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Abstract

Enzyme catalysts are an integral part of green chemistry strategies towards a more

sustainable and resource-efficient chemical synthesis. However, the use of enzymes on

unreported substrates and their specific stereo- and regioselectivity are domain-specific

knowledge factors that require decades of field experience to master. This makes the

retrosynthesis of given targets with biocatalysed reactions a significant challenge. Here,

we use the molecular transformer architecture to capture the latent knowledge about

enzymatic activity from a large data set of publicly available biochemical reactions,

extending forward reaction and retrosynthetic pathway prediction to the domain of

biocatalysis. We introduce the use of a class token based on the EC classification

scheme that allows to capture catalysis patterns among different enzymes belonging

to the same hierarchical families. The forward prediction model achieves an accuracy

of 49.6% and 62.7%, top-1 and top-5 respectively, while the single-step retrosynthetic

model shows a round-trip accuracy of 39.6% and 42.6%, top-1 and top-10 respectively.

Trained models and curated data are made publicly available with the hope of promot-

ing enzymatic catalysis and making green chemistry more accessible through the use

of digital technologies.
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Introduction

Chemistry fostered the unprecedented rise of overall human wealth and well-being during the

past two centuries, and it is today our trump card to avert and mitigate global crisis while

reshaping our lives towards a more responsible use of natural resources. Innovation in syn-

thetic chemistry will be critical to make chemical processes and products more sustainable,

resource-efficient and CO2-neutral. The design and development of catalysts is identified

as the heart of greening chemistry. However, biocatalysis together with chemoinformatics

and artificial intelligence have the power to accelerate the adoption of existing sustainable

catalytic processes already today.

At the core of biocatalysis are enzymes, an integral part of all living organisms used

in important industrial processes thanks to the multiple key advantages provided over con-

ventional chemical reagents. In addition to their extremely high catalytic activity, enzymes

catalyse chemo-, regio-, and stereo-selective reactions and are both reusable and allow for an

easy recovery of products when immobilised.1 Enzyme-catalysed reactions are usually per-

formed in water under mild conditions and significantly reduce waste. Moreover, enzymes

themselves are fully degradable in the environment, and as such, they represent an important

strategy towards greener chemistry.2 These advantages provide a large number of opportu-

nities documented by the increased corpus of scientific and patents publications related to

enzymes, as well as their increased use in industrial applications.3,4 It is no surprise if en-

zymes are one of the key enablers of sustainable chemical processes, with a growing interest

in their use at an industrial scale to convert waste into valuable raw materials.5 Although

the ability to use enzymatic reactions to catalyse organic synthesis of chemical compounds

gained widespread attention for large scale production,6–8 enzymes are still far from being

widely adopted in daily synthetic laboratory works. The narrow substrate scope available

from enzymatic databases, the difficulty in identifying patterns within enzymes classes that

would extend the range of applicability to unreported substrates, and the specific stereo-

and/or regioselectivity are domain-specific knowledge factors that make the adoption of en-
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zymatic processes a challenging problem for synthetic chemists.9

The lack of a qualitative rationale for the latent relationships between enzymes and sub-

strates makes the construction of retrosynthetic routes using biocatalysed a hard problem.

The knowledge gap between large corpora of enzymatic chemical reactions data and the

human understanding of the structure-activity relationship hinders the possibility to predict

successful routes10–12 when the substrates of interests are not directly associated with an

enzyme. In the last years, the use of machine learning and data-driven approaches proved

to be a very effective way to capture patterns from complex chemistry knowledge collec-

tions.13 The extraction of chemical reaction rules from large data sets of traditional organic

chemistry reactions14 is one of the most successful examples15 of providing transparency and

explainability with AI applications in chemistry.
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Figure 1: Introducing enzymes as green catalysts to data-driven template-free chemical
synthesis. The molecular transformer was trained on chemical reactions extracted from the
USPTO data set and the new ECREACT data set using multitask transfer learning.

While traditional synthetic organic chemistry went through its renaissance period thanks

to recent development in machine learning and the availability of public chemical reaction

datasets, the impact in biochemistry remained mostly bounded to the context of metabolic
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pathways prediction.16,17 Computer-aided synthesis planning tools using biocatalytic reac-

tions are still in their infancy compared to the same developments for traditional synthetic

organic chemistry. RetroBioCat,18 one of the pioneering approaches, uses a set of expertly

encoded reaction rules and, when available, a system for retrieving enzymes records with the

correct substrate specificity from a database. Like the original efforts in traditional synthetic

chemistry, this approach suffers from the human curation process: the lack of scalability in

processing the large amount of data collected yearly and the failure to capture the effects

of long-range substituents in reaction rules. Nevertheless, RetroBioCat has the merit of

having pioneered the first chemoinformatic approach for easing the adoption of biocatalytic

reactions in chemical reaction tasks. More recently, Kreutter et al. 19 presented a forward

reaction prediction model based on the Molecular Transformer.20 This approach exploits a

multitask transfer learning to train a Molecular Transformer architecture, originally trained

with chemical reactions from the US Patent Office (USPTO) data set, with 32,000 enzymatic

transformations, each one annotated with the corresponding enzyme name. The enzymatic

transformer model predicts the products formed from a given substrate and enzyme in the

forward prediction task reaching an accuracy of 54% when using the enzyme name infor-

mation only and 62% when using the complete enzyme information as full sentence (often

including also the organism name). The approach solves some of the concerns around scal-

ability and data curation of reaction templates, but the use of enzyme names as reaction

tokens adds an additional level of challenge when trying to learnchemical reactivity patterns

among enzymes with different names but belonging to closely related families.

Here, we generalise the use of the Molecular Transformer by adopting a tokenisation

system based on enzyme classes and introducing an extension of the retrosynthetic algo-

rithm by Schwaller et al. 21 to biocatalysis. The use of a backward model allows to predict

substrates and catalysing enzyme classes given a target product. Unlike previous work, we

incorporate the EC (enzyme commission) number into the reaction SMILES, rather than

encoding enzymes with their natural language name. Enzymatic reactions and the accompa-
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nying EC numbers were extracted from four databases, namely Rhea, BRENDA, PathBank,

and MetaNetX and merged into a new data set, named ECREACT, containing enzyme-

catalysed reactions with the respective EC number as shown in Figure 1. The resulting

data set contains more than 62,000 unique enzymatic reactions. The forward and backward

(substrate + EC → product and product → substrate + EC, respectively ) models were

then trained using multitask transfer learning on the ECREACT data set. The baseline

model was trained on the USPTO data set (see Data Sets), containing 1 million reactions

without enzymatic information, acting as a training set for learning the general knowledge

on chemical reactions and the SMILES grammar.

The forward prediction model achieves an accuracy of 49.6% and 62.7%, top-1 and top-5

respectively, while the single-step retrosynthetic model shows a round-trip accuracy of 39.6%

and 42.6%, top1 and top-10 respectively. An extensive analysis of the data set pinpoints

the performance to the number of training samples available for each enzyme class, with

the forward prediction model ranging from an accuracy of 18.6% and round-trip accuracy

of 1.7% in isomerases to a forward prediction accuracy of 64.4% and a round-trip prediction

accuracy of 60.5% in transferases.

Results and Discussion

Data Sets and Models Training

Enzymatic reactions with related EC (enzyme commission) numbers were extracted from

Rhea,22 BRENDA,23 PathBank,24 and MetaNetX.25 The resulting collection of data sets,

named ECREACT, contains 5 token schemes for each enzymatic reaction with different lev-

els of enzyme information: EC0 (no enzyme information); EC1 (EC-level 1, corresponding

to the enzyme class); EC2 (EC-levels 1-2); EC3 (EC-levels 1-3); and EC4 (EC-levels 1-4).

Given the low specificity of enzyme information in EC1 and EC2 tokens, and the insuf-

ficient sampling for EC4, which is often confined to one enzyme-substrate example only,
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the EC3 data set remains the only one containing sufficient variability in terms of enzyme-

substrate examples across individual tokens. Figure 2 shows the composition of the data

set with token scheme EC3, containing 62,403 unique enzymatic reactions. At EC-level

1, which corresponds to enzyme classes, EC 2.x.x.x (transferases) account for 53.5% of to-

tal entries, EC 1.x.x.x (oxidoreductases) for 24.5%, EC 3.x.x.x (hydrolases) for 10.7%, EC

4.x.x.x (lysases) for 6.3%, EC 6.x.x.x (ligases) for 2.3%, EC 5.x.x.x (isomerases) for 2.2%,

and EC 7.x.x.x (translocases) for 0.4%. The high fraction of transferase-catalysed reactions

is a consequence of the large number of non-primary lipid pathways stored in PathBank.

Among transferases, the most represented subclasses at EC-level 2 are EC 2.7.x.x (trans-

ferases transferring phosphorus-containing groups) at 24.5%, EC 2.3.x.x (acetyltransferases)

at 16.8% and EC 2.1.x.x (transferases transferring one-carbon groups) 7.5%. The complete

information on the distribution of samples across EC-levels 2 and 3 is provided in the sup-

plementary information (Tables S3 and S4, with a breakdown of the data set by data source

shown in Figure S2).

This distribution of the available data reveals a heavy imbalance in the distribution

of the enzyme-substrate examples. Whereas transferase-catalyzed reactions encompass few

subclasses at EC-level 3 with a large sample size, the oxireductase- and hydrolase-catalyzed

reactions are divided into many subclasses at EC-level 3 with a small sample size. Although

lyases, isomerases, ligases, and translocases are split into fewer subclasses at EC-level 3,

most of them contain very few samples. Therefore, the evaluation of the performance of the

data-driven models will need to consider the different population of each EC-level 3 subclass

for a proper assessment.

