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Abstract

Accurate predictions of acid dissociation constants are essential to rational molecular de-
sign in the pharmaceutical industry and elsewhere. There has been much interest in developing
new machine learning methods that can produce fast and accurate pKa predictions for arbi-
trary species, as well as estimates of prediction uncertainty. Previously, as part of the SAMPL6
community-wide blind challenge, Bannan et al. approached the problem of predicting pKas
by using a Gaussian process regression to predict microscopic pKas, from which macroscopic
pKa values can be analytically computed.1 While this method can make reasonably quick and
accurate predictions using a small training set, accuracy was limited by the lack of a sufficiently
broad range of chemical space in the training set (e.g., the inclusion of polyprotic acids). Here,
to address this issue, we construct a deep Gaussian Process (GP) model that can include more
features without invoking the curse of dimensionality. We trained both a standard GP and a
deep GP model using a database of approximately 3500 small molecules curated from public
sources, filtered by similarity to targets. We tested the model on both the SAMPL6 and more
recent SAMPL7 challenge, which introduced a similar lack of ionizable sites and/or environ-
ments found between the test set and the previous training set. The results show that while
the deep GP model made only minor improvements over the standard GP model for SAMPL6
predictions, it made significant improvements over the standard GP model in SAMPL7 macro-
scopic predictions, achieving a MAE of 1.5 pKa.

Introduction
The negative logarithm of the acid dissociation constant, pKa = − log10Ka, is fundamen-

tally important in drug design. Absorption, metabolism and distribution of a drug are all greatly
affected by the protonation state of the compound under various pH conditions.2,3 pKa values
may be sought for molecules that have yet to be synthesized, or to further understand funda-
mental reactions. As a consequence, accurate predictions of acid dissociation constants are
essential for pharmaceutical companies as well as many other industries.
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The problem of pKa prediction continues to be studied due to its significance, and the dif-
ficulty of making accurate predictions. The SAMPL challenge provides a unique opportunity
to blindly evaluate model performance for pKa prediction.4 In the SAMPL6 challenge, pre-
dictions for 24 small molecules were made.5 A survey of the prediction methods employed by
SAMPL6 participants shows that most predictions used QM (quantum mechanical)/linear re-
gression methods, while only a handful of participants used QSPR/ML (quantitative structure
property relationship/machine learning) methods. In the former, rigorous quantum mechan-
ical calculations are performed to get standard free energies, which are then fitted to linear
regression models of experimental data to extract parameters for LFER (linear free energy
relationship). QM methods can achieve very good agreement with experiment, but are typi-
cally computationally demanding. Alternatively, QSPR/ML methods have less computational
expense, and because of this have recently gained much attention, especially in the pharmaceu-
tical industry.6–8 QSPR/ML methods can make quick and accurate predictions using a curated
database of experimental pKa data combined with physical, chemical and structural descriptors
to be used as a training set for a machine learning model.

One particular QSPR/ML approach used in SAMPL6 was a Gaussian process (GP) model
from Bannan et al.1 This model was trained on physical and chemical descriptors that relate
to the deprotonation energy. Ten feature calculations were made for each of the 2,700 (2443
monoprotic) small molecules in a private dataset.9 Bannan showed that GP models have the
generality to produce reasonably accurate predictions and uncertainties in those predictions for
any type of ionizable group, performing about the median of all SAMPL6 participants.

Encouraged by this finding, we set about attempting to reproduce these results using a
training database of small molecules curated from public sources. However, this endeavor
revealed two key flaws with the GP approach: (1) the chemical space in the training set was
narrowly limited to only monoprotic acids, and (2) the method performs poorly when there is
a lack of suitably similar ionizable sites and/or environments between the training set and the
test set.1

Here, we attempt to remedy these issues through the use of deep Gaussian process (GP)
models, which can increase model robustness when there is low structural similarity between
the training and test sets, by enabling a larger number of features to be used. Using a deep GP
model, the chemical space in the training set can be expanded to include a greater number of
polyprotic molecules, although a large number of monoprotic molecules are still required. We
train both a standard GP model and a deep GP model on a set of physiochemical descriptors of
molecules from a hand-curated database derived from public sources, and then test both models
using molecules from the SAMPL6 and SAMPL7 challenges.

Below, we describe our methodology for constructing a training database of ionizable
molecules with experimental pKa measurements, and extracting molecular features to train
standard and deep GP models for pKa prediction. We discuss in detail the molecules included
in the SAMPL6 and SAMPL7 challenges, and compare the results of standard and deep GP
models on these molecular targets.

Computational Methods
Overview of the method. The Gaussian process models used in this work are trained to
predict microscopic pKa values corresponding to the free energy of dissociating a proton from
a specific microscopic species AH→ A−. The pKa value measured in experiment corresponds
to the macroscopic pKa, which can be calculated from the complete set of microscopic pKa

(i.e. the network of all possible single-proton dissociations, see SI)10
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To predict the experimental pKa of a molecule, the following steps are performed: First,
the input molecule is provided as a SMILES string, along with a network of possible microstate
transitions. Next, a set of quantitative physical features are calculated to describe each micro-
scopic transition. These features are used by the Gaussian process model to predict microscopic
pKa values and their uncertainties. Finally, the set of microscopic pKa values are used to cal-
culate a macroscopic pKa prediction and its uncertainty.

