deep generative models on the High-
ResNPS dataset after subjecting it to varying degrees of non-
canonical SMILES enumeration. We also experimented with
two different recurrent neural network-based architectures,
including gated recurrent units (GRUs) and long short-term
memory networks (LSTMs). We evaluated model perfor-
mance using five metrics that we had previously found to
be robust indicators of model quality27. These metrics gen-
erally suggested that a high degree of SMILES enumera-
tion markedly improved model performance, and that LSTM
models slightly outperformed GRUs (Fig. 1d and Supple-
mentary Fig. 1a-c). Integrating all five metrics into a sin-
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Fig. 1 | A deep generative model of novel psychoactive substances.
a, Chemical structures and canonical SMILES representations of two exemplary designer drugs, methcathinone (top) and 2C-B (bottom).
b, Top, schematic overview of the recurrent neural network-based generative model. A SMILES string is split into tokens, and the start-of-string token
(ˆ) is prepended to the tokenized SMILES. The model is trained to predict the next token, given the sequence of tokens that has already appeared.
Bottom, the generative model is trained on the SMILES representations of known designer drugs. SMILES strings are then stochastically sampled from
the trained model by providing only the start-of-string token as input, enabling generation of novel candidate NPSs.
c, Canonical SMILES and seven enumerated non-canonical SMILES for an example designer drug, benzylpiperazine.
d, Proportion of valid SMILES strings generated by recurrent neural network-based models trained on the HighResNPS database after varying degrees
of non-canonical SMILES enumeration.
e, Fréchet ChemNet distances to the training set for recurrent neural network-based models trained on the HighResNPS database after varying degrees
of non-canonical SMILES enumeration.
f, Principal component analysis of top-performing metrics for molecules generated by recurrent neural network-based models trained on HighResNPS
database after varying degrees of non-canonical SMILES enumeration.
g, PC1 scores for GRU and LSTM models trained on the HighResNPS database after varying degrees of non-canonical SMILES enumeration.

gle consensus measure of model performance using princi-
pal component analysis27 confirmed the trends that were ap-
parent from inspection of individual metrics (Fig. 1e-f and
Supplementary Fig. 1d). Based on these results, we se-
lected a LSTM model, trained on a dataset in which 100
non-canonical SMILES were enumerated for each unique
molecule, for further analysis.

Generated molecules closely resemble known designer
drugs. We next sought to characterize the molecules gen-
erated by our model in more detail. As a first step, we
asked whether the structural and physicochemical proper-
ties of the generated molecules were similar to those of
known NPSs. To address this question, we sampled 500,000
SMILES strings from our trained model. Of these, 62,354
were syntactically valid and corresponded to molecules that
were not found within the training set. We compared these
generated molecules to the 1,753 known NPSs that com-
prised the training set.

We computed a series of chemical properties for
each known NPS and generated molecule, including its
atomic composition, the number of ring systems it con-

tained, its molecular weight, its topological complexity30,
its octanol-water partition coefficient31, and measures of
drug-likeness32, natural product-likeness33, and synthetic
accessibility34. Strikingly, despite the limited amount of
training data, we found that the generated molecules had
property distributions that were almost indistinguishable
from those of known NPSs (Fig. 2a-e and Supplementary
Fig. 2a-d).

To gain a more holistic perspective on the molecules gen-
erated by the trained model, we sought to visualize the chem-
ical spaces occupied by known and generated NPSs. We
embedded known NPSs and a random sample of generated
molecules of equal size into two dimensions using the non-
linear dimensionality reduction algorithm UMAP35. We then
plotted the resulting two-dimensional embeddings, with ei-
ther the known or generated NPSs overlaid on top of one an-
other. These plots demonstrated that the generated molecules
almost perfectly reproduced the chemical space of known
NPSs, with very few regions of chemical space occupied ex-
clusively by either known or generated drugs (Fig. 2f).

We also asked how the generated NPSs fit into the cat-
egories of designer drugs assigned by HighResNPS, which
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Fig. 2 | Generated molecules closely resemble known designer drugs.
a, Atomic composition of known NPSs and generated molecules.
b, Number of ring systems in known NPSs and generated molecules.
c, Molecular weights of known NPSs and generated molecules.
d, QED scores of known NPSs and generated molecules.
e, Proportion of carbons that are sp3-hybridized within known NPSs and generated molecules.
f, UMAP visualization of known NPSs and an equal number of generated molecules sampled at random from the trained generative model. Left, known
NPSs superimposed over generated molecules. Bottom, generated molecules superimposed over known NPSs.
g, EMCDDA categorizations of known NPSs and generated molecules.
h, Proportions of known NPSs and generated molecules predicted to cross the blood-brain barrier.

are based on those established by the European Monitoring
Centre for Drugs and Drug Addiction (EMCDDA). Overall,
we observed a close correspondence between the EMCDDA
categorizations of known and generated NPSs (Fig. 2g and
Supplementary Fig. 3a). Only two categories were gen-
erated at frequencies significantly different from the training
set, with cannabinoids being modestly enriched in the gener-
ative model output, and arylcyclohexylamines being moder-
ately depleted (odds ratio, p = 0.040 and 1.9 × 10–4, respec-
tively; Supplementary Fig. 3b).

NPSs exert their psychoactive effects by acting at recep-
tors in the brain, which they must cross the blood-brain bar-
rier (BBB) to access. To validate the potential psychoactive
properties of the generated NPSs, we used LightBBB36 to
predict the likelihood that they would cross the BBB. As a
baseline, we also used LightBBB to predict the BBB per-
meability of known NPSs. We found that 95.3% of known
NPSs were predicted to cross the BBB, consistent with the
estimated false-negative rate of ~7% for this tool36. Among
generated molecules, a very similar proportion (93.2%) were
predicted to cross the BBB (Fig. 2h). This suggests that the
generated molecules have the potential to access the same re-
ceptors in the brain at which known NPSs act.

