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We present a ∆-Machine Learning approach for the prediction of GW quasiparticle energies
(∆MLQP) and photoelectron spectra of molecules and clusters, using orbital-sensitive graph-based
representations in kernel ridge regression based supervised learning. Coulomb matrix, Bag-of-Bonds,
and Bonds-Angles-Torsions representations are made orbital-sensitive by augmenting them with
atom-centered orbital charges and Kohn–Sham orbital energies, which are both readily available
from baseline calculations on the level of density-functional theory (DFT). We first illustrate the
effects of different constructions of the orbital-sensitive representations (OSR) on the prediction
of frontier orbital energies of 22K molecules of the QM8 dataset, and show that is is possible to
predict the full photoelectron spectrum of molecules within the dataset using a single model with a
mean-absolute error below 0.1 eV. We further demonstrate that the OSR-based ∆MLQP captures
the effects of intra- and intermolecular conformations in application to water monomers and dimers.
Finally, we show that the approach can be embedded in multiscale simulation workflows, by studying
the solvatochromic shifts of quasiparticle and electron-hole excitation energies of solvated acetone
in a setup combining Molecular Dynamics, DFT, the GW approximation and the Bethe–Salpeter
Equation. Our findings suggest that the ∆MLQP model allows to predict quasiparticle energies and
photoelectron spectra of molecules and clusters with GW accuracy at DFT cost.

I. INTRODUCTION

Fundamental insights gained by computational anal-
ysis of electronically excited states of molecular systems
can help improving the design of molecular materials and
plays therefore a vital role in material science. However,
obtaining quantitative predictions is challenging as tradi-
tional methods either come at insufficient accuracy, e.g.,
due to the lack of correlation in interpreting orbital en-
ergies of Hartree–Fock, or at the price of high compu-
tational costs, as for coupled cluster methods, quantum
Monte Carlo, or Green’s function approaches. Hence,
the incorporation of quantum machine learning (QML)
has been gaining great traction over recent years. QML
based surrogate property models have become a popular
alternative approach for their fast, reliable, and accurate
predictions of molecular and material properties [1–14].

The main advantage of ML models is that they allow
predictions of molecular properties with improved effi-
ciency at a lower computational cost compared to tradi-
tional quantum chemistry approaches. Method develop-
ment in the field of QML is progressing rapidly and it is
increasingly influencing traditional methods [6, 15–18].
Developments in molecular representations and QML
models have paved the way for predicting energetic, elec-
tronic, and thermodynamic properties, such as atomiza-
tion energies, dipole moments, polarizabilities, and har-
monic frequencies [19–21].

QML of excited states of molecules has remained diffi-
cult in comparison. Recent work [5, 22, 23] has achieved
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promising results for predictions of single frontier orbital
(highest or lowest molecular orbital) energies. However,
some applications, such as the evaluation of direct or
inverse photoelectron spectra, require predictions for a
wider range of orbitals simultaneously, with sensitivity
to conformational details of the actual molecules and/or
a complex embedding environment. This requires in turn
the ability to capture both structural and orbital details
in the QML model, circumventing the need to build sep-
arate models for each state of interest and the associated
difficulties in finding unique characterizations of multiple
orbitals across a wide range of chemical space.

In this paper we show a way of augmenting exist-
ing graph-based representations with orbital-specific in-
formation from density-functional theory (DFT) which
allows us to individually predict quasiparticle energies
on the level of Many-Body Green’s Functions Theory in
the GW approximation and to calculate full photoelec-
tron spectra of molecules and clusters with a single tar-
get kernel ridge regression ∆-Machine Learning model
(∆MLQP). We adopt the ∆-ML approach [20] as its
concept of learning the corrections to a certain base-
line property matches directly the way in which quasi-
particle corrections are obtained perturbatively to the

Kohn–Sham orbital energies, i.e., εQP
i = εKS

i + ∆εGWi .
Within ∆MLQP, we consider specifically the orbital-
sensitive augmentation of Coulomb matrix (CM), Bag-
of-Bonds (BoB), and Bonds-Angles-Torsions (BAT) rep-
resentations by a combination of atom-centered orbital
charges and Kohn–Sham orbital energies, which are all
easily accessible from standard DFT ground state calcu-
lations [2, 9, 21, 24]. We illustrate the effect of different
methodological choices, such as the determination of the
orbital charges as Mulliken populations [25] or from a
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Gaussian Distributed Multipole Analysis [26] (GDMA),
on the prediction of the full quasiparticle spectra of
molecules in the QM8 dataset. To scrutinize that orbital-
sensitive representations (OSR) with multiple orbitals
are also capable of resolving the effects of intra- and in-
termolecular conformations, we also study the photoelec-
tron spectra of water monomers and dimers, taken from
the H2O-13 dataset [27]. Finally, we study the use of
the ∆MLQP predicted, conformational-sensitive quasi-
particle energies embedded in calculations of electron-
hole excitations on the level of the Bethe–Salpeter Equa-
tion (BSE) for the prototypical example of acetone in
aqueous solution, and compare the solvatochromic shifts
obtained from BSE@GW and BSE@ML.