Featurization of input molecules. The flexibility of the standard Gaussian process
model comes from the ability to relate molecular features to the variation in deprotonation
energy.1 For each of the molecules in our training database (Figure 2) (and later, for each
molecular pKa prediction), we first perform a 3-D structure minimization using MMFF96s,11

and then calculate ten different molecular descriptors as training features. Six of the features
are AM1-BCC partial charges12 computed using Open Force Field13 and RDKit.14 These are
partial charges of the atom of interest (AOI, the atom from which the proton dissociates), atoms
1 bond away from the AOI, and atoms 2 bonds away from the AOI, in both in A− and AH forms.

The seventh and eighth features are to changes in solvation free energy and the change in
enthalpy along AH→ A−, both computed using OpenEye-toolkits.15 The solvation free energy
is the free energy change of moving a species from gaseous phase into dilute aqueous solution.
It is calculated using the AM1-BCC partial charges as input to a continuum solvent model and
Possion-Boltzmann surface area solver. This calculation is performed on the the lowest-energy
gas-phase conformation from the ensemble via the MMFF96s forcefield.

The ninth and tenth molecular features are: the solvent-accessible surface area of the de-
protonated AOI calculated via the Shrake-Rupley algorithm,16 and its partial bond order, cal-
culated using the extended Hückel molecular orbital method to obtain the overlap populations,
both calculated using RDKit.

In addition to physicochemical features, structural descriptors are used as features for the
deep GP model (see below). There are many methods that successfully utilize topological
fingerprints as features,6,8,17 which are useful for selecting training molecules most similar to
the test set of input molecules. Here, we use Morgan fingerprints as features for our deep
GP model.18 In short, Morgan fingerprints are topological descriptors compacted into long bit-
vectors (black and white boxes) describing fragments (highlighted red) within a given molecule
as shown in Figure 1.

Figure 1: Structural fingerprints are converted into a bit-vector to store information
regarding occurrences of specific molecular fragments.
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Standard Gaussian process model. Gaussian process (GP) models treat the predic-
tion of microscopic pKa values (i.e. single protonation/deprotonation equilibria among a net-
work of many possible microtransitions) as a regression problem. The method seeks to estimate
(with uncertainty) an unknown function f(x) that is responsible for mapping input features x
to microscopic pKa values to be converted into relative free energies. To do this, a GP is able
to model a family of covariance functions that fit a set of known data points (the training set)
and use the average of those curves (the posterior mean) to make predictions given new input
data.19,20

Gaussian process (GP) regression relies on a mean function µ and a covariance function
k(x, x′). Here, we use a zero-mean Gaussian process. That is, f(x) ∼ GP (µ(x) = 0, k(x, x′))
is defined by an expected spatial location in variable space and a relationship by which different
variables are correlated with one another. Two well-known software packages that offer Gaus-
sian process regression are Scikit-learn21 and GPy.19 We have used both packages and verified
results are the same.

The covariance function is often called a kernel, responsible for determining the similarity
between two input feature pairs x and x′. A collection of these functions represent the joint
variability of the model and can be finely tuned i.e., learned to best represent the data. Here, we
use the Matérn32 kernel and RBF kernel for deep GP models (see below). The hyperpaprame-
ters are the length scale l1:d, which describes how quickly the unknown function changes as x
is varied.22 The optimal choice of these parameters depend upon the training data.

Deep Gaussian process model. Deep neural networks can be used to significantly
increase the number of features in a model to get better predictions, but such methods usually
require large training sets. One of the major benefits of Gaussian process models is that small
training sets can be used. Here, we propose a deep Gaussian process approach that will allow
many more features to be used with a relatively small training set. To do this, we stack GPs such
that each layer gets the posterior mean from the previous layer including the original inputs.
This can be viewed as a composite multivariate function g(x) = fl(fl−1(...f1(X))), where fi is
given by a Gaussian process. For this deep model, we use a Python package called DeepGPy.20

A curated database from public sources. As a first step in constructing a ML
model for pKa prediction, we curated a database of small molecules with experimentally mea-
sured pKa. Since the training data used by Bannan et al.1 was proprietary (OpenEye Scientific
Software), we opted to hand-curate a custom database from public sources23–26 amounting to
approximately 3500 small molecules with molecular weights not exceeding 500 Da (Figure
2.a). The histogram of pKa values for each small molecule in the database reveals a bimodal
distribution (Figure 2.b) with the highest frequency around a pKa of 4. The complete database
is freely available at https://github.com/robraddi/GP-SAMPL7.

Model fitness and selection. To optimize the model, we measure model fitness using
a 3-fold cross-validation technique. By this approach, we are able to determine the inherent
performance of the model by splitting the data up into separate training and testing sets, to see
if a model parameterized by the training data can predict the testing data. Our kernel hyper-
parameters {σ, l}1:d for a given model are optimized by selecting the model from the batch of
cross-validation experiments that have the lowest error, highest R2 value and maximum log
likelihood. Measuring model fitness in this way can also help select model hyperparameters
such as the type of kernel, combinations of kernels, the number of layers, the number of induc-

4

https://github.com/robraddi/GP-SAMPL7


Figure 2: Distribution of (a) molecular weight (avg=180 Da) and (b) pKa (avg=5.94) for
the molecules in the database as described in the main text. Solid red lines denotes
the mean.

ing variables, the number of molecules (N ) to use for training and even the types of molecules
to use—monoprotic or polyprotic.

Damianou et al. incorporate inducing variables inside the deepGPy module to reduce the
computational complexity of the model.20 Inducing variables enable a significant reduction in
the number of model parameters for each layer, approximating the true Bayesian posterior by
a variational approximation.20,27

After many parallel cross-validation experiments, we found that the most robustly pre-
dictive models typically have more monoprotic acids as well as having the greatest simi-
larity percentage. Typically, the size (number of molecules) is usually within these limits:
1000 ≤ N ≤ 1500, that is, too few or too many compounds in the training set produces weak
models (low R2 and greater error). The similarity percentage metric represents the average
structural similarity of each molecule in the training set with the molecule of interest. For ex-
ample, Table S1 shows average similarity percentage between the training set and the SAMPL7
molecules.