Together, these results suggest that, with appropriate ad-
justments for the low-data regime, it is possible to learn a ro-

bust generative model of NPS chemical structures from only
~1,750 training examples. This model generated molecules
whose physicochemical properties were nearly identical to
those of known NPSs, and which populated overlapping re-
gions of chemical space. These results support the notion that
a library of generated molecules could be used to search for
previously unknown NPSs within mass spectrometric data.

Sampling frequency defines a structural prior for the anno-
tation of unknown NPSs. While inspecting the molecules
generated by our model, we noticed that some molecules ap-
peared repeatedly in the model output. To investigate this
phenomenon further, we sampled a total of 1 billion SMILES
strings from the generative model, and tabulated the fre-
quency at which each unique chemical structure was found
in this sample (Fig. 3a-b). After removing syntactically in-
valid SMILES strings and known NPSs, we identified a total
of 8.9 million unique molecules within this sample. The vast
majority of these molecules appeared just once, or at most a
handful of times, in the model output. However, a long tail
of molecules were repeatedly sampled tens or hundreds of
thousands of times (Fig. 3c and Supplementary Fig. 4a).

We were surprised to observe that the model generated
molecules at dramatically different frequencies, and sought
to explain this unexpected finding. We hypothesized that
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Fig. 3 | Sampling frequency defines a structural prior over unseen molecules.
a, UMAP visualization of known NPSs and a random sample of up to 5,000 generated molecules at each sampling frequency in a sample of 1 billion
SMILES strings. Known NPSs are colored by their EMCDDA categorizations, with generated molecules in grey.
b, As in a, but showing only generated molecules colored by their sampling frequency.
c, Distribution of sampling frequencies within a sample of 1 billion SMILES strings from the trained generative model.
d, Tanimoto coefficients between generated molecules and their nearest neighbor in the set of known NPSs, for molecules generated with progressively
increasing frequencies.
e, Fréchet ChemNet distances between generated molecules and the set of known NPSs, for molecules generated with progressively increasing
frequencies.
f, Jensen-Shannon distance between the Murcko scaffold compositions of generated molecules and the set of known NPSs, for molecules generated
with progressively increasing frequencies.

the generative model had learned to implicitly evaluate the
likelihood of novel NPSs, based on the structural properties
of known designer drugs. In other words, we posited that
molecules sampled more frequently by the model would ex-
hibit a higher degree of structural similarity to known NPSs,
and would be more likely to subsequently appear on the ‘grey
market.’

To test this hypothesis, we assessed the structural sim-
ilarity of generated molecules and known NPSs, using
the Tanimoto coefficient (Tc) as a quantitative measure of
similarity37,38. We then compared the Tc between each gen-
erated molecule and its nearest neighbor among the set of
known NPSs, for molecules generated at progressively in-
creasing frequencies by the trained model. Molecules sam-
pled more frequently exhibited significantly greater similarity
to an existing NPS (p < 10–15, Jonckheere-Terpstra test), sup-
porting the hypothesis that the sampling frequency reflects
the implicit likelihood of observing a novel NPS structure
(Fig. 3d).

To further corroborate this notion, we computed a range
of physicochemical properties for molecules sampled at in-
creasing frequencies from the generative model. We then
compared these properties to those of known NPSs. We
found that molecules sampled more frequently from the gen-
erative model had a lower Fréchet ChemNet distance to the
training set39, and better matched the distribution of Murcko
scaffolds found in known NPSs40 (Fig. 3e-f). Moreover, fre-

quently sampled molecules also better matched the molecular
weights, partition coefficients, drug-likenesses, and stereo-
chemical complexities of known NPSs (Supplementary Fig.
4b-g).

Taken together, these findings demonstrate that novel
molecules generated frequently by our model are more simi-
lar to known NPSs than those generated infrequently. In turn,
this raises the possibility that the sampling frequency could
be used to prioritize the most likely structures of novel NPSs.

Anticipating the structures of unidentified designer drugs.
Our experiments established that frequently sampled
molecules are more similar to known NPSs. This finding
led us to ask whether these frequently sampled molecules are
also more likely to subsequently appear on the grey market.
In other words, we asked whether we could leverage the im-
plicit likelihood learned by the generative model to anticipate
the chemical structures of as-of-yet unsynthesized drugs.

To test this possibility, we assembled a held-out set of
194 NPSs, which were identified by forensic laboratories and
added to the HighResNPS database only after our training set
was finalized. We then asked what proportion of these held-
out NPSs were successfully anticipated by our model. A to-
tal of 176, or 90.7%, appeared at least once within our sam-
ple of 1 billion SMILES strings (Fig. 4a). The 18 held-out
molecules that were never sampled by the generative model
exhibited significantly less structural similarity to any known
NPS in the training set, as quantified by the Tc (p = 2.9 ×
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Fig. 4 | Automated structure elucidation of unidentified NPSs.
a, Proportion of molecules within the set of 194 NPSs added to the HighResNPS database between October 2020 and April 2021 that appeared at least
once within a sample of 1 billion SMILES strings from the generative model.
b, Tanimoto coefficients between held-out NPSs and their nearest neighbor in the training set, for molecules in the held-out that were generated at least
once vs. molecules in the held-out set that were never generated.
c, Example of a molecule in the held-out set, AB-FUBICA, that was correctly anticipated by the generative model. Left, structure of AB-FUBICA. Right,
sampling frequency of AB-FUBICA.
d, Ranks of held-out NPSs among generated molecules matching their exact masses within a window of 10 ppm, arranged in descending order by
sampling frequency.
e, Median Tanimoto coefficient between held-out NPSs and generated molecules matching their exact masses (± 10 ppm), arranged in descending
order by sampling frequency (“most frequent”), ascending order by sampling frequency (“least frequent”), or a random sample of molecules with matching
exact masses from PubChem. Error bars show the interquartile range.
f, Distribution of Tanimoto coefficients between held-out NPSs and generated molecules matching their exact masses (± 10 ppm), taking either the
single most frequently sampled generated molecule, the single least frequently sampled generated molecule, or a random molecule with a matching
exact mass from PubChem.