A further property of interest regarding the reaction is the distribution of reactants and

products within and across the enzyme classes at EC-level 1. The data set created with the

EC3 token scheme contains 141,051 (56,017 unique) reactants and 62,403 (53,658 unique)

products. In Figure 3, we show the distribution of the compounds in the substrate and

product chemical spaces using the 2048-dimensional binary MAP4 fingerprints and embed-
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Figure 2: The distribution of samples at EC-levels 1 (corresponding to enzyme classes) and
2, as well as EC-levels 2 and 3 of oxidoreductases (class 1), transferases (class 2), hydrolases
(class 3), lysases (class 4), isomerases (class 5), ligases (class 6), and translocases (class 7),
in the ECREACT EC3 data set.

ding them using TMAP.26,27 The data points, coloured by enzyme class corresponding to

EC-level 1, highlight the different distributions within the substrate set (containing cofac-

tors) and the product set (where co-enzymes and common byproducts have been removed).

Substrates and products of transferase- (class 2), lyase- (class 4), and to a lesser degree,

hydrolase-catalysed (class 3) reactions populate regions of the chemical space peculiar to
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each class (homogeneous), with little overlap with other classes. The chemical space covered

by the molecules belonging to the remaining classes is non-specific (heterogeneous), with

wide areas shared among different classes. The location of the substrates and products in

homogeneous regions acts as an implicit feature, reducing the importance of the EC number

token (explicit feature) during training. Instead, the lack of implicit features in substrates

and products belonging to heterogeneous regions requires the use of explicit tokens (EC

numbers) during training to learn the chemical transformation rules.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7

ba

Figure 3: TMAPS visualising the distribution of MAP4-encoded (a) reactants and (b) prod-
ucts in the ECREACT EC3 subset coloured by enzyme class corresponding to EC-level
1. Distributions of molecular distances (MAP4) per class are shown in Figure S1. While
molecules associated with hydrolase- and lyase-catalysed reactions (class 3 and class 4, re-
spectively) follow a similar pattern of populating homogeneous regions, molecules involved
with other classes are found in predominantly heterogeneous regions.

A forward and backward model was trained for each of the ECREACT token schemes,

with the EC0 acting as a control on the influence of including enzymatic information in

the reaction. The trained models were evaluated for forward, backward, round-trip, and EC

number prediction accuracy using 5% test splits with the condition that a product in the test

split must not occur as a product in the training split (Figure 4). The results show that the
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EC3 token scheme has better performance than EC0 and EC2, yet performs slightly worse

than EC1 and EC4 (Figure 4a). In the backward prediction task, EC3 performs slightly

worse than EC0, EC1, and EC2 , but significantly better than EC4 ; this is most likely due

to the low number of samples in each EC4 category (Figure 4b, Table S5). Regarding the

round-trip accuracy,21 EC3 performs better than both EC2 and EC4 (Figure 4c). When

solely focusing on the prediction of the correct EC number in the backward prediction,

the models perform better the less detailed information they have to predict (Figure 4d).

These data show that the inclusion of enzymatic information in the form of the EC number

does not affect the prediction performance negatively as long as each EC category has a

sufficient number of training samples, which restricts the use of EC4 (Figure S10). The EC1

token, although performing well across different metrics, averages across reaction classes

with different schemes and for this reason is of little interest for retrosynthetic purposes.

The EC3 token scheme balances the specificity of enzyme information with performance

compared to the other ECREACT token schemes, resulting in prediction performance similar

or better to EC1 and EC2 while retaining detailed information of the reaction-specific

enzyme. Therefore, the relative performance among the five ECREACT token schemes

EC0, EC1, EC2, EC3, and EC4, identifies EC3 as the one with the most rich amount of

statistically significant information.

Forward Prediction

We split the EC3 data into a test and a training set, enforcing a zero overlap between

product molecules distribution in the two ensembles, i.e. each product molecule present in

the test set does not appear in the training set. This is a strict requirement that reduces

to zero the chance that forward and, most important, backward predictions are affected by

memorization of reaction records rather than by learning enzyme-substrate patterns. The

zero product overlap between tests and training set penalizes the measure of the perfor-

mance of the forward model when compared to a random splitting.20,21 Despite the various
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Figure 4: Overall accuracy of models based on different ECREACT token schemes (EC0,
EC1, EC2, EC3, and EC4 ) for (a) forward prediction, (b) backward prediction, (c) round-
trip prediction (a forward prediction followed by a backward prediction), and (d) backward
EC number only prediction. Top-n indicates the accuracy when checking the top n predic-
tions for the correct one.

similarities between the use of EC number and the use of catalysts’ token in a chemical

reaction, we decided to assess the impact on learning of including EC number tokens in

chemical reaction representation. We randomized the EC numbers in the test set within

and across classes (corresponding to EC-level 1) and measured the performance of the for-

ward prediction models in different scenarios. The resulting overall accuracy for evaluation

tests in which the EC tokens were not randomized, randomized within the same class, and

randomized across different classes was 49.6%, 41.3%, and 38.3%, respectively. Although,

the inclusion of EC numbers may seem of limited benefits, a more detailed analysis point
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to the real gains (Table 1 and Figures 5a, S4a, and S5a). In fact, the value of including

the EC number becomes apparent upon grouping the test samples by class and linking each

to their own sample size (Figures 5b-d, S4b-d, and S5b-d). Tests belonging to EC-level 3

subclasses containing a large number of samples keep performing relatively well even with

incorrect EC number. This reflects the data set imbalance identified for oxidoreductase-

(class 1) and transferase- (class 2), in which the larger set size or the homogeneity of the

chemical space covered by substrates/products make the presence of the EC number non-

essential to determine the outcome of the chemical transformation. Instead, the accuracy

among small and medium-sized classes drops, inversely correlating with the number of test

and training samples for each EC-level 3 category over all classes (Figure S9). These results

suggest the model can successfully predict the reaction outcome without relying on the EC

number when the sample size of specific enzyme-catalyzed reactions is large enough or the

space mapped by the substrate/product molecules is specific of the enzymatic reaction (ho-

mogeneous). The performance on the ligases (class 6) shows a marginal increase from 32.3%

to 33.9% when EC numbers are randomized within the same class and drops to 8.1% when

EC numbers are randomized across different classes, suggesting that the attention is focused

on the class-level of the EC number. As a general trend over all classes and experiments, the

accuracy increases increasing the number of predictions to match (top-k, k ∈ {1, 2, 3, 4, 5}),

with the biggest effect between k = 1 and k = 2.

Table 1: Forward model accuracies with non-randomized and randomized EC numbers.

Class
Top-1 Accuracy [%]

Non-Randomized Randomized within Class Randomized
Oxidoreductases (1) 28.0 18.5 18.6
Transferases (2) 64.4 55.8 54.8
Hydrolases (3) 39.7 32.6 18.0
Lysases (4) 28.8 22.0 16.9
Isomerases (5) 18.6 8.5 0.0
Ligases (6) 32.3 33.9 8.1
Translocases (7) 100.0 100.0 100.0
Overall 49.6 41.3 38.3

Figure 6 and Figure 7 show a selection of few successful and unsuccessful predictions

extracted from the test data set. The set covers reactions catalysed by an oxidoreductase

(1), two transferases (2, 3), two hydrolases (4, 5), a lyase (6), an isomerase (7), and a

11



� � � � �
�����

�

��

��

	�

��

���
��

�!
��
�"

���
�

a
�����������#������

���  
� � � � � 	 


� � � � � 	
���  

b
���������#������������#������

�
���
���
����

� � � � � 	
���  

�

��

��

	�

��

���

��
�!

��
�"

���
�

c
���������#������������#������

�
���
���
����

� � � � � 	
���  

d
���������#������������#������

�
���
���
����

Figure 5: Class-wise accuracy for the forward model trained on EC3. (a) The top-k pre-
diction accuracies for each class show significant differences among classes caused by the
number of available samples per EC-level 3 category. The accuracy of (b) top-1, (c) top-2,
and (d) top-5 predictions per EC-level 3 category. Each dot represents an EC-level 3 sub-
class coloured by the number of test samples N . Large EC-level 3 subclasses (red) greatly
influence the performance of predicting transferase-catalyzed reaction (class 2) outcomes.
Oxidoreductase-catalyzed reactions (class 1) are distributed among many EC-level 3 sub-
classes, causing a lower performance compared to other classes with fewer samples overall.

ligase (8). These successful examples reflect the models’ capability to predict enzymatic

reaction outcomes across all enzyme classes. Instead, the analysis of the incorrectly predicted

reaction outcomes (Figure 7) highlights peculiar patterns. Reactions (1) and (2) are both

catalysed by an oxidoreductase acting on the CH-NH2 group of donors. The predicted
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reaction (1) contains an excessive number of carbon atoms. The inferred product of reaction

(2) is equivalent to the ground truth, as the linear and cyclic forms are in equilibrium.

