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Summary  

Electrolyte infiltration is one of the critical steps of the manufacturing process of lithium ion 

batteries (LIB). Along with being the most time-consuming step in manufacturing, electrolyte 

wetting directly impacts the cell energy density, power density and cycle life. We present here an 

innovative machine learning (ML) model, based on deep neural networks (DNN), to fast and 

accurately predict fluid flow in three dimensions, as well as wetting degree and time for LIB 

electrodes. The ML model is trained on a database generated using a 3D-resolved physical model 

based on the Lattice Boltzmann Method (LBM). We demonstrate the ML model with a NMC 

electrode mesostructure obtained by X-ray micro-computer tomography. The extracted pore 

network from tomography data was also used to train our ML neural network. The results show 

that the ML model is able to predict the electrode filling process, with ultralow computational cost 

(few seconds) and with high accuracy when compared with the original data generated with the 

physical model. Also, systematic sensitivity analysis was carried out to unravel the spatial 

relationship between electrode mesostructure parameters and predicted infiltration process 

characteristics, such as saturation dynamics, filling time among others.  

The ML model is able to speed up the infiltration predictions by several orders of magnitude 

compared to the LBM model which usually requires several days of calculation. This paves the 

way towards massive computational screening of electrode mesostructures/electrolyte pairs to 

unravel their impact on the cell wetting and optimize the electrolyte infiltration conditions.  

 

KEYWORDS. Lithium Ion Batteries, Electrolyte Infiltration, Cell Wetting, Machine Learning, Lattice 

Boltzmann Method.  
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1. Introduction 

 

Lithium ion batteries (LIBs) can provide high energy and power densities with long cycle life,1 

constituting the technology of choice nowadays for electronic gadgets and electric vehicles.2 

Therefore, the demand for LIB increases rapidly and its cost becomes one of the critical issues to 

overcome. Generally, the price depends on the battery's cell chemistry and manufacturing process.3 

And the electrolyte infiltration in the battery cell is one of the bottlenecks in the manufacturing 

process.4 It is crucial to optimize the electrolyte infiltration as it takes a relatively long time 

compared to the other manufacturing steps.5 Moreover, it can also impact the electrochemical 

performance of the cell. Indeed, a poor electrolyte impregnation decreases the active surface area 

(active material/electrolyte interface), and creates an inhomogeneous SEI layer in LIB negative 

electrodes, which may lead to low energy and power densities, and shorter cycle life.6,7,8,9,10 

Despite its importance, it is experimentally challenging to analyze electrolyte flow through the 

porous electrodes. Several attempts were made to capture the dynamic path of the infiltrating 

electrolyte by using 2D in-plane imbibition, transmission neutron and X-ray imaging.11,12,13  

Nevertheless, these studies lack appropriate resolution and detailed information due to the 

limitations of the techniques. In addition, the experimental results constitute average values, 

making very challenging the differentiation of the effect of various manufacturing conditions on 

electrolyte wetting. Moreover, performing high throughput experimental characterizations to 

unravel parameters interdependencies in the infiltration process is not a trivial task,13,14 since the 

experimental techniques reported in the literature are costly and require sophisticated tools.15 

On the other side, a recent increase in computational power enables performing three dimensional 

(3D) fluid flow computational simulations to quantify the permeability of complex porous 

materials and electrolyte penetration, which can be carried out in electrode images obtained by 



 4 

micro-computer tomography (CT). One of the most prominent tools to evaluate the permeability 

of 3D mesostructures is the Lattice-Boltzmann Method (LBM).7 The strength of this method 

comes from its mesoscopic nature based on the discrete kinetic theory, which straightforwardly 

includes biphasic interface dynamics. Thus, the LBM is an accurate numerical method to simulate 

physical phenomena in realistic electrode mesostructures. Typically, LBM simulations are 

performed in representative elementary volumes (REVs), where relatively small sub-volumes of 

the bigger mesostructure are selected, such that the global mesostructural properties are 

preserved.16,17 For the first time, we recently reported this approach to simulate electrolyte 

infiltration into LIB electrode mesostructures in 3D.7  Results arising from LBM simulations are 

generally accurate, reliable and allow deep physical interpretation of the infiltration process. 