10–13; Fig. 4b). This reflects an inherent limitation of our
model: namely, it can only generate novel molecules that
are structurally similar to known designer drugs. However,
closer inspection revealed that some of these 18 molecules
were not actually designer drugs at all. For example, some
of the molecules in the held-out set included the dietary sup-
plement citicoline, the antipsychotic clozapine, or the alcohol
dependence medication nalmefene (Supplementary Fig. 5).
After curating the held-out set to remove these questionable
entries, the proportion of structures anticipated by our model
climbed to 93.1% (176/189).

Interestingly, although a handful of the held-out NPSs
were sampled only once or twice from the model, the vast
majority were among the relatively small subset of gener-
ated molecules that appeared 50 or more times in our sam-
ple of 1 billion SMILES (Supplementary Fig. 6). This ob-
servation further supported the possibility that the sampling
frequency could be used to prioritize candidate NPSs most
likely to emerge on the grey market in the future. As one
striking example, the single most frequently generated novel
molecule, appearing 323,299 times within our sample, was
the synthetic cannabinoid AB-FUBICA, which was added to
the HighResNPS database in October, 2020 (Fig. 4c).

Structure elucidation of unidentified NPSs from accurate
mass measurements. Encouraged by these results, we
asked whether we could leverage the sampling frequency to
anticipate the most likely chemical structure for an uniden-
tified NPS subjected to mass spectrometric analysis. When
analyzing a law enforcement seizure by mass spectrometry,
the first clue to the identity of the seized compound that in-
vestigators receive is its mass. We therefore devised an ex-
periment to test the feasibility of elucidating the structure
of a novel NPS from an accurate mass measurement alone.
For each of the NPSs in the held-out set, we searched in our
sample of 1 billion SMILES strings to identify all generated
molecules matching the exact mass of the held-out NPS, al-
lowing for a window of ± 10 ppm to account for the accuracy
of modern HR-MS instrumentation. We then sorted these
matches by their sampling frequency in descending order and
calculated the frequency with which the correct molecule was
ranked first, or within the top 3, top 5, or top 10 candidates.
We dubbed this workflow the ‘structural prior,’ on the ba-
sis that it provides a prior probability distribution over all
possible chemical structures matching the exact mass of the
unidentified molecule.

Remarkably, using only an accurate mass as input, we
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Fig. 5 | Application of the structural prior to the designer dissociative deoxymethoxetamine.
Left, the chemical structure, molecular formula, and exact mass of deoxymethoxetamine. Middle, sampling frequencies of the 20 most frequently sam-
pled molecules matching the exact mass of deoxymethoxetamine (± a 10 ppm window). An illustrative subset of the generated molecules, highlighted
in red, are shown at the right.

found our structural prior could predict the chemical struc-
ture of the unidentified molecule with perfect accuracy 35.2%
of the time (Fig. 4d). Moreover, the correct structure was
ranked among the top 3 candidates 54.0% of the time, and
among the top 10 candidates 75.0% of the time. This perfor-
mance is remarkable, given that only a single piece of infor-
mation is provided to the model as a basis for the prediction
of complete chemical structures of entirely novel molecules.

We reasoned that in the cases where the structural prior
failed to rank the correct molecule first, or even among the
top 10 candidates, it would still be very helpful to forensic
scientists if the top prediction was a closely related analog.
To evaluate whether the top-ranked molecule was at least
structurally similar to the correct structure, we computed the
Tc between the candidates nominated by the structural prior
and the unidentified NPSs. As a baseline, we also com-
puted the Tc for the molecules sampled less frequently by
the generative model. As a second baseline, we searched for
the exact mass of the unidentified NPS against the PubChem
database, which is commonly used as a reference for uniden-
tified mass spectrometric signals41.

Interestingly, we noted that molecules sampled infre-
quently from the generative model were more similar to
the correct structure than isobaric molecules from PubChem
(Fig. 4e). This observation likely reflects the fact that even
infrequently sampled molecules populate the chemical space
of known designer drugs, unlike molecules sampled at ran-
dom from PubChem. However, the molecules nominated
by the structural prior were dramatically more similar to the
unidentified NPS than either baseline (Fig. 4e). This sim-
ilarity was particularly apparent when inspecting the Tc for
only the single top-ranked molecules in more detail (p ≤ 1.9
× 10–55; Fig. 4f). These analyses indicate that even when the
structural prior does not perfectly annotate the structure of an
unidentified NPS, it tends to at least prioritize molecules that
are highly similar.

A limitation of the Tc in evaluating chemical similarity

is that its range of possible values scales with the sizes of
the molecules being compared42. As a second, orthogonal
measure of chemical similarity, we computed the Euclidean
distance between continuous molecule embeddings derived
from a neural machine translation task43. We reproduced
our finding that the structural prior markedly outperformed
both baselines when using continuous embeddings to quan-
tify chemical similarity (Supplementary Fig. 7a-b).