After exploring many different models for the stacked GP, our optimized model uses a RBF
kernel, 6 stacked layers with 200 inducing variables per layer and 1474 small molecules in the
training set. If we include polyprotic acids inside the training set we limit molecules to have
less than four ionizable groups. −5 ≤ pKa ≤ 15

Similarty filtering to select subsets od relevant training data. Based on our
initial cross-validation results, we found that including too many training molecules results in
less accurate models. It would therefore be desirable to limit the number of molecules in the
dataset, selecting only those with similar structures to a given intended prediction target, i.e.
SAMPL molecules, with the idea being that closely-spaced input features should have similar
(and more predictable) pKas. We hypothesized that specifying a similarity threshold to filter
the database–leaving only molecules that match the similarity criteria–would result in improved
models. The outcomes of these filtering efforts are discussed in Results.

To perform this filtering, Tversky similarity is used with Morgan structural fingerprints.28

We chose the Tversky similarity metric as it is a general form of Tanimoto similaity metric. We
calculated the average similarity between the SAMPL molecules and the molecules inside the
training set (∼ 18% similarity). We then include molecules from the database in our training
set if there is a similarity greater or equal to the average with any of the SAMPL molecules.
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The SAMPL7 challenge. In the SAMPL7 physical property challenge, pKa predictions
submissions consist of standard state relative free energies of micro-transitions for 22 small
molecules, as described in the recent work of Gunner et al.10 Details for SAMPL7 are avail-
able online (http://github.com/samplchallenges/SAMPL7). These details include the ex-
perimental measurements for the 22 sulfonamide derivatives,29 submitted predictions from all
participants, and a general analysis of the competition.

Results

Correlation of input features
We first examine the distribution of training molecules in the ten-dimensional feature space

used in our GP models. A visualization of the joint probability distribution of any two input
features, along with the experimental pKa, shows some features to be highly correlated, while
others are not (Figure 3). The correlation between input features are found by scaling the
covariance by the product of the standard deviation of each variable. The greater the linearity,
the more closely correlated the two variables are. Correlation contours in Figure 3 emulate the
optimized kernel parameters.

Kernel parameters are obtained by using three-fold cross-validation technique and selecting
the model with the lowest mean absolute error (MAE), highest R2 value and largest maximum
log likelihood. Highest priority was given to the model with the lowest MAE, then highest R2.
With the optimized kernel parameters for each model, predictions were made for all micro-
transitions of SAMPL6 and SAMPL7 molecules. All SAMPL molecules were left outside of
the training sets for the results shown below. Six of the SAMPL6 molecules had a few tran-
sitions that give rise to known software issues in feature calculations such as free energy of
solvation. In this event, the micro-transition is omitted and the micro-pKa prediction to that
micro-transition cannot be made.

Performance of standard and deep GP models
Macroscopic pKa predictions and their uncertainties are shown in Figure 4 for SAMPL6

(a) and SAMPL7 (b). In both sets of targets, the prediction statistics suggest that the deep GP
(blue) has lower mean absolute error and higher R2 than the standard GP (black).

A technical issue in comparing our predicted macroscopic pKa with the experimental val-
ues is worth mentioning here. Experiments may report a single pKa value, while our model
sometimes predicts multiple macroscopic pKa (for different deprotonation events). To decide
which predicted macroscopic pKa to compare to experiment, we use a minimal distance crite-
rion, i.e. the smallest difference between the predicted and observed pKa values. Other studies
have used different criteria, such as the Hungarian algorithm.1

Performance on SAMPL6 targets. Our standard GP model performed reasonably
well at predicting the macroscopic pKa of SAMPL6 targets, achieving a coefficient of determi-
nation R2 of 0.59, mean absolute error (MAE) of 1.38 and root mean squared error (RMSE) of
1.61 (Figure 4). These results are similar to those of Bannan et al.:1 R2 = 0.48, MAE of 1.39
and RMSE of 2.16, despite the fact that we use an entirely different database of molecules to
train the model.

The deep GP model performed slightly better at predicting the macroscopic pKa of SAMPL6
targets, achieving an R2 of 0.61, MAE of 1.36 and RMSE of 1.62.
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Figure 3: Correlations between input features and pKa values from the dataset. In-
put features: AM1BCC partial charge of atom of interest (AOI) protonated (PC (AH)) &
deprotonated (PC (A−)), avg. AM1BCC partial charge of atoms 1 bond away from AOI
protonated (PC (AH 1ba)) & deprotonated (PC (A− 1ba)), avg. AM1BCC partial charge
of atoms 2 bond away from AOI protonated (PC (AH 1ba)) & deprotonated (PC (A−
2ba)), difference in solvation free energy (∆Gsolv), SASA (Shrake-Rupley) of AOI (de-
protonated), bond order (Mulilken overlap populations) (B.O.), difference in enthalpy
(∆H). Histograms are found along the diagonal with a red line denoting the mean.
Correlation curves overlay the raw feature data (gray dots) for 1 σ (red), 2 σ (black)
and 3 σ (blue).

Performance on SAMPL7 targets. We anticipated that applying our GP models to
SAMPL7 targets would result in poor predictions, due to the lack of similarity between molecules
in the training set and the molecules of interest (MOIs) (see Table S1 for similarity percentage).
All the compounds in the SAMPL7 challenge contain sulfonamide groups and are difficult to
find in open-source databases. Our database contains very few (∼ 40) small molecules with
sulfonamide groups.25 All of these were included in the training set regardless of the number
of ionizable sites.