This paper is organized as follows: In Section II,
we briefly summarize the background of Many-Body
Green’s Functions theory in the GW approximation with
the Bethe–Salpeter equation, of Kernel-Ridge Regression
models and ∆-Machine Learning. Section III introduces
the ∆MLQP approach and showcases results in appli-
cation to predictions quasiparticle energies of molecules
from the QM8 data set, water monomer and dimers, as
well as acetone in aqueous solution. A brief summary
concludes the paper.

II. METHODOLOGICAL BACKGROUND

A. Quasiparticle and electron-hole excitations with
GW -BSE

For a given closed-shell ground state system with
N electrons, one can within Density-Functional Theory
(DFT) get the Kohn-Sham energies [28] by solving

ĤKS|φKS
i 〉 = [Ĥ0 + V̂xc]|φKS

i 〉 = εKS
i |φKS

i 〉, (1)

with Ĥ0 = T̂0 + V̂ext + V̂H, where T̂0 stands for the ki-

netic energy, V̂ext the external potential, V̂H the Hartree

potential, and V̂xc being the exchange-correlation poten-
tial.

The addition (N → N + 1) or removal (N → N − 1)
of a single electron to/from the system can be seen as
the excitation of a quasiparticle. Quasiparticle energies
are essentially the poles of the interacting one-electron
Green’s function and obey the Dyson’s equation [29–32][

Ĥ0 + Σ̂(εQP
i )

]
|φQP
i 〉 = εQP

i |φ
QP
i 〉 , (2)

where |φQP
i 〉 are the quasiparticle wavefunctions. The

operator Σ̂(·) is the self-energy operator, which describes
the exchange-correlation many-body effects. This op-
erator can within the GW approximation be expressed
as a convolution of the one-particle Green’s function
G (r, r′, ω) with the screened Coulomb interaction

W (r, r′, ω) = ε−1 (r, r′, ω) vc (r, r′) =
ε−1 (r, r′, ω)

|r− r′|
, (3)

where ε−1 is the inverse dielectric function calculated in
the random-phase approximation [33]. The self-energy
operator can be explicitly written as

Σ(r, r′, ω) =
i

2π

∫
dω′G (r, r′, ω + ω′)W (r, r′, ω) . (4)

Several techniques can be used to perform the frequency
integration in 4, starting from separating the self-energy
Σ = iGW into its bare exchange part Σx = iGvc and

its correlation part Σc = iGW̃ , where W̃ = W − vc.
With that, the integral can be evaluated fully analyti-
cally by calculating the reducible polarizability in terms
of an eigenvalue decomposition of the RPA Hamiltonian.
See, e.g., Refs. [34–37] for details. While this Fully An-
alytical Approach (FAA) is analytically exact, it is not
feasible for large systems due to the scaling of the the
diagonalization of the RPA Hamiltonian. Instead, the
frequency integration can be approximated within a gen-
eralized plasmon-pole model (PPM) [38, 39].

One can now by expanding quasiparticle wavefunctions
in terms of Kohn-Sham wavefunctions transform Eq. 2
into

HQP
ij (E) = εKS

i δij + 〈φKS
i |Σ̂(E)− V̂xc|φKS

j 〉. (5)

We can get the quasiparticle energies perturbatively by

assuming |φQP
i 〉 ≈ |φKS

i 〉

εQP
i = εKS

i + ∆εGWi

= εKS
i + 〈φKS

i |Σ̂(εQP
i )− V̂xc|φKS

i 〉.
(6)

As ∆εGWi itself depends on εQP
i , the above constitutes a

fixed-point problem. In addition, the εQP
i enter both the

energy-dependent microscopic dielectric function deter-
mined within the RPA as well as in the Green’s function
in the expression for the self-energy Eq. 4. Hence, the
the so called evGW approach, quasiparticle energies are
used to update Σ until self-consistency is reached in com-
bination with Eq. 6.