To illustrate the power of the structural prior, we fo-
cused on an illustrative example of a new designer drug, de-
oxymethoxetamine (DXME). DXME is a dissociative hal-
lucinogen of the arylcyclohexylamine class, which includes
well-known drugs of abuse such as ketamine and phency-
clidine (PCP). It appears to have first emerged on the il-
licit market in late 2020, and was added to the HighResNPS
database in February 2021 after being identified in a law en-
forcement seizure in Denmark. At the time of writing, it
had not been described in a peer-reviewed article, rendering
this a representative prospective application of the structural
prior. Querying the structural prior with the exact mass of
DXME returned a list of 11,479 candidate structures. This
enormous number of candidates illustrates the difficulty of
predicting complete chemical structures from only an accu-
rate mass. Yet, despite having never seen this molecule dur-
ing training, the structure of DXME was correctly ranked as
the single most frequent match to the exact mass, appearing
62,074 times in our sample of 1 billion SMILES (Fig. 5).
Moreover, the second-most frequently sampled compound,
appearing 41,256 times, was a closely related isomer, differ-
ing only in the position of a methyl group on the aromatic
ring. Interestingly, several other candidates ranked within
the top 20 were arylcyclohexylamines structurally related to
DXME, suggesting the model deemed it likely that the exact
mass in question belonged to the arylcyclohexylamine cate-
gory, despite the fact that these were generally underrepre-
sented in the model output (Supplementary Fig. 3b). As a
second example, we found that the structural prior correctly
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elucidated the chemical structure of ADB-HEXINACA, the
most recent synthetic cannabinoid to have emerged on the
US market at the time of writing, selecting the most likely
structure from among a series of closely related analogues
(Supplementary Fig. 8).

Tandem mass spectrometry enables high-confidence anno-
tation of unidentified NPSs. Our experiments to this point
have shown that the structural prior can generate remarkably
accurate annotations of the structure of an unidentified NPS
from an accurate mass measurement alone. However, accu-
rate mass measurements are fundamentally limited in their
ability to distinguish structural isomers with the same molec-
ular formula. The limitations of accurate mass measurements
are especially apparent in cases where several analogues from
the same medicinal chemistry series with identical chemi-
cal formulas could plausibly represent novel designer drugs.
Such isomers can, however, be differentiated using tandem
mass spectrometry (MS/MS)18. We therefore asked whether
integrating MS/MS data into the predictions made by the
structural prior could further improve the accuracy of struc-
ture elucidation.

To test this notion, we used CFM-ID44,45 to predict tan-
dem mass spectra for all 8.9 million generated molecules.
We then compared the accuracy of structure annotations as-
signed by three different approaches: (i) the structural prior
alone, (ii) CFM-ID alone, or (iii) the combination of the two.
To combine CFM-ID predictions with the structural prior,
we re-weighted the scores assigned by CFM-ID according to
the prior probabilities assigned by the generative model. We
then evaluated the accuracy of each approach in our held-out
dataset, restricting our analysis to the 79 NPSs in our held-
out set for which MS/MS data had been deposited to High-
ResNPS.

Integrating tandem mass spectrometry data yielded sub-
stantially more accurate predictions than those made by the
structural prior alone. The combined approach successfully
elucidated the complete chemical structures of 40 unidenti-
fied NPSs (51%), as compared to 30 correctly elucidated by
the generative model (38%) and only one (1%) by CFM-ID
alone (Fig. 6a). Similar improvements in the top-k accuracy
were apparent for many values of k. For instance, the com-
bined approach ranked the correct chemical structure within
the top-3 68% of the time, compared to 57% for the genera-
tive model alone and 8% for CFM-ID alone (Fig. 6b).

An example of an NPS for which the automated eluci-
dation of the complete chemical structure relied on the inte-
gration of MS/MS data is the 5-hydroxyindole analogue of
JWH-122, as shown in Fig. 6d. The structural prior se-
lected a closely related analogue from among 2,599 gener-
ated molecules matching the exact mass, but with a methoxy
group misplaced, yielding a Tc of 0.41. Incorporating the
predicted mass spectra for all 2,599 possible matches into the
structural prior rescued the correct structure.

Even when the correct molecule was not the top-ranked
hit, integrating MS/MS data yielded structural annotations
that were more chemically similar to the unidentified NPS
than those generated by the structural prior alone, as quan-

Fig. 6 | High-confidence structure elucidation using tandem mass
spectrometry.
a, Top-1 accuracy with which the complete chemical structures of uniden-
tified NPSs in the held-out set were correctly elucidated by CFM-ID alone,
the structural prior alone, or the combination of the two.
b, Top-k accuracy curve of structure elucidation of unidentified NPSs in
the held-out set by CFM-ID alone, the structural prior alone, or the com-
bination of the two.
c, Tanimoto coefficients between the held-out set of unidentified NPSs
and the top-ranked structures suggested by CFM-ID alone, the structural
prior alone, or the combination of the two.
d, Automated structure elucidation of an unidentified NPS using tandem
mass spectrometry. Left, the chemical structure of the 5-hydroxyindole
analogue of JWH-122. Middle, the top-ranked molecule suggested by
the structural prior (top) and mirror plot comparing the observed tan-
dem mass spectrum for the 5-hydroxyindole analogue of JWH-122 with
the tandem mass spectrum predicted by CFM-ID. Right, the top-ranked
molecule after integrating the structural prior with MS/MS evidence (top)
and mirror plot comparing observed and predicted tandem mass spectra.

tified either by the Tc (Fig. 6c) or the Euclidean distance
between CDDD embeddings (Supplementary Fig. 9a). For
instance, given the accurate mass of α-hydroxyetizolam as
input, the structural prior selected a structure with relatively
little resemblance to the ground truth (Supplementary Fig.
9b). However, after incorporating MS/MS data into the struc-
tural annotation, the top-ranked molecule was almost per-
fectly correct, with the lone exception of a misplaced hy-
droxyl group.