To overcome this issue, we applied a similarity filter to remove from the training set molecules
that lacked significantly similarity to our targets, as described in Methods. This filter was used
to select a more focused training set for both standard and deep GP models.

Without a similarly filter on the molecules included in the training set, we find the deep GP
model predictions produce slightly greater error, with an MAE of 1.7, RMSE of 2.0 and R2 of
0.64 (Figure S3). These results reflect the benefits of similarity filtering as well as the quality
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of the deepGP model over the standard GP.
With a similarity filter in place, we expected better results, especially for the deep GP

model, which is able to utilize a greater number of effective features. Using the filtered training
set, we found that the standard GP model yielded predictions with an R2 of 0.16, MAE of 3.05
and RMSE of 3.69. In contrast, the deep GP model results gave an R2 of 0.49, MAE of 1.47
and RMSE of 1.89. These results demonstrate the idea that a deep GP model is more robust
than a standard GP model when faced with a paucity of training data that has high correlation
with the target molecules.

b

a

Deep GP 

Standard GP 

Standard GP 

Deep GP 

Figure 4: Macroscopic pKa predictions for (a) SAMPL6 and (b) SAMPL7 compounds.
Model statistics for the standard GP are in black (bottom right) and the stacked GP
are in blue (top left): determination coefficient (R2), mean absolute error (MAE), mean
squared error (MSE) and root mean squared error (RMSE). Shaded inner region de-
notes within 1 pKa and within 2 pKa for the outer region.
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Uncertainty estimates from GP models

Prediction of uncertainties is important to understanding and improving models, regardless
of prediction accuracy.30 In our case, the predicted uncertainties of both standard and deep GP
models are helpful in understanding the information each type of uses, and their potential to be
successful predictors if presented with more data.

Uncertainties predicted by a standard GP model reflect insufficient train-
ing data. One of the goals of this study was to develop a model that was robust when facing
uncommon moieties. Arguably, the standard GP model fails this test for the SAMPL7 targets,
although its predictions give insight into how GP models function when faced with insufficient
training data. Regardless of the target molecule, the standard GP model predicts a pKa near
6, with large prediction uncertainties. In this case, the GP model deals with unfamiliar input
molecules by using the mean pKa value of the training set (∼ 6) with large error bars as the
prediction (Figure 4 (b)). The covariance of the GP random variables are centered about the
mean, since the proximity of feature space is far from the molecule of interest and the train-
ing set. The lack of correlation between the two sets of input features gives rise to the large
uncertainty.

Uncertainties predicted by the deep GP model. Unlike the standard GP model,
the deep GP model was able to make relatively accurate predictions with reasonable uncertain-
ties for most molecules. There are only a few instances of poor predictions with misguided
uncertainties in the deep GP results. For example, SM22 from SAMPL6 a nitrogen hetero-
cycle with iodide substituents (predicted pKa of 3.9±1.1, experimental pKa of 7.43±0.1) and
SM28 in SAMPL7 (the only non-sulfonamide) an amide derivative with a nearby sulfone group
(predicted pKa of 7.9± 1.5, experimental pKa of 12).

Upon stacking GPs, predictions are accompanied by relatively smaller uncertainties than
those predicted by the standard GP model. For some predictions, however, the deep GP model
appears slightly over-confident compared to the standard GP model. The large uncertainties
predicted by both models suggest reasonble reporting of uncertainty for SAMPL6 and perhaps
even more so for SAMPL7 predictions. Our training set was not strongly conditioned to predict
sulfonamide derivatives, and therefore lacked the ability to make accurate predictions.

Why is the deep GP model more predictive than the standard GP model? The deep GP
takes into account a larger number of effective features, both by stacking GPs and by filtering
the training set by additional structural features.

When trying to predict pKas for molecules that are not found inside the training set, our
results show the advantages of reducing the number of molecules inside the training set to be
more selective. In doing so, inputs are able to have closer correlations with the training data.
Since GP models work well with small training sets without effecting the validity of the model,
a similarity filtering approach was implemented to filter out irrelevant compounds.

Discussion
It has been previously shown that Gaussian process regression models are general enough

to make predictions with uncertainties for any ionizable group.1 However, QSAR/ML methods
are limited by the prior information. Here, we have shown that GP models can be improved
even with limited structural diversity in our training sets. The improvement we observe for deep
GP models in this study begs the question of how predictive this approach might be if trained
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on high-quality commercial-available databases. In this case, we would expect a significant
increase in the accuracy the GP model predictions in this case.

Previous work has shown the benefits of curating a diverse training set. For example, Sim-
ulation Plus ADMET Predictor from Fraczkiewicz et al.6 recently partnered with Bayer Phar-
maceuticals. Before that, Simulation Plus strictly used public data. With the inclusion of
experimental data from Bayer Pharma, however, prediction statistics significantly improved,
with R2 values increasing from 0.87 to 0.93 and MAE decreasing from 0.72 to 0.50.6

Here, even in the case of limited publicly available data, we have shown that deep GP
models, trained on similar molecules to the target, can lead to significant improvements over
standard GP models. Our calculations show that a deep GP model yields more accurate results
and increases the robustness of the model without a large/diverse training set. By extending the
standard model to a deep GP model we are able to include more features and also allow for a
slight increase in the number of polyprotic molecules. While including polyprotic molecules
increases the accuracy of macroscopic pKa predictions, it comes at a cost to predicted relative
free energies. In theory the free energy ∆Gcycle of any protonation/deprotonation thermody-
namic cycle should be zero, but this is not enforced by GP models, leading to increased errors
for polyprotic molecules.