(3) shows an example of the model correcting an error in the data set and predicting the

correct stereochemistry. In addition, it highlights the possibility of false negatives due to

the prediction of zwitterions. The products of the phosphoric diester hydrolase-catalysed

reaction (4) and the intramolecular lyase (5) are predicted incorrectly because the training

set contains an enzymatic reaction with identical substrate and, on an EC-level 1-3, identical

EC number. (6) is an example of the model failing to predict the correct stereochemistry

of a product. Prediction of correct stereochemistry has been reported by Schwaller et al. 20

as a major challenge for the molecular transformer and is linked to the lack of coherent

stereochemical information in the USPTO data set.28 Similarly, the correct stereochemical

prediction, affected by the limited data coverage on stereochemical examples, remains the

major challenge for the model, especially when predicting reactions catalysed by isomerases

(class 5, Figure 5a); the removal of all stereochemical information from the predicted products

increases the accuracy of isomerase-catalysed reaction prediction by a factor of two (Figure

S3).
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Figure 7: Incorrect forward predictions. For each reaction, (a) is the ground truth while (b) is
the prediction. The reactions are catalysed by (1, 2) oxidoreductases acting on the CH-NH2
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Backward Prediction

The assessment of the backward model for any given target molecule requires the use of the

round-trip accuracy21 to evaluate the correctness of possible disconnections differing from

the one reported in the test data set. In fact, the top-k accuracy when applied to backward

model predictions comes down to assessing how good the model is memorising one specific

disconnection compared to other meaningful ones. Here, the test and training sets have been

constructed by enforcing a zero overlap between product molecules. As the model has not

encountered a product of a reaction in the test set during training, the top-k performance can

be used to assess how the model is matching a specific disconnection scheme. Figure 4 shows

the backward model performance (round-trip and top-k accuracy) for the EC-level 3. With a

top-1 accuracy of 60%, the backward model has a behaviour similar to the forward model in

the performance between and within classes (Figure 8), as well as in the correlation between

the size of the training samples and accuracy (Figure S10). In addition to the substrates,

the model also predicts the enzyme EC-level 3 token; the accuracy of predicting EC numbers

only is shown in Figure S6. The analysis of the model shows an exceptional performance

on transferase-catalysed reactions (class 2), traceable to two large EC-level 3 subclasses EC

2.3.1.x, and EC 2.7.8.x., which contain 17%, and 20% of all available samples, respectively

(Figure 8b-d). This analysis further explains the comparatively low prediction accuracy on

the class of oxidoreductases (class 1) as it contains a large number of EC-level 3 classes, each

small in size (Figure 8, Table S4). Translocases are involved in catalysing the movement of

molecules or ions across membranes. This specific function, together with the limited set

of reaction records (191), causes the substrates and products to have lower diversity than

in other classes. The constraint preventing product molecules from being present both in

the training and learning data set reduces further the variability of the population in the

translocases data sets. Because of the limited data, there is no statistical significance for the

class of translocases, and we have thus opted to discard this class from a detailed analysis.

The confusion matrix (Figure 9) provides further insight into the backward prediction
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Figure 8: Class-wise accuracy for the backward model trained on EC3. (a) The top-k
prediction accuracies for each class (corresponding to EC-level 1) show significant differences
among classes caused by the number of available samples per EC-level 3 category. The
accuracy of (b) top-1, (c) top-2, and (d) top-5 predictions per EC-level 3 category. Each
dot represents an EC-level 3 category coloured by the number of test samples N . Large EC-
level 3 subclasses (red) greatly influence the performance of predicting transferase-catalyzed
reaction (class 2) outcomes. Oxidoreductase-catalyzed reactions (class 1) are distributed
among many EC-level 3 subclasses, causing a lower performance compared to other classes
with fewer samples overall.

performance. The model’s ability to assign a product to the correct enzymatic class differs

significantly between classes and is again influenced by the cohort of each class. Despite the

larger population of the oxidoreductases, the extreme split in EC-level 3 subclasses causes

the backward model to perform worse in predicting substrates for oxidoreductase-catalyzed
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reactions than for hydrolase-, lyase-, and ligase-catalyzed reactions (Figure 8a). The pre-

diction of the enzyme class shows high accuracy (71.97%) for the class of oxidoreductases.

A challenge in terms of predicting the correct enzyme class are the isomerases (Class 5), as

they encompass intramolecular oxidoreductases, transferases, and lyases; this is reflected in

the relatively high misassignment of isomerases to oxidoreductases, transferases, and lyases

(classes 1, 2, and 4).
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Figure 9: The confusion matrix based on predicted EC numbers by the backward model.
The bars right of the plot show the number of samples per class.

In Figure 10 and Figure 11 we show successful and unsuccessful backward predictions.

Among the successful examples, we report enzymes belonging to the oxidoreductase (1), a

transferase (2), a hydrolase (3), two lyases (4, 5), an isomerase (6), and a ligase (7). The

model did not predict any translocase-catalysed reactions because of the statistically in-

significant data set. Figure 11 shows a selection of incorrectly predicted backward reactions,

together with their ground truth. In the example (1), the model predicts a different EC-level

3 token to catalyse the reaction. Whereas the ground truth reaction is catalysed by an oxi-

doreductase acting on the CH-OH group of donors with oxygen as an acceptor (1.1.3.x), the

prediction suggests the reaction to be catalysed by an oxidoreductase acting on the CH-OH

group of donors with NAD+ as an acceptor (1.1.1.x). This choice may reflect the respective

number of training samples for the two classes (3,220 and 176 for 1.1.3.x and 1.1.1.x, re-
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spectively) and may be considered as a viable alternative to the ground truth. Example (2)

shows a correct EC-level 3 prediction (hexokinase). However, the substrate did not match

the ground truth because the model predicted the acyclic rather than the linear form of

aldehydo-d-galactose. (3) is an example of the model adding stereochemistry information

missing in the test data set. In the ground truth, only l-tyrosine is represented by an isomeric

SMILES, while PAPS (3’-Phosphoadenosine-5’-phosphosulfate) and the product are repre-

sented in their racemic form. The model predicts both l-tyrosine and PAPS with the correct

stereochemistry. In (4), the model predicts an alternative way to synthesise 2-fluorobenzoate.

Rather than hydrolysing a coenzyme A thioester using a thioesterase, the model suggests an

aldehyde dehydrogenase acting on the -CHO group of 2-fluorobenzaldehyde with NAD+ as

an acceptor. In contrast with the ground truth, the carboxylic acid can be obtained by mild

oxidation of a commercially available substrate. Finally (5), the model fails to predict an

enzymatic reaction for the synthesis of 3,5-dichloro-2-methylmuconolactone and falls back

to a reaction learned from the USPTO data set.
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Figure 10: Successful backwards predictions. The reactions are catalyzed by (1) a cyclo-
hexanone monooxygenase, (2) a glucuronosyltransferase, (3) a quorum-quenching N -acyl-
homoserine lactonase, (4) an aromatic-l-amino-acid decarboxylase, (5) an aldehyde-lyase,
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Figure 11: Incorrect backward predictions. For each reaction, (a) is the ground truth while
(b) is the prediction. The model predicted (1, 4) different enzyme-catalyzed reactions leading
to the same product, (2) predicted a substrate with a different isomer, (3) corrected an
erroneous data set entry, and (5) was not able to predict an enzymatic reaction and fell back
on a reaction learned from USPTO data.
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Attention Analysis

The analysis of the patterns in the attention weights of the Molecular Transformer provides

insights on the interpretability of these complex models and on potential biases.29 In the case

of reaction SMILES, attention weights have shown to uncover complex reaction information

with no supervision, such as atom mappings.14

Here, inspired by the work of Schwaller et al. 14 we unboxed the forward prediction model

to understand how it exploits enzyme information. We considered all the reactions included

in our test set and inspected the attention weights in all the heads, considering the mean

weights over EC tokens after discarding values lower than a threshold (details in the Methods

Section ). We analyzed the attention patterns across all reactions (see Figure S11) and for

the most three representative enzymatic reaction classes: oxidoreductases, transferases and

hydrolases (see Figure S13).

Specific heads focus their attention on the different levels of the EC token, while others

attend the complete enzymatic information, attributing comparable weights to all levels of

the token. On average, the heads pay more attention to the first two EC number levels

and less to the third, causing the level 1 and 2 of the token to be primarily responsible

for forward reaction prediction. The comparison of the mean attention for oxidoreductases,

transferases and hydrolases reactions (see Figure S13) reveals that the model captures vari-

ations in enzymatic reactions, focusing on different EC number levels based on the reaction

type. Figure 12 shows few representative examples of enzymatic reactions and the attention

relationship between the EC token levels and the tokens of the product. In all examples, the

EC tokens are related to the centre of the enzymatic reaction. Example (a) shows how level

3 of the EC token focuses on key features of the enzymatic reaction: the centre subject to

nucleophilic substitution and the token related to the configurational information. Example

(b) reveals the connection between the EC token and the centre of the nucleophilic addition

as well as the introduced nucleophile. Finally, example (c) reveals the connection of the EC

token with the stereochemical centre undergoing inversion of configuration. The analysis of
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Figure 12: Analysis of the attention weights in the forward prediction models on reactions
(5), (6) and (7) from Figure 6 ((a), (b) and (c) respectively). For each reaction, the attention
mapping between tokens representing EC numbers is highlighted in purple (reactant atom
tokens are connected using grey curves). The curve thickness is proportional to the attention
weight computed by the forward Molecular Transformer.

the attention weights confirms the capacity of the forward Molecular Transformer to use the

EC token for discerning the enzymatic reaction centre while capturing enzymatic reaction
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rules.

Overall, oxidoreductases exhibit higher values on the enzymatic tokens compared to

the others. In contrast, transferases present low values, except for head 3, where the EC

number class receives in general higher weights in respect to the average. This explains why

transferases data sets can be predicted with a slight loss of accuracy even when paired with

wrong EC numbers. Hydrolases show more variation in attention values, with the highest

weight given by head 3 to the EC-level 2. Besides these differences, head 3 always receives

the highest attention values, while head 2 receives the lowest in all the reaction classes

considered.

In an attempt to capture similarities in attention patterns, we extended our analysis to

consider average correlations between the attention heads (see Figure S12, details on the

correlation analysis can be found in the Methods Section ). Attention weights for heads

3, 6 and 7 tends to focus on single tokens (i.e., atoms and EC levels) and exhibit highly

significant correlation values (ρ3,6 = 0.78, ρ3,7 = 0.65, ρ6,7 = 0.66), providing the inherent

mapping between tokens/atoms in the reactants and the ones in product. Heads 2 and 4,

which tend to focus on the structurally larger group of tokens, e.g., representing branches,

show a weakly positive correlation (ρ2,4 = 0.33). This suggests that the two heads are

capturing distinct aspects of the enzymatic reactions while attending similar token lengths.

The remaining heads are uncorrelated, highlighting the existence of more complex attention

patterns captured by the model.

Retrosynthesis Use-Cases

The trained forward and backward models allow us to extend the approach for template-free

retrosynthesis prediction by Schwaller et al. 21 to enzymatic reactions, introducing the first

template-free biocatalysed synthesis planning tool (see the Methods Section for details).