Collectively, these experiments demonstrate that inte-
grating MS/MS data into DarkNPS enables high-confidence
structural annotation, yielding a system that is capable of
automatically elucidating complete chemical structures from
mass spectrometry data alone.
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Discussion

The proliferation of unregulated substances marketed as le-
gal alternatives to established drugs of abuse presents a ma-
jor challenge to public health. However, the identification
of designer drugs that have recently emerged on the illicit
market is a low-throughput and labour-intensive endeavour.
Here, we describe a system capable of anticipating the chem-
ical structures of the NPSs most likely to emerge on the illicit
market in the future, and annotating the most likely structure
of an unidentified NPS using mass spectrometric data. We
prospectively validated our model in a held-out set of 194
NPSs that were identified by forensic laboratories around the
globe after our training set was finalized. We demonstrate
that our method generates highly accurate annotations of the
structure of an unidentified NPS from its exact mass alone,
using the concept of the structural prior, and that these an-
notations are further improved by the integration of MS/MS
data. Our final model was able to perform automated struc-
ture elucidation of complete chemical structures with an ac-
curacy over 50%. Moreover, in cases where the model did not
correctly identify the exact structure of the unknown NPS, it
typically suggested a closely related analogue. This perfor-
mance is remarkable given that de novo structure elucidation
is typically thought to require experimental techniques that
are entirely orthogonal to mass spectrometry, most notably
NMR. Our method thus has the potential to dramatically ac-
celerate the pace at which emerging designer drugs can be
identified by forensic, toxicological, police, and customs lab-
oratories.

Many of the challenges faced by investigators seeking to
determine the structure of an unknown NPS are ubiquitous
throughout the field of analytical chemistry. Current compu-
tational approaches to mass spectrometric data make use of
experimentally measured information such as exact masses,
fragmentation patterns, and isotopic distributions29. In this
work, we posited that the chemical space of interest itself
provides a highly informative prior that can be used to nom-
inate the most likely structures matching an experimentally
observed property. In other words, given the structures of
known observed designer drugs as input, we demonstrate
that we can learn a statistical probability distribution over
unobserved designer drug structures, and define those that
are more or less likely to be observed in the future. This
represents a conceptually new approach to the interpreta-
tion of mass spectrometric data. Moreover, we show that
this paradigm is complementary to existing approaches for
searching tandem mass spectrometry data against a database
of chemical structures. Indeed, we find that our approach
can dramatically improve the accuracy of chemical database
search. Our approach may therefore find broad application
to other problems in the field of analytical chemistry: for in-
stance, the study of xenobiotic metabolism or the identifica-
tion of environmental pollutants.

Critical to the success of this effort was our ability to learn
a robust generative model of chemical structures from a small
number of examples. Remarkably, we were able to train an
excellent generative model from only ~1,700 known NPSs.

This dataset is orders of magnitude smaller than those that
have conventionally been used to train generative models26.
What factors underlie the surprisingly good performance of
our model from such a small amount of training data? Data
augmentation by non-canonical SMILES enumeration had a
dramatic impact on model performance, consistent with pre-
vious results27,46,47. Another factor that likely contributed
to our success is that the chemical space of NPSs is rel-
atively homogenous. These substances are derived from a
small number of core structures, using a finite vocabulary of
medicinal chemistry transformations. This notion is consis-
tent with our finding that generative models are dramatically
more likely to succeed in low-data settings when the train-
ing set is less diverse27, and suggests it might be possible to
learn generative models for many restricted chemical spaces
of biomedical interest.

A limitation of our approach is that it requires us to draw a
very large sample from the generative model, in order to tabu-
late the frequency with which each unique molecule appears
in the model output. This is due both to the redundancy of
the SMILES format (that is, many different SMILES strings
can correspond to the same molecule), and the fact that the
model does not know in advance what the exact mass of
a given SMILES string will be while generation is still in
progress. Future efforts could conceivably improve the com-
putational efficiency by conditioning molecule generation on
one or more experimentally observed properties.
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Methods
Training dataset. We obtained a training dataset of 1,753
chemical structures corresponding to known NPSs, their
metabolites, and common drugs of abuse from HighResNPS
(https://highresnps.forensic.ku.dk)15. HighResNPS is a free, on-
line, crowdsourced database of NPS structures and accompanying
high-resolution mass spectrometry data, initiated and managed by
researchers at the Section of Forensic Chemistry at the University
of Copenhagen. Forensic toxicology and chemistry laboratories
from around the world submit data to HighResNPS when novel
designer drugs are detected and analyzed by a mass spectrometer.
New compounds may also be added when they have been reported
by drug monitoring agencies such as, but not limited to, the United
Nations Office of Drugs and Crime (UNODC), European Monitor-
ing Centre of Drugs and Drug Addiction (EMCDDA) and the Drug
Enforcement Administration (DEA). Entries minimally include the
unambiguous chemical structures of the detected molecules, and
may also include tandem mass spectrometry data, or diagnostic
product ions derived from theoretical bond dissociations.

The training set was obtained from the HighResNPS database in
June, 2020. At that time, the total number of entries in the database
corresponded to 2,065 unique molecules. These entries had been
contributed by 57 laboratories located in 21 different countries.
Each molecule in the database had also been assigned to a class of
designer drugs based on the EMCDDA categorizations. All 2,065
molecules were parsed by the RDKit, after which charged moieties
were neutralized, using code provided in the RDKit documentation,
and molecules were converted into their canonical SMILES forms
with stereochemistry removed. After this preprocessing step, redun-
dant SMILES representations (e.g., stereoisomers or alternatively
charged forms of the same molecule) were discarded, leaving a to-
tal of 1,761 unique canonical SMILES. We then removed a further
eight molecules containing characters (the phosphorus symbol, P,
and the token for a fifth ring atom, 5) that were each found in less
than 0.05% of the 1,761 molecules, reasoning that it was unlikely
the model would be able to learn how to use these tokens from such
a small number of examples. Collectively, these preprocessing steps
yielded a dataset of 1,753 canonical SMILES that formed the basis
for all further analysis.