A potential future direction for this work would be to study additional features as input to
the deep GP model. Since the deep GP model permits higher dimensionality, additional de-
scriptors than the ones describeds above could be explored in future challenges. These include:
polar surface area of the protonated atom of interest (AOI), different types of structural finger-
prints, HOMO and LUMO energies surrounding the AOI, polarizability, and more. As for the
level of theory involved in feature calculations, improvements to increase the level of accuracy
would be most beneficial for estimating the free energy of solvation. One concern, however,
would be if computational expense would outweigh the performance gain.

Overall, participating in the SAMPL7 challenge was a great way to demonstrate how the
standard GP model suffers with a mediocre training set, and how deep GP models that stack GPs
and filter out irrelevant molecules can overcome these limitations to an extent. The SAMPL
physical property challenges provide excellent target molecules for testing our QSAR/ML mod-
els. We look forward to future SAMPL challenges, where we can apply more diverse training
sets and incorporate many of the lessons learned here.

The database, code and results are publicly available at https://github.com/robraddi/GP-
SAMPL7.
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Analytical computation of macroscopic pKa using a thermodynamic cycle

Our models predict microscopic pKa values for each microtransition. We use the following
expression from Bochevarov et al31 to convert microscopic pKas to macroscopic pKas, which
relates microdissociation constants Kij for each microtransition to total equilibrium concentra-
tions to compute macroscopic equilibrium constants Ka.

Ka =

Ndeprot∑
j=1

1∑Nprot
i=1

1
Kij

(1)

Relative free energies for microtransitions are computed using the microscopic pKa inside
the following relationship as described by Gunner et al.10 We then converted to kcal mol−1,
where C = 1.36 kcal mol−1.

Gij = nHijC(−pKa) (2)
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Figure S1: Relative free energies (red boxes) in kcal mol−1 of SM07 from SAMPL6,
where state 4 is the reference state. Microtransitions are denoted by black arrows
with their respective negative micro-pKa on the inset. Largest difference in energy
over all cycles of length 4 correspond to the cycle with states 4,11,13,6 and gives
∆Gcycle = 14.59. Note that all other cycles give ∆Gcycle ≤ 6. Results can be compared
with Figure 4B and Table 4 found in Gunner et al.10
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Model selection & cross-validation

A short example of the selection process is shown in Table S1, where six cross-validation
experiments were performed using a Matérn32 kernel: three experiments using only monopro-
tic acids increasing the number small molecules in the training sets and three additional tests of
both monoprotic and polyprotic acids. The best model (shown in bold font) uses a training set
of size N = 1380, results in R2 = 0.85 and a mean absolute error of 0.91.

Table S1: 3-fold model validation varying the number of compounds in the training
set using standard Gaussian process model.

N Similarity (%) MAE RMSE R2

Mono
742 17.68 1.217 1.868 0.678

1380 18.15 0.909 1.355 0.845
2224 17.69 1.149 1.749 0.721

Mono & Polyprotic
1038 17.78 1.633 2.195 0.537
2105 17.70 0.978 1.465 0.805
3114 17.59 1.332 1.935 0.639
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    N = 1474
    R2 = 0.772
    MAE = 1.11
    MSE = 2.25
    RMSE = 1.5
    SEM = 0.0663

Figure S2: DeepGP model with 6 layers, 200 inducing variables, and 1474 molecules
in training. The optimized hyperparameters {σ, l}1:d from this were used to make the
actual predictions.

Table S2: SAMPL7 (SM25-46) relative free energy predictions from standard GP.

Ref Microstate ID Charge Prediction
SM25 m000 SM25 m001 -1 16.48± 7.83
SM25 m000 SM25 m003 -1 8.28± 3.94
SM25 m000 SM25 m005 1 0.17± 5.53
SM25 m000 SM25 m002 0 8.06± 3.95
SM26 m000 SM26 m001 -1 7.8± 2.69
SM26 m000 SM26 m003 -1 −0.0± 0.0

Continued on next page
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Table S2 – continued from previous page
Ref Microstate ID Charge Prediction