Here, we present the predicted pathways for a selected number of target molecules and

compare them to classical organic synthesis routes. We selected the target molecules from
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the RetroBioCat’s curated set of biocatalyzed pathways30 based on the intersection between

chemistry coverage in our data set ECREACT and the data set of RetroBioCat. In fact,

the encoding of ECREACT and the RetroBioCat test set using rxnfp31 shows that the

RetroBioCat test set reactions are forming distinct clusters in the TMAP-embedded reaction

space (Figure 13a), in which the fraction of nearest neighbors from the set itself is consistently

higher compared to reactions from ECREACT (13b). This analysis highlights the different

chemistry captured by the datasets and anticipates a poor performance for those Retrobiocat

examples poorly covered in the ECREACT data set (more details can be found in the Method

Section, see Figure S14 for a depiction of the reaction classes’ statistics from Finnigan 30).

Figure 13: Distribution of rxnfp fingerprints for the reactions in the combined space of
ECREACT (grey) and RetroBioCat test set reactions (blue), embedded with TMAP. (a) The
reactions from the RetroBioCat test set are forming distinct clusters in the combined reaction
space. (b) For RetroBioCat test set (blue) reactions, the fraction of nearest neighbors (k =
10) from the set itself is consistently higher compared to reactions from ECREACT (grey).

In Figure 14 we report the synthesis of the target molecules as recommended by the

model using enzymatic transformations in mild conditions. Aminoalcohol (1) can be synthe-

sized by regioselective transamination of the precursor dione, followed by reduction of the

aminoketone with NADH as the hydride source. This approach represents an alternative

to gaseous hydrogen or other solid hydride sources typically employed in the reduction of
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Figure 14: Enzyme-catalysed synthesis of synthetically useful compounds under mild condi-
tions. (1) Aminoalcohol, (2) Homoaspartate, (3) 4-hydroxy-l-glutamic acid, (4) β-ketoacid,
and (5) (S )-norlaudanosoline.

carbonyls, which can often represent a safety concern when employed already on gram-scale.

Homoaspartate (2) can be accessed by a series of chemoselective enzymatic transformations

of l-erythrose to the corresponding carboxylic acid, followed by regioselective dehydration

to the α-ketoacid. Finally, the model infers that a transamination with glutamate on the

newly-introduced keto functionality ensures the delivery of the target amino acid. Given

the similar reactivity of the -OH groups within the substrate, such a series of transforma-

tions would require considerable effort to be achieved by non-enzymatic approaches.32 As

the third example, the model predicts that 4-hydroxy-l-glutamic acid (3) can be obtained

from oxidation of inexpensive l-hydroxyproline in the presence of NAD+ (catalyzed by EC

1.5.5.x), followed by a further oxidation of the aldehyde intermediate with EC 1.2.1.x and

NADP+. Enzymatic reactions enable oxidations to be carried out also in the presence of
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O2, as exemplified by the prediction for the synthesis of α-ketoacid (4). The chemoselective

oxidation of the amino group of l-tyrosine leaves the sensitive and electron-rich aromatic

moiety unaltered and obviates the use of stronger oxidizing agents. Lastly, the model predicts

that an enzymatic Pictet-Spengler reaction catalyzed by EC 4.2.1.x, can convert dopamine

and the corresponding aldehyde to the alkaloid (S )-norlaudanosoline (5) enantioselectively,

which typically requires the presence of organocatalysts or transition metals.33–35 It is inter-

esting to compare the routes suggested by our model with the ones from RetroBioCat.18 In

reaction (1) the starting substrate is styrene, which undergoes epoxidation in presence of an

epoxidase, followed by epoxide opening, partial oxidation of the primary alcohol to aldehyde

and transamination. Homoaspartate (2) is instead shown to be obtained via aldol addition

of sodium pyruvate on formaldehyde, followed by transamination with alanine. Similarly,

RetroBioCat shows that 4-hydroxy-l-glutamic acid (3) can be prepared by treatment of

pyruvic acid with glyoxylic acid in presence of an aldolase, delivering the target compound

after transamination with an amino donor. Pyruvic acid is also the substrate suggested for

the synthesis of α-ketoacid (4), which is delivered upon reaction with phenol in presence of

a lyase. Alkaloid (S )-norlaudanosoline (5) is synthesized in a similar fashion as suggested

by our model with a norcoclaurine synthase, which acts on the same primary amine and

aldehyde substrates shown by the Molecular Transformer. With the exception of route (5),

which is highly substrate-specific, one can appreciate the dissimilarity of the synthetic path-

ways suggested by our model when compared with RetroBioCat, which open the way to

synthetically useful compounds from a variety of different inexpensive substrates.
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Conclusion

We presented a molecular transformer trained on enzyme-catalysed reactions extended with

EC (enzyme commission) numbers. Our results show that the Molecular Transformer per-

forms well in predicting products based on EC number and substrates, predicting substrates

and EC number based on a product, and predicting the EC number based on product.

The enzymatic models reach an overall top-1 accuracy of 49.6%, 60%, and 39.6% in for-

ward, backward and round-trip accuracy, respectively. The accuracies correlate heavily with

the amount of training data in each token class, presenting a major challenge given the

limited availability of data. In addition to applying the Molecular Transformer to biocatal-

ysed reactions, we introduced an aggregated data set, ECREACT, containing preprocessed

enzyme-catalysed reactions sourced from different publicly available databases. With the

increase of the quantity and quality of available training data and the experimental vali-

dation of proposed synthetic routes, the research community will be able to build on the

legacy of the present work to retrain models with higher accuracy and broader scope with-

out the limitation of humanly curating reaction rules. Finally, we presented few use-cases

based on well-understood pathways that showed how template-free machine learning mod-

els trained on enzymatic reactions can play an essential role in promoting the adoption of

greener chemistry strategies in daily laboratory work.

Data and Models

The ECREACT data set will be made publicly available upon acceptance of this manuscript

at the URL: https://github.com/rxn4chemistry/green_cat_rxn. The trained models

are made publicly available as part of IBM RXN for Chemistry (https://rxn.res.ibm.

com/).

28

https://github.com/rxn4chemistry/green_cat_rxn
https://rxn.res.ibm.com/
https://rxn.res.ibm.com/


Acknowledgements and Funding

This work has been carried out within the framework of the National Centre of Competence

in Research Catalysis supported by the Swiss National Science Foundation. The authors

acknowledge the financial support of the SNSF.

29



Methods

Data Sets

The enzymatic reaction data set with related EC (enzyme commission) numbers was created

by merging entries extracted from Rhea (n = 8659), BRENDA (n = 11130), PathBank

(n = 31047), and MetaNetX (n = 34485).22–25 This data set was then further processed by

(1) removing products that occur as reactants in the same reaction, (2) removing known

co-enzymes and common byproducts from the products in reactions that exceed 1 product

(Tables S1 and S2), (3) removing molecules with a heavy atom count < 4 from the products,

and (4) removing reactions with > 1 or < 1 products or no reactants. The resulting data

set contains 62,222 unique reaction–EC number combinations. The data set is available in

5 different token schemes: With no EC number (EC0, n = 55115), only EC-level 1 (EC1,

n = 55707), EC-levels 1-2 (EC2, n = 56222), EC-levels 1-3 (EC3, n = 56579), EC-levels 1-4

(EC4, n = 62222). The different token schemes result in different set sizes as the removal of

EC-levels leads to duplication and removal of extended reaction SMILES

We used the USPTO data set, which contains 1 million organic chemical reactions, to-

gether with the more specific enzymatic reaction data set to train the molecular transformer

using multi-task transfer learning. This approach was previously successfully applied to

carbohydrate reactions by Pesciullesi et al. 28 . The reactions in the USPTO data set are

encoded as so-called reaction SMILES, using the same convention of Schwaller et al. 20 . An

example is the reaction SMILES CC(=O)O.OCC>OS(=O)(=O)O>CC(=O)OCC.O encoding a Fis-

cher esterification.

Preprocessing

The standard definition of a reaction SMILES was extended to include EC numbers (e.g.

the reaction catalysed by the maltose alpha-d-glucosyltransferase is written as A|5.4.99>>B,

where the SMILES for d-maltose and α,α-trehalose have been replaced by A and B for
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brevity). We denote this extension to reaction SMILES enzymatic reaction SMILES.

We adapted the tokenisation operation used by Schwaller et al. 20 for the molecular trans-

former to handle enzymatic reaction SMILES. EC-levels 1-3 are treated as unique tokens to

enable the transformer to learn the hierarchical structure of the EC numbering scheme. Be-

cause digits are already used to represent ring closures in SMILES, a number prefix is added

to each level (v for EC-level 1, u for EC-level 2, and t for EC-level 3) during tokenisation. In

addition, each EC token is encapsulated in brackets to simplify the tokenisation and deto-

kenisation process. An example tokenisation of an enzymatic reaction SMILES is shown in

Figure 15.

Finally, the resulting tokenised data set was split into a training, validation and test set

(90%, 5%, and 5%, respectively). The training set was sampled so that none of the products

contained within can be found in the training and the validation data set.

Enzymatic

reaction 

Enzymatic

reaction

SMILES 

Cc1cc(=O)oc2cc(OC3OCC(O)C(O)C3O)ccc12.O|3.2.1>>O[C@H]1[C@H](O)CO[C@@H](O)[C@@H]1O

Tokenized

reaction

C c 1 c c ( = O ) o c 2 c c ( O C 3 O C C ( O ) C ( O ) C 3 O ) c c c 1 2

.

O

|

[v3] [u2] [t1]
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O [C@H] 1 [C@H] ( O ) C O [C@@H] ( O ) [C@@H] 1 O

H2O+

EC 3.2.1.8
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Figure 15: Step-wise description of the tokenisation process. Starting from an enzymatic
reaction (top), a reaction SMILES representation is extracted (middle). The enzymatic
reaction SMILES is finally tokenised both at the atom level and at the EC level (bottom).