Optical excitations of the system lead to the formation
of coupled electron-hole pairs, which can be described
using a product basis of QP wave functions, i.e.,

χS(re, rh) =

occ∑
v

unocc∑
c

∑
σσ′

ASvc,σσ′φc,σ′(re)φ
∗
v,σ(rh)

+BSvc,σσ′φv,σ′(re)φ
∗
c,σ(rh),

(7)

where re (rh) is for the electron (hole) coordinate, and we
drop the label QP for clarity. The expansion coefficients
Avc,σσ′ (Bvc,σσ′) of the excited state wave function in
terms of resonant (anti-resonant) transitions between QP
occupied (occ.) states v and unoccupied (unocc.) c with
spin σ and σ′, respectively, can be obtained as solutions
of the Bethe–Salpeter Equation (BSE) in the form of an
effective two-particle Hamiltonian problem(

Hres M
−M −Hres

)(
AS

BS

)
= ΩS

(
AS

BS

)
. (8)
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In cases with negligible spin-orbit coupling, it can be
shown that this Hamiltonian has block structure in
terms of the spin combination of the electron and hole
states [40] and can therefore be decomposed into two
independent Hamiltonians for singlet and triplet excita-
tions, respectively. This allows to drop the explicit spin
variables and the matrix elements of Hres and M are
determined as

Hres
vc,v′c′ = Dvc,v′c′ + κMx

vc,v′c′ +Md
vc,v′c′ (9)

Mcv,v′c′ = κMx
cv,v′c′ +Md

cv,v′c′ , (10)

where κ = 2 (0) for spin singlet (triplet) excitations, and

Dvc,v′c′ = (εc − εv)δvv′δcc′ , (11)

Md
vc,v′c′ = −

∫
d3re d3rh φ

∗
c(re)φc′(re)W (re, rh, ω = 0)

× φv(rh)φ∗v′(rh) , (12)

Mx
vc,v′c′ =

∫
d3re d3rh φ

∗
c(re)φv(re)vc(re, rh)

× φc′(rh)φ∗v′(rh) . (13)

In Eq. 11, the term D arises from free interlevel tran-
sition between occupied and empty quasiparticle states,
the direct interaction Md (Eq. 12) is responsible for the
binding of the electron-hole pair and is based on the at-
tractive, but screened, interaction W (in the static ap-
proximation ω = 0) between electron and hole. The re-
pulsive exchange interaction Mx (Eq. 13) is responsible
for the singlet-triplet splitting.

B. Kernel Ridge Regression

The application of Kernel Ridge Regression (KRR)
models to predicting molecular quantum properties has
been very successful over recent years [8, 14, 15, 20, 41].
The main idea relies on constructing a kernel matrix
with a kernel function k that can quantitatively measure
similarity between molecular representations xi and xj ,
which are vector representations that encode the molec-
ular physics [6, 21, 24]. The Laplacian kernel function,
for example, is described as

k(xi,xj) = exp

(
−‖xi − xj‖1

σ

)
. (14)

In context of QM, the goal of KRR is to map an input
molecular representation x to a target quantum property
p. Such a mapping is given by

p(x) =
N∑
n=1

αnk(x,xn), (15)

where αn stand for the n-th regression coefficient, while
xn being the n-th training sample. The learning process
within the KRR framework corresponds to obtaining the

regression coefficients vector α for a given reference prop-
erty vector ptrain, a kernel matrix K, and a regularization
coefficient λ by evaluating

α = (K + λI)−1ptrain, (16)

where I is an identity matrix. Additionally, the so-called
hyperparameters λ and σ are optimized using the mean-
absolute-error (MAE) metric, where all optimizations are
performed with 5-fold cross-validation.

C. ∆-Machine Learning

The default workflow of a machine learning based task
is to map an input vector to a target property, which
makes sense whenever the target value is computation-
ally cheap to compute. This, however, is usually only
the case when the target property has relatively low ac-
curacy [20, 41]. In ∆-ML this is often referred to as
the baseline property [42, 43]. To eliminate this problem
one can employ computationally costly methods, which
in most cases result in better accuracy. Unfortunately,
the computational cost of these methods are in a lot of
situations not affordable. Here, it makes sense to make
use of a ∆-ML workflow, where the aim is to predict the
highly accurate target property at the same cost of the
computationally cheaper methods, which are relatively
easy to obtain.