SM26 m000 SM26 m005 1 −5.63± 3.3
SM26 m000 SM26 m002 0 −8.29± 3.88
SM27 m000 SM27 m001 -1 8.0± 3.95
SM28 m000 SM28 m002 -1 7.43± 3.42
SM28 m000 SM28 m004 -1 −0.0± 0.0
SM28 m000 SM28 m003 1 −6.09± 3.03
SM28 m000 SM28 m001 0 −8.5± 3.87
SM29 m000 SM29 m001 -1 8.06± 3.95
SM30 m000 SM30 m001 -1 8.11± 3.95
SM31 m000 SM31 m001 -1 8.07± 3.95
SM31 m000 SM31 m002 1 −8.09± 3.87
SM32 m000 SM32 m001 -1 8.08± 3.95
SM33 m000 SM33 m001 -1 8.14± 3.95
SM34 m000 SM34 m001 -1 8.09± 3.95
SM34 m000 SM34 m002 1 −8.0± 3.88
SM35 m000 SM35 m001 -1 8.14± 3.95
SM35 m000 SM35 m003 -1 8.08± 3.95
SM35 m000 SM35 m002 0 0.04± 5.59
SM36 m000 SM36 m001 -1 8.12± 3.95
SM36 m000 SM36 m003 -1 8.12± 3.95
SM36 m000 SM36 m002 0 −0.02± 5.59
SM37 m000 SM37 m002 -1 8.18± 3.95
SM37 m000 SM37 m004 -1 8.16± 3.95
SM37 m000 SM37 m001 1 −8.13± 3.88
SM37 m000 SM37 m005 1 −8.02± 3.89
SM37 m000 SM37 m003 0 −0.01± 5.58
SM38 m000 SM38 m001 -1 8.17± 3.95
SM39 m000 SM39 m001 -1 8.2± 3.95
SM40 m000 SM40 m001 -1 8.19± 3.95
SM40 m000 SM40 m002 1 −8.24± 3.85
SM41 m000 SM41 m001 -1 8.23± 3.9
SM41 m000 SM41 m002 1 −7.25± 3.88
SM42 m000 SM42 m001 -1 10.1± 3.75
SM42 m000 SM42 m002 1 −8.02± 3.92
SM42 m000 SM42 m003 0 1.91± 5.4
SM43 m000 SM43 m001 -1 8.94± 3.77
SM43 m000 SM43 m002 1 −7.74± 3.9
SM43 m000 SM43 m005 1 −8.1± 3.91
SM43 m000 SM43 m003 2 −15.43± 7.73
SM44 m000 SM44 m001 -1 8.27± 3.87
SM44 m000 SM44 m002 1 −7.39± 3.73
SM45 m000 SM45 m001 -1 8.84± 3.3
SM45 m000 SM45 m002 1 −7.41± 3.79
SM46 m000 SM46 m001 -1 8.27± 3.87
SM46 m000 SM46 m002 1 −7.37± 3.59

Continued on next page
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Table S2 – continued from previous page
Ref Microstate ID Charge Prediction

SM46 m000 SM46 m004 1 −7.81± 3.89
SM46 m000 SM46 m003 2 −16.23± 7.77

Table S3: SAMPL7 (SM25-46) relative free energy predictions from deep GP.

Ref Microstate ID Charge Prediction
SM25 m000 SM25 m001 -1 24.48± 3.47
SM25 m000 SM25 m003 -1 12.28± 1.98
SM25 m000 SM25 m005 1 −3.3± 5.76
SM25 m000 SM25 m002 0 7.79± 4.85
SM26 m000 SM26 m001 -1 6.0± 1.79
SM26 m000 SM26 m003 -1 −0.0± 0.0
SM26 m000 SM26 m005 1 −4.36± 1.75
SM26 m000 SM26 m002 0 −9.16± 1.95
SM27 m000 SM27 m001 -1 13.93± 2.11
SM28 m000 SM28 m002 -1 7.89± 2.61
SM28 m000 SM28 m004 -1 −0.0± 0.0
SM28 m000 SM28 m003 1 −6.05± 1.74
SM28 m000 SM28 m001 0 −10.79± 2.13
SM29 m000 SM29 m001 -1 13.85± 2.23
SM30 m000 SM30 m001 -1 13.72± 2.32
SM31 m000 SM31 m001 -1 14.02± 2.05
SM31 m000 SM31 m002 1 −14.02± 2.12
SM32 m000 SM32 m001 -1 14.44± 2.2
SM33 m000 SM33 m001 -1 14.17± 2.36
SM34 m000 SM34 m001 -1 14.54± 2.09
SM34 m000 SM34 m002 1 −14.17± 2.14
SM35 m000 SM35 m001 -1 14.53± 2.3
SM35 m000 SM35 m003 -1 14.57± 2.11
SM35 m000 SM35 m002 0 0.03± 3.13
SM36 m000 SM36 m001 -1 14.14± 2.17
SM36 m000 SM36 m003 -1 14.16± 2.18
SM36 m000 SM36 m002 0 0.13± 3.06
SM37 m000 SM37 m002 -1 14.38± 2.12
SM37 m000 SM37 m004 -1 14.36± 2.08
SM37 m000 SM37 m001 1 −14.28± 2.11
SM37 m000 SM37 m005 1 −14.06± 2.16
SM37 m000 SM37 m003 0 0.0± 3.01
SM38 m000 SM38 m001 -1 15.39± 2.08
SM39 m000 SM39 m001 -1 14.46± 2.15
SM40 m000 SM40 m001 -1 14.54± 2.07
SM40 m000 SM40 m002 1 −13.8± 2.02
SM41 m000 SM41 m001 -1 11.78± 1.68
SM41 m000 SM41 m002 1 −2.18± 2.27
SM42 m000 SM42 m001 -1 13.06± 2.62

Continued on next page
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Table S3 – continued from previous page
Ref Microstate ID Charge Prediction

SM42 m000 SM42 m002 1 −11.27± 1.82
SM42 m000 SM42 m003 0 1.67± 3.13
SM43 m000 SM43 m001 -1 15.5± 2.05
SM43 m000 SM43 m002 1 −12.38± 2.05
SM43 m000 SM43 m005 1 −11.7± 1.7
SM43 m000 SM43 m003 2 −26.68± 4.08
SM44 m000 SM44 m001 -1 11.73± 1.68
SM44 m000 SM44 m002 1 −3.69± 2.19
SM45 m000 SM45 m001 -1 10.89± 1.84
SM45 m000 SM45 m002 1 −3.42± 2.24
SM46 m000 SM46 m001 -1 11.82± 1.64
SM46 m000 SM46 m002 1 −2.35± 2.25
SM46 m000 SM46 m004 1 −13.11± 2.14
SM46 m000 SM46 m003 2 −28.38± 4.2
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        MAE = 3.047
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Figure S3: DeepGP model without similarity filtering. Model consists of 6 layers,
200 inducing variables, and 1474 randomly selected database molecules to be used
in training. The optimized hyperparameters {σ, l}1:d from this were used to make the
actual predictions.
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Table S4: SAMPL6 (SM01-24) and SAMPL7 (SM25-46) macro pKa results for standard
GP.