Generative models. Recurrent neural network-based models
of SMILES strings were trained on canonical SMILES or non-
canonical SMILES after varying degrees of data augmentation,
using either LSTM or GRU architectures. The Python source code
used to train the model was derived from our recent benchmarking
analysis of generative models of molecules in the low-data regime27

(https://github.com/skinnider/low-data-generative-models),
which was itself adapted from the REINVENT package24,48

(http://github.com/MarcusOlivecrona/REINVENT). Briefly, each
SMILES was converted into a sequence of tokens by splitting
the SMILES string into its constituent characters, except for
atomic symbols composed of two characters (Br, Cl) and envi-
ronments within square brackets, such as [nH]. The vocabulary
of the RNN consisted of all unique tokens detected in the train-
ing data, as well as start-of-string and end-of-string characters
and a padding token. Enumeration of non-canonical SMILES
was performed using the SmilesEnumerator class available
from http://github.com/EBjerrum/SMILES-enumeration. We
experimented with varying degrees of non-canonical SMILES
enumeration, assembling training sets in which between one and
500 non-canonical SMILES strings were enumerated for each
unique molecule in the training dataset. The final model was a
LSTM trained on a dataset with an augmentation factor of 100x.

The architecture of the recurrent neural networks consisted of
three-layer GRU or LSTM models, with a hidden layer of 512
dimensions, an embedding layer of 128 dimensions, and no dropout
layers. Models were trained using the Adam optimizer with β1
= 0.9 and β1 = 0.999, with a batch size of 128 and a learning
rate of 0.001, using teacher forcing. 10% of the molecules in the
training set were reserved as a validation set and used to perform
early stopping with a patience of 50,000 minibatches. A total of
500,000 SMILES strings were sampled from each trained model
after completion of model training.

Model evaluation. To select an optimal recurrent neural net-
work architecture and degree of SMILES enumeration, we evaluated
the trained models using a set of five metrics that we had previously
found to be robust indicators of the quality of generative models of
molecules27. Each of these five metrics seeks to quantify the degree
to which the generated molecules resemble the training set (in this
case, known NPSs). The five metrics in question included:

• The proportion of valid molecules generated by the model,
where “valid” molecules are those that can be parsed by the
RDKit (“% valid”).

• The Fréchet ChemNet distance39 between the training and
generated molecules (“FCD”). The PyTorch implementation
available from http://github.com/insilicomedicine/fcd_torch
was used to calculate the FCD.

• The Jensen-Shannon distance between the distributions
of Murcko scaffolds40 of known NPSs and generated
molecules.

• The Jensen-Shannon distance between the natural product-
likeness score33 distributions of known NPSs and generated
molecules.

• The Jensen-Shannon distance between the distribution of the
proportion of atoms in each molecule that were stereocenters
in known NPSs and generated molecules.

The Murcko scaffolds, natural product-likeness, and proportion
of stereocenters were calculated using the RDKit, and the Jensen-
Shannon distance was calculated using scipy.

In addition to considering each of these metrics individually, we
also integrated them into a single measure of model performance
using principal component analysis to account for the covariance
between metrics, as previously described27. PCA was on the cen-
tered and scaled matrix of model performance metrics, using the
R function ‘princomp’, and the loadings of each model on the first
principal component (PC1) were used for model evaluation.

Physicochemical properties. After selecting a LSTM-based
generative model with an augmentation factor of 100x for further
exploration, we sought to characterize the molecules sampled from
the trained model in greater detail. To this end, we computed a se-
ries of physicochemical or structural properties for each generated
molecule. A sample of 500,000 SMILES strings was drawn from the
trained model, and these SMILES were parsed using the RDKit to
remove syntactically invalid strings or molecules that were found in
the training set. We then used the RDKit to compute the NP-likeness
and proportion of stereocenters for each generated molecule, both
as described above, as well as six additional properties, including
(i) the molecular weight; (ii) the calculated octanol-water partition
coefficient31; (iii) the topological complexity30; (iv) the synthetic
accessibility score34; (v) the quantitative estimate of drug-likeness
(QED) score32; and (vi) the proportion of carbons in the molecule
that were sp3-hybridized. These calculations were then repeated for
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the known NPSs in the training set in order to provide a basis for
comparison.

Chemical space analysis. To obtain a more holistic per-
spective on the chemical spaces occupied by known NPSs
and the generated molecules, we used a previously described
pipeline to visualize both sets of molecules within a two-
dimensional space27. Briefly, we computed a continuous, 512-
dimensional representation of each molecule using the Continuous
and Data-Driven Descriptors (CDDD) package43 (available from
http://github.com/jrwnter/cddd). We then sampled CDDD descrip-
tors for a subset of 1,753 generated molecules, to match the num-
ber of NPSs in the training set, and embedded both sets of descrip-
tors into two dimensions with UMAP35, using the implementation
provided in the R package ‘uwot’ and the following parameters:
n_neighbors = 20, alpha = 2, and beta = 1.

EMCDDA drug categorizations. To place the generated
molecules into the context of the NPS categorizations established by
the EMCDDA, we assigned each generated molecule to the category
of its nearest neighbor among known NPSs. Briefly, we computed
extended connectivity fingerprints49 with a diameter of 3 (ECFP6)
and a length of 1,024 bits for each known and generated molecule.
The ECFP6 fingerprint was selected on the basis of its excellent per-
formance in benchmarks of chemical similarity search and ligand-
based virtual screening38,50,51. Each generated molecule was then
compared to each known NPS in the training set, using the Tanimoto
coefficient to quantify the similarity between their chemical finger-
prints, and the generated molecule was assigned the EMCDDA cat-
egory of the known NPS with the single highest Tc. EMCDDA cate-
gories that were significantly enriched or depleted among generated
molecules were identified with a z-test of the log-odds ratio.