Nevertheless, performing routine calculations with LBM remains computationally expensive and 

time-consuming: typically, 48 to 120 hours are needed for simulating electrolyte infiltration in one 

electrode, running the code in a supercomputer. Still, LBM constitutes a great tool to produce big 

data for further analysis (100-300 Gigabytes per electrode), something which is not possible with 

current experimental tools. Still, the bottleneck of the LBM model is the inability to quickly screen 

a massive amount of electrode architectures and electrolyte types. Consequently, it remains crucial 

to speed up the simulation of the electrolyte infiltration process to pave the way towards the 

computational screening of the impact of electrolyte and electrode properties on the electrolyte 

infiltration dynamics and therefore envisage autonomous algorithms able to optimize the 

electrolyte infiltration for low required times.  

Meanwhile, Artificial Intelligence (AI) has seen a tremendous rise in the last decade, becoming 

essential for modern industry and finance, among many other fields.18 In LIBs, machine learning 

(ML) techniques have enabled tools that significantly reduce the slow time frames related to trial-
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and-error approaches or physics-based simulations for faster and more efficient data assessment.19–

22 Deep Neural Networks (DNNs) are the most popular technique in the AI field due to the good 

performances they show for modeling complex data structures with many non-linear 

relationships.23-24 Particularly, Convolutional Neural Networks (CNNs), a type of DNN, are a 

perfect example, having outstanding performances in different applications involving many types 

of data such as images-to-images translations, image classification, or autonomous driving.25–27 

Such techniques have also been applied to datasets produced from LBM calculations in the 

geology domain through images-based prediction to obtain fluid flow properties in porous 

media.16,28,29 They generally consist of supervised regression ML models, which reduce 

computational costs and predict relevant physical properties such as porosity or permeability from 

tomography (micro-CT) X-ray images.30–32 

In the field of energy storage, DNN architectures have also become very popular to accelerate 

physical-based simulations and reduce trial-and-error efforts to optimize LIBs.33. Therefore, our 

aim in this study is to report, for the first time to our knowledge, a ML model based on a multi 

layers perceptron model (MLP) that can describe the dynamics of the electrolyte infiltration 

process in 3D, given a particular mesostructure of a LIB electrode and its associated pore-network, 

while accounting for different external infiltration pressure conditions. The ML model was trained 

with the data coming from LBM simulations due to the lack of big data from the experimental 

side, but keeping in mind that the results of the LBM simulations are based on experimentally 

measured input parameters. Still, it is essential to notice that one more strength of the reported ML 

model is that it can be adapted for different sources of data (pure experimental or hybrid between 

experimental and simulated) as far as this concerns the same type of data. The manuscript is 

divided into three sections: first we present the different processing steps in obtaining the REVs 
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using micro-CT X-ray tomography data coming from our previous work;7 then we present the 

LBM simulation details to generate the data and the adopted MLP architecture; lastly, we present 

electrolyte infiltration prediction results from our ML model along with detailed sensitivity 

analysis on the effects of the pore-network properties and LBM simulation conditions on the 

predicted electrolyte infiltration dynamics. Finally, we discuss why this approach has the potential 

to pave the way towards fast computational screening of electrode architectures/electrolyte pairs 

for the accelerated optimization of electrolyte infiltration and LIB manufacturing process as a 

whole. 

2. Computational procedures  

 

Extraction of REVs: From the full tomography dataset of the NMC 94% - CBD 6% electrode, eleven 

100∙100∙75 µm3 sub-volumes of similar porosities were extracted with a maximal relative error of 

5 %. The carbon binder domain (CBD) location in the REVs was resolved using an in house 

stochastic algorithm.22 

 

Individual pore identification: An accurate reconstruction of the three-dimensional pore spaces 

and the subsequent identification of individual pores was done by the PoroDict library within the 

GeoDict® software using the watershed algorithm. It is known that the surface roughness of 2D 

images (or 3D voxel data in our case) generally induces over-segmentation in watershed-based 

methods and many approaches exist to solve it.34,35 GeoDict® handles this by reconnecting overly 

segmented pore-fragments back into a single pore only when the shared interface between the pore 

fragments is larger than a chosen value. For consistency, this interface threshold value is kept 

constant at 10 % for each of the representative sub-volumes that were extracted and analyzed. 