Transfer Learning

The Molecular Transformer models have been implemented following the protocol introduced

by Schwaller et al. 20 . The main conceptual difference lies in extending the reaction SMILES

tokeniser to handle enzymatic reactions represented with the EC number as detailed in
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the Preprocessing section . Multitask transfer learning has been implemented, as described

by Pesciullesi et al. 28 , using a convex weighting scheme for USPTO and ECREACT, 9 and

1 respectively. All the models have been trained using a version of OpenNMT36 adapted for

the Molecular Transformer.37

Attention Analysis

In the forward fine-tuned molecular transformer, the connection between the reactants and

enzyme components and the products is modelled via self-attention and multi-head attention

in the encoder/decoder layers. Since the probability distribution over all prediction candi-

dates is computed based on the current translation state summarised by the last multi-head

attention and the output layer, we focused our analysis on this last part of the decoder by

considering only its attention weights.

We used relevant examples from the test set to analyse the patterns emerging from the

mean attention over the heads. Using these examples, we investigated attention weights

focusing on EC-levels 1-3 of the different heads. We started by analysing all reactions in

our test set, focusing at a later stage on the three most frequent enzymatic reaction classes

(oxidoreductases, transferases, and hydrolases). Finally, we analysed the correlation between

the heads’ attention weights to inspect redundancy.

In EC-level analysis, we filtered weights greater than a noise threshold. The threshold

has been set at
1

N
, where N indicates the number of tokens in the input; the value has been

determined by considering a baseline where each output token attend uniformly all the input

tokens, i.e., no specific focus. By masking certain values, we have an appropriate metric to

evaluate attention focus. If a token received weights lower or equal than the threshold,

its value has been automatically excluded from contributing to the mean calculation. For

the correlation analysis, we randomly selected 20 reactions for each class from which we

extracted the corresponding head weights. For each reaction, we computed pairwise Pearson

correlations38 between the heads’ flattened attention matrices. The correlation matrices for
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each reaction have been aggregated by averaging the Fisher-transformed39 correlation values.

The resulting averaged correlation matrix was then derived by anti-transforming the values

using a hyperbolic tangent.

Retrosynthesis routes prediction

We adapted the methodology proposed by Schwaller et al. 21 , extending the retrosynthetic

routes’ prediction to handle enzyme information using the EC number format. The hyper-

graph exploration algorithm, at each step, is proposing disconnections using the backward

model and computing a score for each prediction, in a Bayesian sense, based on the confidence

of the forward model reweighted by the SCScore40 measured on the precursors. The pathways

are then prioritized, exploiting the score using beam search until a terminating condition is

satisfied, i.e., commercial availability of the precursors (see Figure 16).

For the analysis of the targets from18 we used an interactive version of the approach,

where the backward Molecular Transformer allowed us to explore the synthetic routes iter-

atively until reaching commercially available precursors and proposing, at the same time,

enzymes (represented up to EC level 3) that catalyze the corresponding reaction.

We based the selection of the targets on a comparative analysis of the coverage of the

chemistry embedded in the reactions from the RetroBioCat18 test set and the ECREACT

data set. We annotated reaction SMILES for each step of the biocatalytic cascades con-

sidered in the test set from Finnigan et al. 18 , excluding solvents information. For each

reaction SMILES we extracted fingerprints using rxnfp31 and we computed among the k-

nearest neighbors (k=10), the fraction of neighbors belonging to RetroBioCat test set. The

visualization of the embedded reactions was generated using TMAP.26
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Figure 16: Detailed workflow of the retrosynthesis algorithm adapted from.21 The hyper-
graph exploration algorithm combining two Molecular Transformer models for forward and
backward predictions is extended to handle EC level information at each disconnection pre-
dicted by the model encoding it as a reaction class.
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Supplemental Materials: Enzymes as Green Catalysts for

Data-driven Template-free Chemical Synthesis

Table S1: SMARTS patterns of co-enzymes that were removed from the products.

Name SMARTS

Coenzyme A O=C(NCC*)CCNC(=O)C(O)C(C)(C)COP(=O)(*)OP(=O)(*)OC*3O*(n2cnc1c(ncnc12)N)*(O)*3OP(=O)(*)*

Nicotinamide adenine dinucleotides **1*(*)*(COP(*)(=O)OP(*)(=O)OC*2O*(*)*(*)*2*)O*1*

Nucleoside phosphates **1*(*)*(O*1COP(*)(=O)O)[R]

Nucleoside phosphates isomers *P(*)(=O)O*1*(*)*(*)O[*]1COP(*)(*)=O

Sulfonium betaines **1*(*)*(O*1CS*)[R]

Flavines **1**2**3*(**(=O)**3=O)*(*)*2**1*

Hemes *~1~*~*~2~*~*~1~*~*~1~*~*~*(~*~*~3~*~*~*(~*~*~4~*~*~*(~*~2)~*~4)~*~3)~*~1

Iron-sulfur cluster(s) S1[Fe]S[Fe]1

Table S2: SMILES of common byproducts that were removed from the products.

Name SMILES

Phosphate trianion O=P([O-])([O-])[O-]

Hydrogen phosphate dianion O=P([O-])([O-])O

(2-hydroxyethyl)trimethylammonium C[N+](C)(C)CCO

Ethanolamine NCCO

Diphosphate O=P([O-])([O-])OP(=O)([O-])[O-]

Hydrogen diphosphate trianion O=P([O-])([O-])OP(=O)([O-])O

2-Oxoglutarate dianion O=C([O-])CCC(=O)C(=O)[O-]

Acetate ion CC(=O)[O-]

Pyruvate CC(=O)C(=O)[O-]

Table S3: The data set composition by EC-level 2.

EC number Count % (of total)

1.-.x.x 75 0.120
1.1.x.x 4481 7.181
1.10.x.x 80 0.128
1.11.x.x 191 0.306
1.12.x.x 34 0.054
1.13.x.x 665 1.066
1.14.x.x 4800 7.692
1.16.x.x 43 0.069
1.17.x.x 201 0.322
1.18.x.x 43 0.069
1.19.x.x 11 0.018
1.2.x.x 1404 2.250
1.20.x.x 19 0.030
1.21.x.x 65 0.104
1.22.x.x 3 0.005
1.23.x.x 13 0.021
1.3.x.x 1362 2.183
1.4.x.x 443 0.710
1.5.x.x 376 0.603
1.6.x.x 260 0.417

EC number Count % (of total)

1.7.x.x 191 0.306
1.8.x.x 248 0.397
1.9.x.x 16 0.026
1.97.x.x 19 0.030
2.-.x.x 8 0.013
2.1.x.x 4420 7.083
2.10.x.x 3 0.005
2.2.x.x 55 0.088
2.3.x.x 10369 16.616
2.4.x.x 2015 3.229
2.5.x.x 580 0.929
2.6.x.x 175 0.280
2.7.x.x 14973 23.994
2.8.x.x 419 0.671
2.9.x.x 10 0.016
3.-.x.x 6 0.010
3.1.x.x 2861 4.585
3.10.x.x 3 0.005
3.11.x.x 4 0.006
3.13.x.x 20 0.032

EC number Count % (of total)

3.2.x.x 888 1.423
3.3.x.x 148 0.237
3.4.x.x 419 0.671
3.5.x.x 1082 1.734
3.6.x.x 1372 2.199
3.7.x.x 115 0.184
3.8.x.x 109 0.175
3.9.x.x 14 0.022
3.A.x.x 21 0.034
4.-.x.x 6 0.010
4.1.x.x 2024 3.243
4.2.x.x 1762 2.824
4.3.x.x 188 0.301
4.4.x.x 196 0.314
4.5.x.x 19 0.030
4.6.x.x 39 0.062
4.7.x.x 2 0.003
4.99.x.x 65 0.104
5.-.x.x 9 0.014
5.1.x.x 359 0.575

EC number Count % (of total)

5.2.x.x 36 0.058
5.3.x.x 451 0.723
5.4.x.x 360 0.577
5.5.x.x 198 0.317
5.6.x.x 8 0.013
5.99.x.x 5 0.008
6.-.x.x 4 0.006
6.1.x.x 158 0.253
6.2.x.x 517 0.828
6.3.x.x 534 0.856
6.4.x.x 47 0.075
6.5.x.x 26 0.042
6.6.x.x 5 0.008
7.1.x.x 33 0.053
7.2.x.x 56 0.090
7.3.x.x 17 0.027
7.4.x.x 45 0.072
7.5.x.x 36 0.058
7.6.x.x 66 0.106

1



Table S4: The data set composition by EC-level 3.