(a) SAMPL6

ID Prediction Experiment
SM01 7.6± 2.2 9.53± 0.01
SM02 6.5± 1.9 5.03± 0.01
SM03 NaN 7.02± 0.01
SM04 7.1± 2.2 6.02± 0.01
SM05 NaN 4.59± 0.01
SM06 4.7± 2.0 3.03± 0.04

8.3± 2.8 11.74± 0.01
SM07 7.2± 2.5 6.08± 0.01
SM08 6.2± 1.7 4.22± 0.01
SM09 7.7± 2.2 5.37± 0.01
SM10 NaN 9.02± 0.01
SM11 3.3± 1.3 3.89± 0.01
SM12 4.5± 2.8 5.28± 0.01
SM13 7.8± 2.2 5.77± 0.01
SM14 4.4± 0.9 2.58± 0.01

5.2± 2.2 5.30± 0.01
SM15 4.9± 0.9 4.70± 0.01

6.7± 1.9 8.94± 0.01
SM16 4.1± 1.9 5.37± 0.01

9.8± 2.6 10.65± 0.01
SM17 2.7± 1.6 3.16± 0.01
SM18 NaN 2.15± 0.02

NaN 9.58± 0.03
NaN 11.02± 0.04

SM19 NaN 9.56± 0.02
SM20 6.4± 2.1 5.70± 0.03
SM21 6.0± 2.1 4.10± 0.01
SM22 3.6± 1.0 2.40± 0.02

5.1± 3.3 7.43± 0.01
SM23 NaN 5.45± 0.01
SM24 2.9± 2.3 2.60± 0.01

(b) SAMPL7

ID Prediction Experiment
SM25 3.7± 2.4 4.49± 0.04
SM26 5.5± 1.8 4.91± 0.01
SM27 5.9± 2.9 10.45± 0.01
SM28 6.2± 2.6 12.00±NaN
SM29 5.9± 2.9 10.05± 0.01
SM30 6.0± 2.9 10.29± 0.12
SM31 5.9± 2.9 11.02± 0.01
SM32 5.9± 2.9 10.45± 0.02
SM33 6.0± 2.9 12.00±NaN
SM34 6.0± 2.9 11.93± 0.05
SM35 6.0± 1.5 9.87± 0.01
SM36 6.0± 1.5 9.80± 0.06
SM37 6.0± 1.5 10.33± 0.02
SM38 6.0± 2.9 9.44± 0.02
SM39 6.0± 2.9 10.22± 0.15
SM40 6.1± 2.8 9.58± 0.01
SM41 5.3± 2.9 5.22± 0.01
SM42 7.4± 2.7 6.62± 0.02
SM43 5.8± 1.6 5.62± 0.02
SM44 6.1± 2.8 6.34± 0.01
SM45 5.4± 2.8 5.93± 0.05
SM46 6.1± 2.8 6.42± 0.01
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Table S5: SAMPL6 (SM01-24) and SAMPL7 (SM25-46) macro pKa results for deep
GP.

(a) SAMPL6

ID Prediction Experiment
SM01 10.5± 1.8 9.53± 0.01
SM02 3.6± 2.0 5.03± 0.01
SM03 NaN 7.02± 0.01
SM04 5.1± 1.9 6.02± 0.01
SM05 NaN 4.59± 0.01
SM06 5.3± 1.3 3.03± 0.04

9.1± 1.2 11.74± 0.01
SM07 5.1± 1.9 6.08± 0.01
SM08 5.2± 1.4 4.22± 0.01
SM09 7.3± 1.5 5.37± 0.01
SM10 NaN 9.02± 0.01
SM11 3.7± 1.6 3.89± 0.01
SM12 4.5± 1.6 5.28± 0.01
SM13 7.4± 1.5 5.77± 0.01
SM14 4.1± 1.3 5.3± 0.01

4.1± 1.3 2.58± 0.01
SM15 7.6± 1.1 8.94± 0.01

4.8± 1.2 4.7± 0.01
SM16 2.5± 3.0 5.37± 0.01

9.7± 1.4 10.65± 0.01
SM17 2.7± 1.1 3.16± 0.01
SM18 NaN 2.15± 0.02

NaN 9.58± 0.03
NaN 11.02± 0.04

SM19 NaN 9.56± 0.02
SM20 7.7± 1.4 5.7± 0.03
SM21 6.1± 2.0 4.1± 0.01
SM22 3.9± 1.1 7.43± 0.01

2.1± 1.7 2.4± 0.02
SM23 NaN 5.45± 0.01
SM24 2.8± 1.8 2.6± 0.01

(b) SAMPL7

ID Prediction Experiment
SM25 2.9± 1.3 4.49± 0.04
SM26 6.7± 1.4 4.91± 0.01
SM27 10.2± 1.6 10.45± 0.01
SM28 7.9± 1.5 12.0±
SM29 10.2± 1.6 10.05± 0.01
SM30 10.1± 1.7 10.29± 0.12
SM31 10.3± 1.5 11.02± 0.01
SM32 10.6± 1.6 10.45± 0.02
SM33 10.4± 1.7 12.0±
SM34 10.7± 1.5 11.93± 0.05
SM35 10.7± 0.8 9.87± 0.01
SM36 10.4± 0.8 9.8± 0.06
SM37 10.3± 0.8 10.33± 0.02
SM38 11.3± 1.5 9.44± 0.02
SM39 10.6± 1.6 10.22± 0.15
SM40 10.1± 1.5 9.58± 0.01
SM41 8.7± 1.2 5.22± 0.01
SM42 9.6± 1.8 6.62± 0.02
SM43 2.4± 1.7 5.62± 0.02
SM44 8.6± 1.2 6.34± 0.01
SM45 8.0± 1.4 5.93± 0.05
SM46 8.7± 1.2 6.42± 0.01
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Table S6: SAMPL7 (SM25-46) micro pKa results for deep GP.