Then, their volume, surface area, and surface area of contact with other pores were calculated 

based on a six neighbors approach.36 Compared to other pore-network modelling approaches,37–39 

where the pores are approximated as spheres and cylindrical throats, the watershed algorithm 

identifies individual pores by labeling every voxel in the pore phase. This is especially useful when 
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setting a one-to-one correspondence between the pore-wise labeled volumes and other voxel-based 

volumetric data coming from LBM simulations. 

 

LBM simulations: Simulations were carried out using the open-source Palabos library version 

1.0.40 The model simulates the streaming and collision of particles on a grid. All the simulations 

are in the laminar flow regime. The Navier-Stokes macroscopic kinetic theory was applied to 

describe fluid in the bulk flow at the mesoscopic level. Further details of the model and its 

description can be found in our previous LBM publication.7 All the input parameters such as the 

density, the fluid contact angle with the solid phase, the viscosity, the surface tension and the sizes 

of simulation boxes are given in Table 1. After, the outputs from the Palabos library were further 

treated using NumPy41 with the PyVista library42 in order to obtain the individual pore-resolved 

saturation curves.  

ML model: In this study, a sequential architecture is implemented to model the saturation curve 

values S  and the times of filling (Tf0 and Tf1 as seen in Figure 1D) for every pore in the tomographic 

REVs. The developed architecture follows a neural network-based model known as a MLP. The 

Python libraries, Tensorflow and Keras, are used in the backend to complete the architecture within 

a 3.7 version of Python. After training the modeling function, a sensitivity analysis is applied to 

analyze the effect of the input parameters on the uncertainty of the outputs. The architecture of the 

MLP comprises five hidden layers, with 80 nodes each, and one output layer containing 7 nodes. 

While no specific rule exists for selecting DNN hyperparameters,43 this architecture was sufficient 

to fit the training data correctly and to obtain trustable predictions as shown in the results section. 

The LBM model simulations were performed using an Intel® Xeon® E5-4627 Cache @ 3.30 GHz 

with 264 GB of RAM. Each simulation took approximately between 48 and 120 hours, depending 

on the input pressure parameter. The NN models' training took around 10 minutes by using 48 

processors Intel® Xeon® Silver 4116 CPU @ 2.10 GHz with 64 GB of RAM. 

Figure 1 illustrates the workflow that was used in this work. The details of the data extraction 

procedure of pore-resolved saturation curves and the ML model are given in the supplemental 

information. 
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Figure 1. Summary of the data processing steps to be used as inputs in the ML model. (A) 3D micro-CT 

X-ray tomography data, colored rectangular parallelepipeds represent two examples of the different REVs 

that where extracted. (B) (left) Results from the watershed segmentation process, (C) (middle) volume data 
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from LBM simulations with voxels labeled as liquid (orange), void (blue), and solid (white). (D) (right) 

Individual pore-resolved saturation curves. For clarity, two pores (blue and red) were highlighted, spanning 

the same spatial regions between the watershed and LBM voxel data. The respective pore-resolved 

saturation curves are also shown, alongside their relevant features (S , Tf0, and Tf1). (E) Structure of the data 

used for the training of the NN, columns enumerate each pore, while rows are divided into the inputs (Xi)(i≤6) 

(blue shaded region) and outputs (Yi)(i≤7) (red shaded region). (F) Architecture of the neural network used 

for training, nodes in blue (red) represent the input (output) layers, respectively. Nodes in yellow represent 

the hidden layer nodes Sj,k where k is the layer index, and j is the node index. Nodes in green represent the 

bias that is applied to each hidden layer. 