Blood-brain barrier permeability. LightBBB36 was used
to predict the blood-brain barrier permeability of the gen-
erated molecules, using the prediction server available at
http://ssbio.cau.ac.kr/software/BBB. As a baseline, we also applied
LightBBB to the set of known NPSs.

Structural prior. To investigate the relationship between sam-
pling frequency and the chemical properties of generated molecules,
we drew a sample of 1 billion SMILES strings from the trained
model. After removing invalid SMILES and known NPSs, we ob-
tained a set of 8,928,701 unique molecules that represented can-
didate novel NPSs, each of which was sampled between one and
323,299 times. To visualize the complete set of generated NPSs,
we drew a random sample of at most 5,000 molecules per sampling
frequency. We then embedded these into two dimensions alongside
the training dataset of known NPSs using UMAP, as described above
and with identical parameters. The nearest-neighbor Tanimoto coef-
ficient between generated molecules and known NPSs was likewise
calculated as described above for the assignment of EMCDDA drug
categories. Finally, we computed the same eight physicochemical
parameters described above for molecules sampled between one and
50 times, then computed the similarity of the property distributions
for known NPSs and generated molecules using the Jensen-Shannon
distance.

Model validation in a held-out set. To test the performance of
our generative model on a held-out set of NPS structures, we assem-
bled a database of 194 unique chemical structures that were added to
the HighResNPS database between October, 2020 and April, 2021.
These molecules comprised both previously described NPSs that
had never been submitted to HighResNPS, as well as novel NPSs
that had only emerged on the illicit market over the time frame in

question. These structures were preprocessed in the same manner
as the training set using RDKit. We then used this held-out set to
evaluate several aspects of model performance. Initially, we asked
what proportion of held-out structures appeared at least once within
the sample of 1 billion SMILES strings drawn from the genera-
tive model. We compared the chemical similarity to a known NPS
(that is, we calculated nearest-neighbor Tanimoto coefficients, as
described above) for held-out structures that were generated at least
once by the model to those that were never generated.

We also investigated whether the sampling frequency of the gen-
erated molecules could be used to automatically annotate the most
likely structure of an unidentified NPS whose exact mass had been
determined using mass spectrometry. To this end, for each held-out
structure in turn, we identified all generated molecules matching the
exact mass of the held-out structure within a mass window of ± 10
ppm, and ranked them in descending order by their sampling fre-
quency. We then quantified the frequency with which the held-out
structure was correctly identified as the single top-ranked structure,
or else appeared among the top-3, top-5, or top-10 structures ranked
by sampling frequency.

Finally, in cases where the single most frequently sampled
molecule was not a perfect match to the structure of the held-out
NPS, we reasoned that generating a close structural analogue would
nevertheless provide highly useful information to investigators. We
therefore computed the chemical similarity between the top-ranked
generated molecules and the held-out NPS using the Tanimoto co-
efficient, as described above. As a baseline, we also ranked the list
of generated molecules by their sampling frequency ascending order
(that is, we selected the least frequently sampled molecules from the
generative model output), or obtained a set of matching molecules
at random from PubChem.

Integration with MS/MS. In practice, investigators would gen-
erally have access not just to an accurate mass measurement for an
unidentified NPS, but also to its tandem mass spectrum. A large
body of work has shown that tandem mass spectra can be queried
against databases of known chemical structures, even if the struc-
tures in these databases are not themselves associated with MS/MS
data52. Accordingly, we posited that incorporating tandem mass
spectrometry data into DarkNPS would further improve the accu-
racy of structure elucidation. To test this possibility, we applied
CFM-ID (version 4.0.8) to predict tandem mass spectra for all 8.9
million unique molecules that appeared within our sample of 1 bil-
lion generated SMILES strings, using an ionization energy of 20
eV. Of these 8.9 million unique molecules, CFM-ID was unable to
predict a tandem mass spectrum for approximately 400,000, which
were assigned a score of zero. Each NPS in our held-out set was
then compared to all generated molecules matching its exact mass
(± 10 ppm), using the dot product to quantify the similarity of pre-
dicted and observed spectra. This framework allowed us to per-
form MS/MS-based chemical structure search for novel molecules
not present in any chemical structure database, at a scale of millions
of candidates.

To integrate the spectral similarity scores assigned by CFM-ID
with the generative model, we exploited the probabilistic interpreta-
tion of the structural prior. Specifically, we conjectured that the rel-
ative frequency at which a given molecule was sampled by the gen-
erative model could be interpreted as the prior probability that the
molecule in question accounted for the observed mass spectrometric
signal. Accordingly, we weighted the CFM-ID score according to
the relative frequency with which each potential matching molecule
was sampled by the generative model, considering only the subset
of molecules matching the exact mass of the unidentified NPS. We
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then compared this weighted spectral similarity score to the rank-
ings assigned by CFM-ID alone, or by the structural prior alone.
The three methods were evaluated within the subset of held-out
NPSs for which tandem mass spectra had been deposited to High-
ResNPS, comprising 79 of the 189 molecules in the held-out set.
The Tanimoto coefficient and Euclidean distance between CDDD
embeddings were calculated for the top-ranked molecule nominated
by each method as described above.

Data availability. Due to the sensitivity of the data and the po-
tential for misuse, HighResNPS and the databases of generated
molecules and tandem mass spectra described here are not available
to the public for unrestricted download. However, the data can be re-
quested from the corresponding authors and will be made available
to all qualified researchers in the field upon request.