Protonated Deprotonated Prediction
SM25 m000 SM25 m001 8.99± 1.27
SM25 m002 SM25 m001 8.43± 1.35
SM25 m004 SM25 m001 5.82± 1.33
SM25 m000 SM25 m003 9.02± 1.45
SM25 m002 SM25 m003 4.37± 1.22
SM25 m004 SM25 m003 3.95± 1.43
SM25 m005 SM25 m000 9.16± 2.04
SM25 m002 SM25 m000 5.72± 3.56
SM25 m005 SM25 m002 8.15± 2.27
SM25 m005 SM25 m004 2.86± 1.28
SM26 m000 SM26 m001 4.40± 1.31
SM26 m002 SM26 m001 8.04± 1.51
SM26 m004 SM26 m001 8.34± 1.75
SM26 m000 SM26 m003 3.85± 1.54
SM26 m002 SM26 m003 8.99± 1.24
SM26 m004 SM26 m003 4.67± 2.06
SM26 m005 SM26 m000 3.20± 1.28
SM26 m002 SM26 m000 6.73± 1.43
SM26 m005 SM26 m002 6.29± 2.97
SM26 m005 SM26 m004 8.66± 1.80
SM27 m000 SM27 m001 10.24± 1.55
SM28 m000 SM28 m002 5.80± 1.92
SM28 m001 SM28 m002 8.92± 1.31
SM28 m000 SM28 m004 7.70± 1.44
SM28 m001 SM28 m004 9.53± 1.15
SM28 m003 SM28 m000 4.45± 1.27
SM28 m001 SM28 m000 7.93± 1.56
SM28 m003 SM28 m001 6.85± 2.85
SM29 m000 SM29 m001 10.18± 1.64
SM30 m000 SM30 m001 10.09± 1.70
SM31 m000 SM31 m001 10.31± 1.50
SM31 m002 SM31 m000 10.30± 1.56
SM32 m000 SM32 m001 10.61± 1.62
SM33 m000 SM33 m001 10.41± 1.73
SM34 m000 SM34 m001 10.69± 1.53
SM34 m002 SM34 m000 10.41± 1.57
SM35 m000 SM35 m001 10.68± 1.69
SM35 m002 SM35 m001 10.66± 1.56
SM35 m000 SM35 m003 10.71± 1.55
SM35 m002 SM35 m003 10.68± 1.57
SM35 m002 SM35 m000 10.63± 1.53
SM36 m000 SM36 m001 10.39± 1.59
SM36 m002 SM36 m001 10.30± 1.58
SM36 m000 SM36 m003 10.41± 1.60
SM36 m002 SM36 m003 10.40± 1.58
SM36 m002 SM36 m000 9.77± 1.50

Protonated Deprotonated Prediction
SM37 m000 SM37 m002 10.57± 1.55
SM37 m003 SM37 m002 10.56± 1.57
SM37 m000 SM37 m004 10.55± 1.53
SM37 m003 SM37 m004 10.45± 1.55
SM37 m001 SM37 m000 10.50± 1.54
SM37 m005 SM37 m000 10.34± 1.58
SM37 m003 SM37 m000 9.95± 1.46
SM37 m001 SM37 m003 10.28± 1.56
SM37 m005 SM37 m003 10.17± 1.55
SM38 m000 SM38 m001 11.31± 1.53
SM39 m000 SM39 m001 10.63± 1.57
SM40 m000 SM40 m001 10.69± 1.52
SM40 m002 SM40 m000 10.14± 1.48
SM41 m000 SM41 m001 8.66± 1.23
SM41 m002 SM41 m000 1.59± 1.67
SM42 m000 SM42 m001 9.60± 1.92
SM42 m003 SM42 m001 8.37± 1.26
SM42 m002 SM42 m000 8.28± 1.33
SM42 m003 SM42 m000 8.72± 1.36
SM42 m002 SM42 m003 1.34± 1.66
SM43 m000 SM43 m001 11.39± 1.50
SM43 m004 SM43 m001 8.49± 1.24
SM43 m002 SM43 m000 9.09± 1.51
SM43 m005 SM43 m000 8.59± 1.24
SM43 m003 SM43 m000 9.80± 1.49
SM43 m002 SM43 m004 9.93± 1.59
SM43 m005 SM43 m004 0.35± 1.55
SM43 m003 SM43 m002 2.37± 1.71
SM43 m003 SM43 m005 10.78± 1.55
SM44 m000 SM44 m001 8.62± 1.23
SM44 m002 SM44 m000 2.70± 1.61
SM45 m000 SM45 m001 8.00± 1.35
SM45 m002 SM45 m000 2.51± 1.64
SM46 m000 SM46 m001 8.68± 1.20
SM46 m002 SM46 m000 1.72± 1.65
SM46 m004 SM46 m000 9.64± 1.57
SM46 m003 SM46 m000 10.43± 1.54
SM46 m003 SM46 m002 10.88± 1.53
SM46 m003 SM46 m004 3.46± 1.62
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