 

3. Discussion 

3.1. Machine learning prediction 

 

The evaluation of the electrolyte infiltration dynamics was done by extracting the relevant features 

of pore resolved saturation curves as shown in Figure 1D. Specifically, we extracted the values of 

the times at which the pore filling starts (Tf0) and stops (Tf1), as well as the saturation values 

associated to ten in-between evenly spaced time steps, as the outputs of the MLP. The set of 

saturation points are defined as S  = {S1, S2, S3, S4, S5, S6, S7, S8, S9, S10}. 

Figure 2 displays the critical features for the training and validation of the MLP. The complete 

dataset is randomly split into the training and testing dataset containing 80 % and 20 % of the total 

data, respectively. Figure 2A represents the evolution of the loss values (MSE) for the training 

data (80% of the total amount of data) and the validation data (the remaining 20%) during the 

training step of the MLP over 1000 training cycles. Figure 2B shows the average R² scores for the 

model compared with the mean square error (MSE) between the initial saturation curve and its 

discretization to define the saturation values outputs. In order to obtain a compromise between the 

global accuracy of the MLP and the error between the saturation curves and their associated 

discretized values, we successively retrained the MLP model after removing those saturation value 

outputs that were not properly fitted, thus reducing the number of outputs in the model. 

Particularly, this compromise is met by selecting S \S 3-7 = {S1, S2, S8, S9, S10} as the outputs of the 
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MLP, along with Tf0 and Tf1 (as shown in Figure 1E-F). Figure 2C and Figure 2D display regression 

plots comparing the predicted values from the MLP model and the actual values from the LBM 

simulations for the testing dataset, for the time at which the pore-filling starts (Tf0) and stops (Tf1), 

respectively. 

 

Figure 2. (A) MSE of the training and validation of the neural network, (B) R² scores (blue) and the MSE 

of the saturation curve reconstruction (garnet) as function of the set of saturation value (S \S i) outputs 

predicted by the model, (C) Prediction of the starting times for electrolyte filling of individual pores (Tf0)and 

(D) Prediction of the full wetting times (Tf1) 

 

3.2. Comparison of LBM simulation and prediction based on ML 
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As mentioned above, our trained MLP can accurately predict the saturation, initial electrolyte 

entering and fully wetting time at an individual pore in the structure for the test dataset. In order 

to further compare and contrast our model, an additional REV was used, whose pore-network was 

not part of neither the training nor testing datasets. After inputting the parameters of the brand-

new pore-network in our MLP, the overall saturation curves where reconstructed from the obtained 

outputs, as shown in Figure 3. The obtained results closely match the saturation curves obtained 

with LBM, which gives a hint of the ability our ML model to perform well in a variety of electrode 

mesostructures. 

Five different applied pressures were also used as input parameters to study and predict their effect 

on electrolyte penetration. Again, Figure 3 shows the overall saturation curves simulated by LBM, 

and predicted by our MLP for different applied pressures. Generally, all saturation curves for both 

real and predicted cases show an asymptotic growth rate where the saturation curve increases 

steeply and slows down while it reaches the convergence point. Also, the wetting time for the 

electrode increases as applied pressure decreases for both real and predicted cases. Furthermore, 

the lower the applied pressure, the lower the overall saturation will be and the longer it will take 

to reach the convergence point. The saturation curves for real (LBM simulated) cases under the 

applied pressures p8, p4 and p2 tend to rise monotonically and reach complete wetted conditions. 

For the lower pressure values (p1 and p0.5), the electrode wetting degrees are only 60% and 25%, 

respectively. In addition, the penetration rate, i.e. the rate at which the saturation will reach its 

convergence point, is slower for p1 and p0.5 compared to higher applied pressures. The predicted 

(MLP based) saturation curves agree with those from LBM simulated results, especially at high 

applied pressures where the predictions are extremely precise. In essence, the vital part is that the 

MLP can closely match the general simulation trends and is also able to precisely predict 
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converging points, where the saturation degrees predicted by our MLP closely match those 

obtained by LBM simulations for high applied pressure inputs. 

 

Figure 3. Saturation profile of liquid electrolyte from real (LBM simulated) and predicted (NN based) in 

the NMC 94% - CBD 6% cathode with various applied pressures. 