The accurate target property is labeled as pt and is
obtained by

pt(x) = pb(x) + ∆t
b(x) (17)

= pb(x) +

N∑
n=1

αnk(x,xn), (18)

with pb being the baseline property and αn being the n-
th regression coefficient of a KRR model that is trained
to predict the difference between the target and baseline
property, i.e. pt − pb. The ∆-ML model has been used
in various applications and has shown to be powerful in
not only saving computational time, but also achieving
much higher precision compared to traditional machine
learning approaches [20, 43].

III. RESULTS

We illustrate the applicability of the orbital-sensitive
∆ machine learning model for predicting full quasipar-
ticle spectra by reporting the predictive performance on
QM8 molecules and water monomers/dimers for graph-
based representations. Subsequently, to obtain excitation
energies of acetone and acetone in water, the proposed
approach is used as a surrogate model to evaluate BSE.
The results are then used to study solvatochromic shifts
and benchmark it against experimental data.
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FIG. 1. A schematic overview of first-principles and data-driven routes for the calculation of GW quasiparticle energies and
their embedding into a BSE@DFT-GW/ML workflow. (a) Atomic charges and atomic coordinates are used as input for DFT
calculations. DFT generates Kohn-Sham energies and wavefunctions, which are being used as input for either quasiparticle
calculations in the first-principles route or ∆-ML model in the data-driven route. The output of either route is then used as
input for BSE calculations to output the excitation energy spectra. The machine learning block consist of two operations. (b)
Details of the ∆MLQP model with orbital-sensitive representations. First, the DFT output together with geometric information
is transformed into a molecular representation. Second, the resulting vector is used to build up a kernel matrix to predict ∆QP
energies, which is then are added to KS energies and used as output.

A. Orbital-sensitive descriptors

Figure 1(a) shows a schematic overview of the ∆MLQP
approach as a surrogate model to predict quasiparticle
energies, thereby bypassing the computationally expen-
sive first-principles GW step. It is based on the idea of
learning the nonlinear transformations from Kohn–Sham
energies to quasiparticle energies, motivated by the fact
that for all orbitals i

εQP
i = εKS

i + ∆εi, (19)

corresponds directly to the form of Eq. 17. This allows us
to identify εKS

i with the baseline property pb(x) and to

learn the quasiparticle corrections ∆εi = 〈φKS
i |Σ̂(εQP

i )−
V̂xc|φKS

i 〉 as in Eq. 6.
To be able to replace all orbital-dependent ∆ε by a sin-

gle Laplacian kernel based (or any other) machine learn-

ing model requires a representation that incorporates or-
bital information. Traditional graph-based representa-
tions, like the Coulomb Matrix (CM) and BoB [2, 9, 21],
which solely rely on the sets of atomic positions {R}
and nuclear charges {Z} lack such information and have
therefore no injectivity for predicting full spectra of
molecules.

We propose an extension to graph-based representa-
tion that includes information about the Kohn–Sham or-
bital energies and wavefunctions, and will refer to the
extended version as orbital-sensitive representation n-
OSR, where n stands for the number of included or-
bitals. To this end, we map the {ϕKS

k (r)} to a set ef-
fective orbital-dependent atomic charges {qk} and add
those with its (rescaled) Kohn–Sham energy Ck = ζεKS

k ,
where [ζ] = e/Hartree, to the nuclear charges. For exam-
ple, the Coulomb Matrix representation for a molecule at
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electronic state k can be extended as

CMk =


(ZI + qIk + Ck)(ZJ + qJk + Ck)

‖RI −RJ‖
, for I 6= J

1

2
(ZI + qIk + Ck)2.4, for I = J.

(20)
A modification as in Eq. 20 allows us to introduce the
missing injectivity for multi-state predictions within a
single model, as indicated in Fig. 1(b). It is a particu-
larly attractive choice as all ingredients for this modifica-
tion are readily available from the DFT baseline calcula-
tions, and its very simple, physically interpretable form
is easy to implement. The same idea of incorporating
orbital-sensitivity can be applied to all R and Z depen-
dent graph-based representations, such as BoB or BAT.
In the following, we will evaluate the above extension
of graph-based representations, their dependence on the
choice of different methods to obtain the {qk}, in the use
of ∆MLQP.