EC number Count % (of total)

1.-.-.x 75 0.120
1.1.-.x 30 0.048
1.1.1.x 4023 6.447
1.1.2.x 45 0.072
1.1.3.x 245 0.393
1.1.4.x 1 0.002
1.1.5.x 33 0.053
1.1.7.x 1 0.002
1.1.9.x 1 0.002
1.1.98.x 18 0.029
1.1.99.x 84 0.135
1.10.1.x 1 0.002
1.10.2.x 7 0.011
1.10.3.x 68 0.109
1.10.5.x 3 0.005
1.10.99.x 1 0.002
1.11.-.x 4 0.006
1.11.1.x 135 0.216
1.11.2.x 52 0.083
1.12.1.x 12 0.019
1.12.2.x 2 0.003
1.12.5.x 3 0.005
1.12.7.x 2 0.003
1.12.98.x 11 0.018
1.12.99.x 4 0.006
1.13.-.x 7 0.011
1.13.11.x 527 0.845
1.13.12.x 115 0.184
1.13.99.x 16 0.026
1.14.-.x 118 0.189
1.14.11.x 291 0.466
1.14.12.x 191 0.306
1.14.13.x 1611 2.582
1.14.14.x 1312 2.102
1.14.15.x 338 0.542
1.14.16.x 2 0.003
1.14.17.x 7 0.011
1.14.18.x 141 0.226
1.14.19.x 442 0.708
1.14.20.x 70 0.112
1.14.21.x 43 0.069
1.14.3.x 1 0.002
1.14.99.x 233 0.373
1.16.1.x 37 0.059
1.16.3.x 1 0.002
1.16.5.x 1 0.002
1.16.8.x 3 0.005
1.16.9.x 1 0.002
1.17.-.x 2 0.003
1.17.1.x 69 0.111
1.17.2.x 8 0.013
1.17.3.x 47 0.075
1.17.4.x 25 0.040
1.17.5.x 13 0.021
1.17.7.x 16 0.026
1.17.8.x 4 0.006
1.17.9.x 2 0.003
1.17.98.x 6 0.010
1.17.99.x 9 0.014
1.18.-.x 1 0.002
1.18.1.x 32 0.051
1.18.4.x 1 0.002
1.18.6.x 5 0.008
1.18.99.x 4 0.006
1.19.1.x 8 0.013
1.19.6.x 3 0.005
1.2.-.x 5 0.008
1.2.1.x 1157 1.854
1.2.2.x 9 0.014
1.2.3.x 94 0.151
1.2.4.x 51 0.082
1.2.5.x 27 0.043
1.2.7.x 48 0.077
1.2.98.x 4 0.006
1.2.99.x 9 0.014
1.20.1.x 9 0.014
1.20.2.x 4 0.006
1.20.4.x 2 0.003
1.20.9.x 4 0.006
1.21.-.x 1 0.002

EC number Count % (of total)

1.21.1.x 12 0.019
1.21.21.x 1 0.002
1.21.3.x 35 0.056
1.21.4.x 2 0.003
1.21.98.x 6 0.010
1.21.99.x 8 0.013
1.22.1.x 3 0.005
1.23.1.x 11 0.018
1.23.5.x 2 0.003
1.3.-.x 20 0.032
1.3.1.x 936 1.500
1.3.2.x 18 0.029
1.3.3.x 121 0.194
1.3.5.x 11 0.018
1.3.7.x 40 0.064
1.3.8.x 134 0.215
1.3.98.x 17 0.027
1.3.99.x 65 0.104
1.4.-.x 3 0.005
1.4.1.x 138 0.221
1.4.13.x 4 0.006
1.4.2.x 6 0.010
1.4.3.x 250 0.401
1.4.4.x 3 0.005
1.4.5.x 6 0.010
1.4.7.x 5 0.008
1.4.9.x 3 0.005
1.4.99.x 25 0.040
1.5.-.x 2 0.003
1.5.1.x 258 0.413
1.5.3.x 64 0.103
1.5.5.x 7 0.011
1.5.7.x 7 0.011
1.5.8.x 10 0.016
1.5.99.x 28 0.045
1.6.-.x 1 0.002
1.6.1.x 2 0.003
1.6.2.x 25 0.040
1.6.3.x 26 0.042
1.6.4.x 3 0.005
1.6.5.x 176 0.282
1.6.6.x 5 0.008
1.6.98.x 1 0.002
1.6.99.x 21 0.034
1.7.-.x 2 0.003
1.7.1.x 91 0.146
1.7.2.x 44 0.071
1.7.3.x 29 0.046
1.7.5.x 6 0.010
1.7.6.x 2 0.003
1.7.7.x 9 0.014
1.7.99.x 8 0.013
1.8.1.x 137 0.220
1.8.2.x 26 0.042
1.8.3.x 30 0.048
1.8.4.x 16 0.026
1.8.5.x 17 0.027
1.8.7.x 9 0.014
1.8.98.x 6 0.010
1.8.99.x 7 0.011
1.9.3.x 7 0.011
1.9.6.x 4 0.006
1.9.98.x 3 0.005
1.9.99.x 2 0.003
1.97.1.x 19 0.030
2.-.-.x 8 0.013
2.1.1.x 4352 6.974
2.1.2.x 28 0.045
2.1.3.x 38 0.061
2.1.4.x 1 0.002
2.1.5.x 1 0.002
2.10.1.x 3 0.005
2.2.1.x 55 0.088
2.3.-.x 4 0.006
2.3.1.x 10174 16.304
2.3.2.x 101 0.162
2.3.3.x 90 0.144
2.4.-.x 5 0.008
2.4.1.x 1732 2.776
2.4.2.x 186 0.298

EC number Count % (of total)

2.4.99.x 92 0.147
2.5.1.x 580 0.929
2.6.-.x 1 0.002
2.6.1.x 167 0.268
2.6.99.x 7 0.011
2.7.-.x 2 0.003
2.7.1.x 1187 1.902
2.7.10.x 5 0.008
2.7.11.x 31 0.050
2.7.12.x 10 0.016
2.7.13.x 7 0.011
2.7.14.x 3 0.005
2.7.2.x 77 0.123
2.7.3.x 29 0.046
2.7.4.x 163 0.261
2.7.6.x 29 0.046
2.7.7.x 766 1.228
2.7.8.x 12645 20.263
2.7.9.x 18 0.029
2.7.99.x 1 0.002
2.8.1.x 39 0.062
2.8.2.x 225 0.361
2.8.3.x 141 0.226
2.8.4.x 7 0.011
2.8.5.x 7 0.011
2.9.1.x 10 0.016
3.-.-.x 6 0.010
3.1.-.x 4 0.006
3.1.1.x 1006 1.612
3.1.11.x 6 0.010
3.1.13.x 5 0.008
3.1.14.x 2 0.003
3.1.15.x 1 0.002
3.1.2.x 326 0.522
3.1.21.x 6 0.010
3.1.22.x 1 0.002
3.1.26.x 6 0.010
3.1.27.x 8 0.013
3.1.3.x 1167 1.870
3.1.4.x 222 0.356
3.1.5.x 2 0.003
3.1.6.x 43 0.069
3.1.7.x 36 0.058
3.1.8.x 20 0.032
3.10.1.x 3 0.005
3.11.1.x 4 0.006
3.13.1.x 20 0.032
3.2.-.x 1 0.002
3.2.1.x 803 1.287
3.2.2.x 84 0.135
3.3.1.x 10 0.016
3.3.2.x 138 0.221
3.4.-.x 9 0.014
3.4.11.x 108 0.173
3.4.13.x 80 0.128
3.4.14.x 12 0.019
3.4.15.x 6 0.010
3.4.16.x 28 0.045
3.4.17.x 42 0.067
3.4.18.x 1 0.002
3.4.19.x 50 0.080
3.4.21.x 29 0.046
3.4.22.x 18 0.029
3.4.23.x 7 0.011
3.4.24.x 21 0.034
3.4.25.x 6 0.010
3.4.99.x 2 0.003
3.5.-.x 1 0.002
3.5.1.x 606 0.971
3.5.2.x 91 0.146
3.5.3.x 73 0.117
3.5.4.x 161 0.258
3.5.5.x 96 0.154
3.5.99.x 54 0.087
3.6.-.x 1 0.002
3.6.1.x 551 0.883
3.6.2.x 6 0.010
3.6.3.x 794 1.272
3.6.4.x 16 0.026
3.6.5.x 4 0.006

EC number Count % (of total)

3.7.1.x 115 0.184
3.8.1.x 109 0.175
3.9.1.x 14 0.022
3.A.1.x 19 0.030
3.A.3.x 2 0.003
4.-.-.x 6 0.010
4.1.-.x 1 0.002
4.1.1.x 1594 2.554
4.1.2.x 214 0.343
4.1.3.x 107 0.171
4.1.4.x 1 0.002
4.1.99.x 107 0.171
4.2.1.x 996 1.596
4.2.2.x 41 0.066
4.2.3.x 701 1.123
4.2.99.x 24 0.038
4.3.-.x 2 0.003
4.3.1.x 119 0.191
4.3.2.x 33 0.053
4.3.3.x 26 0.042
4.3.99.x 8 0.013
4.4.1.x 196 0.314
4.5.1.x 19 0.030
4.6.1.x 39 0.062
4.7.1.x 2 0.003
4.99.1.x 65 0.104
5.-.-.x 9 0.014
5.1.-.x 3 0.005
5.1.1.x 124 0.199
5.1.2.x 23 0.037
5.1.3.x 182 0.292
5.1.99.x 27 0.043
5.2.-.x 4 0.006
5.2.1.x 32 0.051
5.3.-.x 1 0.002
5.3.1.x 208 0.333
5.3.2.x 35 0.056
5.3.3.x 155 0.248
5.3.4.x 3 0.005
5.3.99.x 49 0.079
5.4.1.x 13 0.021
5.4.2.x 75 0.120
5.4.3.x 43 0.069
5.4.4.x 67 0.107
5.4.99.x 162 0.260
5.5.1.x 198 0.317
5.6.1.x 8 0.013
5.99.-.x 1 0.002
5.99.1.x 4 0.006
6.-.-.x 4 0.006
6.1.-.x 2 0.003
6.1.1.x 142 0.228
6.1.2.x 7 0.011
6.1.3.x 7 0.011
6.2.1.x 516 0.827
6.2.2.x 1 0.002
6.3.-.x 2 0.003
6.3.1.x 69 0.111
6.3.2.x 306 0.490
6.3.3.x 28 0.045
6.3.4.x 84 0.135
6.3.5.x 45 0.072
6.4.1.x 47 0.075
6.5.-.x 1 0.002
6.5.1.x 25 0.040
6.6.1.x 5 0.008
7.1.1.x 25 0.040
7.1.2.x 4 0.006
7.1.3.x 4 0.006
7.2.1.x 8 0.013
7.2.2.x 36 0.058
7.2.4.x 12 0.019
7.3.2.x 17 0.027
7.4.2.x 45 0.072
7.5.2.x 36 0.058
7.6.1.x 1 0.002
7.6.2.x 65 0.104
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Table S5: The data set composition by size n of sub set and EC level.

n = 1 n < 5 n < 10 n < 100 n ≥ 100 Total

count % count % count % count % count % count

EC1 0 0.0 0 0.0 0 0.0 0 0.0 7 100 7
EC2 2 2.6 7 9.0 12 15.4 42 53.8 36 46.2 78
EC3 33 10.7 81 26.2 129 41.7 248 80.3 61 19.7 309
EC4 1593 25.3 4473 71.1 5571 88.6 6251 99.4 38 0.6 6460

Table S6: The data set composition after train/test split at EC-level 2.