 

Our model also allows following the electrolyte wetting process in 3D, since its outputs depend 

on spatially resolved pore-networks. Figure 4 shows the temporal evolution of the saturation 

degree of individual pores in the electrode mesostructure. It is known that electrolyte flows through 

the porous electrode due to the pressure difference between the electrolyte and air phases, known 

as capillary forces, while local resistance forces drive the electrolytes path within the porous 

electrode. Usually, the electrolyte is always directed towards larger pores, as shown in our previous 

the LBM simulations.7 Figure 4 shows an excellent agreement between the MLP prediction and 

physical-based LBM model, in the path that the electrolyte takes within the porous electrode. There 

is a slight deviation at time step 1x104lu, but the difference disappears at the converging point. The 
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corresponding videos of the filling process as predicted by LBM and ML are provided in 

supplemental information. 

 
Figure 4. The wetting process visualization (electrolyte in red color) from real (LBM simulated) and 

predicted (MLP based) for the NMC 94% - CBD 6% electrode (blue) at different time steps. The electrolyte 

inlet is the yz plane at x = 0.  

 

3.3. Parameters influencing the saturation and their physical interpretation 

 

Performing a sensitivity analysis of computational models is a clear and straightforward way to 

assess how the outputs of a model vary as a function of their inputs. In this work the Sobol indexes 

were extracted in order to evince the individual and total impact that the input parameters of the 

MLP model have on the seven outputs that we aim to predict, i.e. Tf0, Tf1 and the saturation values 

S .  Additionally, the Sobol indexes corresponding to the initial (Sf0 = {S1, S2}) and final (Sf1 ={S8, 

S9, S10}) saturation values are averaged out, which allows condensing the results in order to 
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facilitate their physical interpretation (Figure 5). Let the decomposition of the total variance for 

one specific output (named Y) according to the Sobol decomposition be expressed as 

                    !"#[$] = !($) = ∑ !& + ∑ !&,' + ⋯ + !-,…,.-/&,'/..&0-                               (1) 

 

where Vi is the conditional variance for Y over knowing Xi, and Vi,...,n are the rest of conditional 

variances knowing different input parameters. 

The Sobol indexes are the partial variances normalized by the total variance of the output, they are 

noted as (Sobi)(i≤n) and they are comprised between 0 and 1 (Eq. 11). They represent the individual 

effects (1st order Sobol indexes) of each input parameter:  

123& = 45
4 = 467[8∨:5];

4[8]                                                            (2) 

 

In this study, the Sobol index depends on the chosen output (Yj)(j≤7), meaning that the equation 

above can be simplified as  

123&,' = !&
!'

= !6<[$ ∨ >&];
!6$';  

(3) 

 

where <[$ ∨ >&] is the conditional expectation of Yj giving Xi. 

By successively adding higher order terms to the indexes, we obtain the total effect for each input 

parameter 

123?5 = 123& + @ 123&'
&A'

+ @ 123&'B
'/B,&A',&AB

+ ⋯  

(4) 
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 where the different Sobol indexes 123&'B are related to the combination of various input 

parameters. Such indexes are calculated according to the Saltelli sampling method.44,45 The latter 

global approach is very popular to obtain convergences when the number of samples varies 

significantly and represents the entire space of input parameters, whereas random sampling 

approaches may perform meaningless evaluations of sensitive indexes. Therefore, the Saltelli 

method extends the size of input parameters combinations for the resulting calculations, which are 

uniformly distributed over the full input parameters space. The variances calculated from Eq. 10 

to Eq. 12 can be described as projections along the different ranges of input parameters. In this 

study, a batch of 14000 samples is used to evaluate the Sobol indexes for each output of the MLP.  