Code availability. Code used to train and evaluate
chemical language models is available from GitHub at
http://github.com/skinnider/NP-generation.
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Supplementary Fig. 1 | Model selection and hyperparameter optimization.
a, Jensen-Shannon distance between the distribution of Murcko scaffolds in the training set and generated molecules, for recurrent neural network-
based models trained on the HighResNPS database after varying degrees of non-canonical SMILES enumeration.
b, Jensen-Shannon distance between the natural product-likeness scores of the training set and generated molecules, for recurrent neural network-
based models trained on the HighResNPS database after varying degrees of non-canonical SMILES enumeration.
c, Jensen-Shannon distance between the proportion of stereocenters in the training set and generated molecules, for recurrent neural network-based
models trained on the HighResNPS database after varying degrees of non-canonical SMILES enumeration.
d, Factor loadings onto the first principal component in a principal component analysis of recurrent neural network-based models trained on the High-
ResNPS database after varying degrees of non-canonical SMILES enumeration.
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Supplementary Fig. 2 | Physicochemical properties of generated molecules.
a, Calculated octanol-water partition coefficients (LogP) of known NPSs and generated molecules.
b, Topological complexities of known NPSs and generated molecules.
c, Natural product-likeness scores of known NPSs and generated molecules.
d, Synthetic accessibility scores of known NPSs and generated molecules.
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Supplementary Fig. 3 | EMCDDA drug categorizations of generated molecules.
a, UMAP visualization of known NPSs and an equal number of generated molecules sampled at random from the trained generative model, with the
known NPSs colored by their EMCDDA drug categorizations.
b, Log-odds ratios of EMCDDA drug category frequencies among generated molecules, as compared to the training set. *, p < 0.05; ***, p < 0.001.
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Supplementary Fig. 4 | Sampling frequency of known and generated molecules.
a, Distribution of sampling frequencies within a sample of 1 billion SMILES strings from the trained generative model, with known NPSs from the training
set shown in red.
b, Jensen-Shannon distance between the molecular weights of generated molecules and the set of known NPSs, for molecules generated with progres-
sively increasing frequencies.
c, Jensen-Shannon distance between the quantitative estimate of drug-likeness (QED) score of generated molecules and the set of known NPSs, for
molecules generated with progressively increasing frequencies.
d, Jensen-Shannon distance between the proportion of carbons that are sp3-hybridized in generated molecules and the set of known NPSs, for
molecules generated with progressively increasing frequencies.
e, Jensen-Shannon distance between the partition coefficients of generated molecules and the set of known NPSs, for molecules generated with pro-
gressively increasing frequencies.
f, Jensen-Shannon distance between the topological complexities of generated molecules and the set of known NPSs, for molecules generated with
progressively increasing frequencies.
g, Jensen-Shannon distance between the natural product-likeness scores of generated molecules and the set of known NPSs, for molecules generated
with progressively increasing frequencies.
h, Jensen-Shannon distance between the synthetic accessibility scores of generated molecules and the set of known NPSs, for molecules generated
with progressively increasing frequencies.
i, Jensen-Shannon distance between the proportion of stereocenters in generated molecules and the set of known NPSs, for molecules generated with
progressively increasing frequencies.
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Supplementary Fig. 5 | Examples of molecules from the held-out set that were not generated by DarkNPS.
Chemical structures of an illustrative subset of the 18 molecules in the held-out set that were never produced by the generative model in a sample of
1 billion SMILES strings, and their nearest neighbors among structures that were generated by the model. Many of these molecules either are not
designer drugs at all (e.g., clozapine, citicoline, nalmefene, 2,2-dibromo-1-phenylhexan-2-one), or had a very closely related molecule appear in the
model output.
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Supplementary Fig. 6 | Examples of molecules from the held-out set that were correctly anticipated by DarkNPS.
a, Frequency with which each of the 194 molecules in the held-out set were sampled from the generative model.
b, Chemical structures, left, and sampling frequencies, right, for an illustrative subset of molecules in the held-out set that were correctly anticipated
by the generated molecule. The molecules were selected from across the spectrum of sampling frequency in order to illustrate some of the major
chemotypes captured by the generative model.
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Supplementary Fig. 7 | Benchmarking the structural prior using continuous molecular embeddings.
a, Median Euclidean distance between CDDD embeddings of held-out NPSs and generated molecules matching their exact masses (± 10 ppm),
arranged in descending order by sampling frequency (“most frequent”), ascending order by sampling frequency (“least frequent”), or a random sample
of molecules with matching exact masses from PubChem. Error bars show the interquartile range.
b, Distribution of Euclidean distances between the CDDD embeddings of held-out NPSs and generated molecules matching their exact masses (±
10 ppm), taking either the single most frequently sampled generated molecule, the single least frequently sampled generated molecule, or a random
molecule with a matching exact mass from PubChem.
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Supplementary Fig. 8 | Application of the structural prior to the synthetic cannabinoid ADB-HEXINACA.
Left, the chemical structure, molecular formula, and exact mass of ADB-HEXINACA. Middle, sampling frequencies of the 20 most frequently sampled
molecules matching the exact mass of ADB-HEXINACA (± a 10 ppm window). An illustrative subset of the generated molecules, highlighted in red, are
shown at the right.
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Supplementary Fig. 9 | Improved chemical similarity of automatically elucidated structures after MS/MS data integration.
a, Euclidean distances between CDDD embeddings for molecules in the held-out set of unidentified NPSs and the top-ranked structures suggested by
CFM-ID alone, the structural prior alone, or the combination of the two.
b, Improvements in automated structure elucidation of an unidentified NPS using tandem mass spectrometry. Left, the chemical structure of α-
hydroxyetizolam. Middle, the top-ranked molecule suggested by the structural prior (top) and mirror plot comparing the observed tandem mass
spectrum of α-hydroxyetizolam with the tandem mass spectrum predicted by CFM-ID. Right, the top-ranked molecule after integrating the structural
prior with MS/MS evidence (top) and mirror plot comparing the observed and predicted tandem mass spectra.
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