EC number Train Samples Test Samples

1.-.x.x 58 6
1.1.x.x 3569 161
1.10.x.x 66 4
1.11.x.x 148 7
1.12.x.x 26 1
1.13.x.x 419 65
1.14.x.x 3793 259
1.16.x.x 42 0
1.17.x.x 167 6
1.18.x.x 44 0
1.19.x.x 10 0
1.2.x.x 1126 31
1.20.x.x 15 0
1.21.x.x 48 7
1.23.x.x 10 2
1.3.x.x 1077 60
1.4.x.x 332 18
1.5.x.x 280 13
1.6.x.x 216 5
1.7.x.x 186 6

EC number Train Samples Test Samples

1.8.x.x 209 7
1.9.x.x 12 1
1.97.x.x 17 0
2.-.x.x 8 0
2.1.x.x 3759 184
2.10.x.x 3 0
2.2.x.x 48 1
2.3.x.x 9041 567
2.4.x.x 1570 79
2.5.x.x 577 20
2.6.x.x 129 4
2.7.x.x 13217 726
2.8.x.x 338 13
2.9.x.x 9 0
3.-.x.x 5 0
3.1.x.x 2092 149
3.10.x.x 1 0
3.11.x.x 1 0
3.13.x.x 10 2
3.2.x.x 387 17

EC number Train Samples Test Samples

3.3.x.x 106 12
3.4.x.x 151 8
3.5.x.x 694 51
3.6.x.x 1207 14
3.7.x.x 53 3
3.8.x.x 75 11
3.9.x.x 10 0
3.A.x.x 19 0
4.-.x.x 6 0
4.1.x.x 1640 50
4.2.x.x 1201 109
4.3.x.x 119 8
4.4.x.x 142 7
4.5.x.x 10 1
4.6.x.x 22 1
4.7.x.x 2 0
4.99.x.x 46 1
5.-.x.x 5 0
5.1.x.x 264 13
5.2.x.x 28 0

EC number Train Samples Test Samples

5.3.x.x 341 21
5.4.x.x 252 17
5.5.x.x 159 8
5.6.x.x 6 0
5.99.x.x 2 0
6.-.x.x 4 0
6.1.x.x 101 1
6.2.x.x 416 6
6.3.x.x 527 54
6.4.x.x 37 0
6.5.x.x 25 1
6.6.x.x 4 0
7.1.x.x 30 1
7.2.x.x 36 0
7.3.x.x 8 0
7.4.x.x 32 0
7.5.x.x 30 0
7.6.x.x 55 0
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Table S7: The data set composition after train/test split at EC-level 3.

EC number Train Samples Test Samples

1.-.-.x 58 6
1.1.-.x 25 0
1.1.1.x 3220 141
1.1.2.x 40 0
1.1.3.x 176 15
1.1.4.x 1 0
1.1.5.x 33 0
1.1.7.x 1 0
1.1.9.x 1 0
1.1.98.x 7 0
1.1.99.x 65 5
1.10.2.x 8 0
1.10.3.x 56 4
1.10.5.x 2 0
1.11.-.x 3 0
1.11.1.x 104 3
1.11.2.x 41 4
1.12.1.x 10 0
1.12.2.x 1 0
1.12.5.x 2 0
1.12.7.x 2 0
1.12.98.x 8 1
1.12.99.x 3 0
1.13.-.x 3 1
1.13.11.x 339 58
1.13.12.x 64 5
1.13.99.x 13 1
1.14.-.x 99 9
1.14.11.x 55 3
1.14.12.x 150 10
1.14.13.x 1329 94
1.14.14.x 1123 85
1.14.15.x 303 12
1.14.16.x 2 0
1.14.17.x 7 1
1.14.18.x 124 5
1.14.19.x 375 22
1.14.20.x 3 0
1.14.21.x 36 2
1.14.3.x 1 0
1.14.99.x 186 16
1.16.1.x 37 0
1.16.3.x 1 0
1.16.5.x 1 0
1.16.8.x 2 0
1.16.9.x 1 0
1.17.-.x 2 0
1.17.1.x 58 1
1.17.2.x 8 0
1.17.3.x 36 2
1.17.4.x 22 0
1.17.5.x 13 1
1.17.7.x 13 0
1.17.8.x 3 0
1.17.9.x 1 0
1.17.98.x 5 0
1.17.99.x 6 2
1.18.-.x 1 0
1.18.1.x 32 0
1.18.4.x 1 0
1.18.6.x 6 0
1.18.99.x 4 0
1.19.1.x 8 0
1.19.6.x 2 0
1.2.-.x 5 0
1.2.1.x 921 27
1.2.2.x 8 0
1.2.3.x 69 1
1.2.4.x 47 2
1.2.5.x 22 0
1.2.7.x 45 0
1.2.98.x 1 1
1.2.99.x 8 0
1.20.1.x 7 0
1.20.2.x 4 0
1.20.4.x 2 0
1.20.9.x 2 0

EC number Train Samples Test Samples

1.21.-.x 1 0
1.21.1.x 10 0
1.21.21.x 1 0
1.21.3.x 25 3
1.21.4.x 2 0
1.21.98.x 3 2
1.21.99.x 6 2
1.23.1.x 9 2
1.23.5.x 1 0
1.3.-.x 18 1
1.3.1.x 718 46
1.3.2.x 15 2
1.3.3.x 91 6
1.3.5.x 10 0
1.3.7.x 44 1
1.3.8.x 120 3
1.3.98.x 9 0
1.3.99.x 52 1
1.4.-.x 3 0
1.4.1.x 101 3
1.4.13.x 2 2
1.4.2.x 6 0
1.4.3.x 182 12
1.4.4.x 5 1
1.4.5.x 6 0
1.4.7.x 4 0
1.4.9.x 1 0
1.4.99.x 22 0
1.5.-.x 2 0
1.5.1.x 202 12
1.5.3.x 32 1
1.5.5.x 7 0
1.5.7.x 6 0
1.5.8.x 10 0
1.5.99.x 21 0
1.6.-.x 1 0
1.6.1.x 2 0
1.6.2.x 23 1
1.6.3.x 21 1
1.6.4.x 2 0
1.6.5.x 150 3
1.6.6.x 1 0
1.6.98.x 1 0
1.6.99.x 15 0
1.7.-.x 2 0
1.7.1.x 70 5
1.7.2.x 48 1
1.7.3.x 23 0
1.7.5.x 16 0
1.7.6.x 2 0
1.7.7.x 10 0
1.7.99.x 15 0
1.8.1.x 117 4
1.8.2.x 21 0
1.8.3.x 18 2
1.8.4.x 10 0
1.8.5.x 17 1
1.8.7.x 12 0
1.8.98.x 8 0
1.8.99.x 6 0
1.9.3.x 4 0
1.9.6.x 4 1
1.9.98.x 3 0
1.9.99.x 1 0
1.97.1.x 17 0
2.-.-.x 8 0
2.1.1.x 3698 183
2.1.2.x 24 0
2.1.3.x 35 1
2.1.4.x 1 0
2.1.5.x 1 0
2.10.1.x 3 0
2.2.1.x 48 1
2.3.-.x 4 0
2.3.1.x 8887 561
2.3.2.x 84 4
2.3.3.x 66 2

EC number Train Samples Test Samples

2.4.-.x 4 0
2.4.1.x 1358 69
2.4.2.x 141 6
2.4.99.x 67 4
2.5.1.x 577 20
2.6.1.x 122 3
2.6.3.x 2 0
2.6.99.x 5 1
2.7.-.x 2 0
2.7.1.x 964 10
2.7.10.x 5 0
2.7.11.x 21 2
2.7.12.x 8 0
2.7.13.x 7 0
2.7.14.x 3 0
2.7.2.x 60 0
2.7.3.x 22 1
2.7.4.x 135 2
2.7.6.x 23 0
2.7.7.x 669 5
2.7.8.x 11278 706
2.7.9.x 19 0
2.7.99.x 1 0
2.8.1.x 38 1
2.8.2.x 179 12
2.8.3.x 108 0
2.8.4.x 7 0
2.8.5.x 6 0
2.9.1.x 9 0
3.-.-.x 5 0
3.1.-.x 1 1
3.1.1.x 746 46
3.1.11.x 9 0
3.1.12.x 1 0
3.1.13.x 4 1
3.1.14.x 1 0
3.1.15.x 1 0
3.1.16.x 2 0
3.1.2.x 223 15
3.1.21.x 5 0
3.1.26.x 5 0
3.1.27.x 8 0
3.1.3.x 951 73
3.1.4.x 104 8
3.1.6.x 7 0
3.1.7.x 20 4
3.1.8.x 4 1
3.10.1.x 1 0
3.11.1.x 1 0
3.13.1.x 10 2
3.2.1.x 358 12
3.2.2.x 29 5
3.3.1.x 6 0
3.3.2.x 100 12
3.4.-.x 5 0
3.4.11.x 43 1
3.4.13.x 17 0
3.4.14.x 4 1
3.4.15.x 3 2
3.4.16.x 10 0
3.4.17.x 12 1
3.4.19.x 13 1
3.4.21.x 18 1
3.4.22.x 5 1
3.4.23.x 6 0
3.4.24.x 10 0
3.4.25.x 5 0
3.5.-.x 1 0
3.5.1.x 378 24
3.5.2.x 59 5
3.5.3.x 31 2
3.5.4.x 105 15
3.5.5.x 83 3
3.5.99.x 37 2
3.6.1.x 440 13
3.6.2.x 2 0
3.6.3.x 751 0