Figure 5 shows the 1st order Sobol indexes regarding all possible combinations between inputs 

(geometrical properties of the pores and applied pressures) and outputs (Tf0, Tf1, Sf0 and Sf1) in this 

study. We can see that the initial pore filling time (Tf0) highly depends on the pore volume with a 

Sobol index of 0.7 followed by the pore total surface area and its location with Sobol indexes of 

0.3. The total wetting time of the pore (Tf1) is also influenced mainly by these three parameters. 

The pore volume has a major effect with a Sobol index of 0.6 and the second biggest factor is the 

pore surface area with Sobol index 0.4. It is intuitive that the bigger the pore size, the easier it is 

for the electrolyte to occupy its volume. Also, other geometrical attributes such as pore location 

and pore surface area play a significant role in the pore filling start time (Tf0). Additionally, it is 

important to mention that all the input parameters have almost the same effect on the saturation 

values at the end of the pore filling (Sf1) with Sobol indexes about 0.45. The onset of saturation Sf0 

is, on the contrary, strongly influenced by the pore location with Sobol index around 0.7.  

To sum up, the total electrode's wetting degree strongly depends on the pore network properties 

and applied pressure. The full wetting time (Tf1) is strongly affected by pore size distribution. Thus, 
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to have optimal electrode mesostructures to reach complete wetting at the shortest possible time, 

pore size distribution and interconnectivity of the pores must be well designed during the 

manufacturing. This can be a challenging task with traditional manufacturing process, still it is 

achievable with alternative techniques such as SPS sintering and 3D printing.46,47 

 

Figure 5. (A) Sobol indexes of the geometrical properties of individual pores and applied pressures, on the 

outputs Tf0, Tf1, Sf0, and Sf1. (B) Slice of the REV illustrating the geometrical properties of individual pores. 

The zoom region (black circle) illustrates the pore volume (grey zone), pore surface area (blue outline), 

pore contact surface area (red outline) and pore location (dotted turquoise arrow) of a given identified pore 

inside the REV. 

 

4. Conclusions 

 

In this work, we present an innovative ML model based on a multi layers perceptron (MLP) 

architecture, to predict electrolyte infiltration in porous NMC electrodes. The host structure of the 

NMC porous electrode was obtained experimentally by (micro-CT) X-ray tomographic 

measurements. The MLP was trained with data coming from physics-based 3D LBM model and 

extracted pore networks from (micro-CT) X-ray tomography.  The neural network prediction 

results were compared and validated by 3D LBM simulations. 
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The trained MLP can generalize the flow problems to predict the rate of saturation and filling time 

in porous electrodes. Moreover, it can predict the direction of the fluid flow, total saturation, and 

filling time of the electrode accurately. Also, the predictions showed the same asymptotic trend as 

the physics-based LBM model for the saturation curve. Additionally, a systematic sensitivity 

analysis was carried out to unravel the spatial relationship between complex electrode pore shape, 

pore location, pore volume, the connection between other pores and applied external pressure on 

the overall predicted infiltration process characteristics, such as saturation degrees and filling 

times, among others. 

Besides, the trained MLP accurately predicted examples of varying geometries and applied 

pressures in less than a second of computation on a desktop computer, while physics-based LBM 

simulations took several days (2-5) on a server with high computational power. Additionally, our 

ML model generates only around 10 Mb of data to be compared with the 50 - 200 Gb generated 

during the LBM simulations, saving data storage space and making post-processing fast and 

affordable. All the advantages mentioned above allow the model to quickly screen different 

electrode architectures and possible electrolyte properties as a part of a digital twin of battery 

manufacturing. Consequently, it serves as a vital tool to optimize the electrolyte infiltration 

process. Finally, this method can be used further on different domains where fluid flow through 

porous media takes part.  

 

 

 

 

 

 

Table 1. List of input parameters for the LBM simulations 
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AM 96%-CBD 4% un-calendered 

tomography 

100×100×75 voxels 100 × 100 × 75 µm3 

Electrolyte denisty 10 1300
BD
EF 

Gas denisty 1 1.18
BD
EF

 

Contact angle 0.357/1.643 90° 13 

Surface force (gas-liquid) 0.1 7.28 × 10MN  

OP 1 lu 1 × 10MQR 

Reynolds number 10-3  10-3  

Capillary number 10-5  10-5  

Pressure 0.5 p 151 988 Pascal 

Pressure 1p 202 650 Pascal 

Pressure 2p 405 300 Pascal 

Pressure 4p 810 600 Pascal 
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