EC number Train Samples Test Samples

3.6.4.x 11 1
3.6.5.x 3 0
3.7.1.x 53 3
3.8.1.x 75 11
3.9.1.x 10 0
3.A.1.x 17 0
3.A.3.x 2 0
4.-.-.x 6 0
4.1.-.x 1 0
4.1.1.x 1359 38
4.1.2.x 134 7
4.1.3.x 64 2
4.1.99.x 82 3
4.2.1.x 731 45
4.2.2.x 25 3
4.2.3.x 435 60
4.2.99.x 10 1
4.3.-.x 1 0
4.3.1.x 79 3
4.3.2.x 18 1
4.3.3.x 17 4
4.3.99.x 4 0
4.4.1.x 142 7
4.5.1.x 10 1
4.6.1.x 22 1
4.7.1.x 2 0
4.99.1.x 46 1
5.-.-.x 5 0
5.1.-.x 3 0
5.1.1.x 86 7
5.1.2.x 15 1
5.1.3.x 140 5
5.1.99.x 20 0
5.2.-.x 4 0
5.2.1.x 24 0
5.3.-.x 1 0
5.3.1.x 168 5
5.3.2.x 21 2
5.3.3.x 113 9
5.3.4.x 3 0
5.3.99.x 35 5
5.4.1.x 10 0
5.4.2.x 57 3
5.4.3.x 29 3
5.4.4.x 52 2
5.4.99.x 104 9
5.5.1.x 159 8
5.6.1.x 6 0
5.99.1.x 2 0
6.-.-.x 4 0
6.1.-.x 1 0
6.1.1.x 89 0
6.1.2.x 5 1
6.1.3.x 6 0
6.2.1.x 416 6
6.3.-.x 22 3
6.3.1.x 58 5
6.3.2.x 325 45
6.3.3.x 22 0
6.3.4.x 69 1
6.3.5.x 31 0
6.4.1.x 37 0
6.5.1.x 25 1
6.6.1.x 4 0
7.1.1.x 21 1
7.1.2.x 4 0
7.1.3.x 5 0
7.2.1.x 7 0
7.2.2.x 22 0
7.2.4.x 7 0
7.3.2.x 8 0
7.4.2.x 32 0
7.5.2.x 30 0
7.6.1.x 1 0
7.6.2.x 54 0
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EC-level 1 analysis
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Figure S1: Sampled (10%) intra-class MAP4 distances of unique reactants (a) and products
(b) participating in reactions in EC3. Transferases (2), lyases (4), and to a lesser degree
hydrolases (3) show lower mean distances compared to other classes. This confirms the
findings of the visual inspection carried out on the TMAP in Figure 3. The existence of
homogeneous clusters of molecules within a class acts as an implicit feature, reducing the
importance of the EC number token (explicit feature) during training and might increase
accuracy compared to other classes.
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EC-level 2 analysis

The most represented subclasses at EC-level 2 are EC 2.7.x.x (transferases transferring

phosphorus-containing groups) at 24.5%, EC 2.3.x.x (acetyltransferases) at 16.8%, EC 1.1.x.x

(oxidoreductases acting on the CH-OH group of donors) at 8%, EC 2.1.x.x (transferases

transferring one-carbon groups) 7.5%, EC 1.14.x.x (oxidoreductases acting on paired donors,

with incorporation or reduction of molecular oxygen) 7.3%, EC 3.1.x.x (hydrolases acting on

ester bonds) 4.5%, EC 4.1.x.x (carbon-carbon lyases) 3%, EC 2.4.x.x (glycosyltransferases)

2.9%, EC 4.2.x.x (carbon-oxygen lyases) at 2.5%, and EC 3.6.x.x (hydrolases acting on acting

on acid anhydrides) 2.5%.
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Figure S2: Data sources for the ECREACT data set. (a) The overall composition of the data
set by EC-level 1 and source. (b-e) Composition of the data by EC-level 1 imported from
Brenda, MetaNetX, PathBank, and Rhea, respectively. The large number of transferase-
catalysed reactions imported from PathBank reflects the high number of lipid pathways
stored in the database.
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Figure S3: Class-wise accuracy for the forward model trained on token scheme EC3 with
stereochemistry information removed. (a) The top-k prediction accuracy for each class.
The accuracy of (b) top-1, (c) top-2, and (d) top-5 predictions shown in detail. Each dot
represents an EC-level 3 category with a number of test samples > 1. The EC-level 3
subclasses are further stratified by test sample size N . Removing all information related
to stereochemistry leads to an increase in overall accuracy from 49.6% to 55%. With the
highest increase among isomerase-catylsed reactions (class 5) of 18.6% to 40%.
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Figure S4: Class-wise accuracy for the forward model trained on token scheme EC3 with
EC numbers randomized within classes. (a) The top-k prediction accuracy for each
class. The accuracy of (b) top-1, (c) top-2, and (d) top-5 predictions shown in detail. Each
dot represents an EC-level 3 category with a number of test samples > 1. The EC-level 3
subclasses are further stratified by test sample size N .
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Figure S5: Class-wise accuracy for the forward model trained on token scheme EC3 with
EC numbers randomized across classes. (a) The top-k prediction accuracy for each
class. The accuracy of (b) top-1, (c) top-2, and (d) top-5 predictions shown in detail. Each
dot represents an EC-level 3 category with a number of test samples > 1. The EC-level 3
subclasses are further stratified by test sample size N .
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Figure S6: Class-wise accuracy for the backward model trained on token scheme EC3 predict-
ing the EC number only. (a) The top-k prediction accuracy for each class. The accuracy
of (b) top-1, (c) top-2, and (d) top-5 predictions shown in detail. Each dot represents an
EC-level 3 category with a number of test samples > 1. The EC-level 3 subclasses are further
stratified by test sample size N . Given the high number of subclasses for oxidoreductases
(class 1) on EC-level 3, it’s relatively performance is in line with previous assumptions.
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Figure S7: Class-wise accuracy for the backward model trained on token scheme EC3 with
stereochemistry information removed. (a) The top-k prediction accuracy for each class.
The accuracy of (b) top-1, (c) top-2, and (d) top-5 predictions shown in detail. Each dot
represents an EC-level 3 category with a number of test samples > 1. The EC-level 3
subclasses are further stratified by test sample size N .
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Figure S8: The confusion matrix based on predicted EC numbers by the backward model for
EC-level 2. The bars right of the plot show the number of samples per EC-level 2 category.
Comparing the sample sizes with the respective accuracies shows the established pattern of
subclasses with high sample count having also higher accuracy.
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Figure S9: Correlation between forward prediction accuracy and sample count in EC2 (a,
b), EC3 (c, d), and EC4 (e, f). We observe a significant correlation between sample size in
token schemes EC2 and EC3. The trend towards lower correlations in higher EC-level token
schemes is caused by a further reduction in test cases due to the selection of unique test
products not found in the training sets and the resulting hit-or-miss accuracies appearing as
bands at 0 and 100% accuracy, respectively. Increasing k results not only in increasing the
accuracy but also in lowering the correlation.
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Figure S10: Correlation between backward prediction accuracy and sample count in EC2
(a, b), EC3 (c, d), and EC4 (e, f). The trend towards lower correlations in higher EC-level
token schemes is caused by a further reduction in test cases due to the selection of unique test
products not found in the training sets and the resulting hit-or-miss accuracies appearing as
bands at 0 and 100% accuracy, respectively. Increasing k results not only in increasing the
accuracy but also in lowering the correlation.
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Figure S11: Average attention received EC-level 1-3 tokens for each head in the last decoder
layer of the forward model considering all reactions in the test set. Although some heads
focus on EC-level 3, the majority focuses on EC-levels 1 and 2 stressing their importance in
the prediction of the enzymatic reaction outcome. The consistently high values computed
for head 3 suggest its importance in the prediction.
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Figure S12: The correlation heatmap shows the similarity of the average attention weight
received by the heads on the last layer of the decoder of the forward model. Three highly
correlated heads (3, 6 and 7) emerge, highlighting preserved patterns among them (attention
on single tokens). Other heads, e.g., 2 and 4, show weakly positive correlations highlighting
additional preserved patterns (attention on larger groups of tokens). The remaining lower
weights indicate the presence of specific patterns that are captured only by specific heads.
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Figure S13: Average attention on the EC-level 1-3 tokens for each head using test reactions
from the three most represented enzyme classes in the forward model: oxidoreductases (top),
transferases (middle), hydrolases (bottom). The difference in the distributions highlight pe-
culiar aspects of each class: oxidoreductases exhibit higher values, transferases relatively low
ones, while hydrolases exhibit a more pronounced variability. In general we can appreci-
ate how head 3 shows consistently larger values, unveiling its role in capturing enzymatic
information.
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Figure S14: Summarized depiction of the most relevant statistics for the curated biocatalysed
pathways from Finnigan 30 . In the scatter plot, each enzymatic reaction subclass at EC-level
3 is represented as a point. On the x-axis, we report the percentage of reactions in ECREACT
belonging to the class. On the y-axis, we report a biased measure (between 0 and 100) for the
EC-level 3 subclass, calculated using the Jensen-Shannon divergence41 in base 2 between the
distribution of EC-level 4 reaction subclasses and a baseline, defined as a uniform distribution
of reactions in the EC-level 3 subclass. The bias measure the diversity in the EC-level 3
subclass considered. The point size encodes the number of EC-level 3 reaction subclasses
reported in the set of enzymatic reactions from Finnigan 30 . Points are coloured based on
the capability of the Molecular Transformer to find a successful route for at least one of
the product considered. The depiction shows the high diversity of the reaction subclasses
considered in the datasets (bias higher than 70 for all subclasses) and the low sample size
for most of the reactions.
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