B. QM8 Molecules

We use molecular geometries from the QM8 data
set, which contains more than 20000 synthetically fea-
sible small organic molecules with up to eight CONF
atoms [19, 41]. All quantum-mechanical calculations
have been performed with the VOTCA-XTP package [36,
44]. For each molecule, we first perform DFT ground
state calculations with the PBE0 hybrid functional [45],
the def2-TZVP basis set [46], and an optimized auxil-
iary basis for the resolution-of-identity techniques [47].
Orbital-dependent atomic charges are determined from
a Gaussian Distributed Multipole Analysis (GDMA) [26]
or from Mulliken populations [25]. Eigenvalue selfconsis-
tent (evGW ) quasiparticle energies are then determined
for the lowest 2Nocc states (excluding the core levels),
where Nocc is the number of occupied levels. All or-
bitals are included in the RPA step and not explicitly
corrected higher levels are scissors shifted according to
the highest absolute quasiparticle correction among the
explicitly corrected unoccupied orbitals. The frequency
integration in Eq. 4 is performed using the FAA.

In Fig. 2 we report the performance measures, such as
correlations and learning curves, for predicting individual
HOMO energies (Fig. 2(a,d)), individual LUMO energies
(Fig. 2(b,e)), and predicting simultaneously both HOMO
and LUMO energies (Fig. 2(c,f)) of QM8 molecules with
various Coulomb matrix (CM), bag-of-bonds (BoB), and
bonds-angles-torsions (BAT) representations and exten-
sions based on GDMA orbital charges. In all cases, we
used σ = 800 and λ = 10−8 in the KRR models, and
ζ = 1 e/Hartree.

The correlation and distribution plots display the ex-
pected nonlinear shift between KS and QP energies.
As expected, the HOMO (LUMO) εKS are consistently
above (below) the corresponding εQP. The 1-OSR ∆-ML
models as in Fig. 2(a,b) are constructed using frontier

orbitals of 18000 molecules as training set and 2000 as
testing set and are based on the extended BAT repre-
sentations. They transform KS energies to QP energies
with a mean absolute error of 0.02 eV, respectively. The
corresponding learning curves in Fig. 2(d,e) show sys-
tematic decay in error with increasing number of train-
ing samples Nsamples (here, each sample corresponds to
one molecule) for both standard and extended represen-
tations. However, it is also clearly visible that even for a
1-OSR model, the inclusion of information about the KS
orbital energies and wavefunctions via the partial charges
systematically improves the MAE at fixed training set
size in all cases.

We proceed with discussing the first 2-OSR ∆MLQP
model, trained on a mixed set of 30000 HOMOs and LU-
MOs, with testing performed on 5000. The results of
a model simultaneously predicting HOMO and LUMO
quasiparticle energies is shown in Fig. 2(c). Using orbital-
sensitive BAT we note a combined MAE of 0.04 eV. The
associated learning curves in Fig. 2(f) show clear im-
provements of the MAE with increasing number of sam-
ples. Note that the training set used to predict multiple
states simultaneously contains for each molecule multi-
ple states and the number of samples does therefore not
correspond to the number of molecules. Additionally, un-
modified representations fail in predicting both targets at
the same time, as expected. Overall, the orbital-sensitive
representations are more data efficient and allow double-
state predictions.

Based on the promising performance of the 2-OSR ∆-
ML model, we apply the same method to predicting the
full quasiparticle spectra of QM8 molecules in Multi-OSR
∆MLQP. To do this, we first shuffle the dataset compris-
ing all considered quasiparticle levels of all molecules, and
then select a random subset with 30000 samples as train-
ing and 5000 as testing set. In Fig. 3(a) the ML-QP
correlation plot is shown bas on application to 1000 out-
of-samples orbitals. Good agreement of the distributions
can be observed over an energy range covering around
2 Hartree, where a mean absolute error of 0.06 eV pro-
vides a good example of the predictive capabilities of the
Multi-OSR ∆-ML model.

Figure 3(b) shows the learning curves for standard and
orbital-sensitive representations. While orbital-sensitive
representations allow us to predict the entire QP spec-
tra of QM8 molecules, representations without orbital
information fail to learn and hence we cannot report sys-
tematic improvement with increasing number of training
samples. How this translates to a more practical exam-
ple is shown in Fig. 3(c). A density of states (DOS)
plot of a randomly chosen QM8 molecule (ID 014520 in
the QM8 data set) based on KS, QP, and ML, respec-
tively, is shown. The difference between the KS HOMO-
LUMO gap and the QP HOMO-LUMO gap equates to
approximately 4 eV, while the difference between the full
QP spectra and ML spectra is 0.07 eV (MAE of all pre-
dicted levels). The DOS (with a Gaussian broadening
of 0.022 Hartree) based on ∆MLQP (solid line) is prac-
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FIG. 2. Correlation plots and learning curves for ∆-Machine Learning HOMO, LUMO, and HOMO-LUMO energies of QM8
molecules. (a), (b) Correlation plots for single orbital energy level predictions with 1-OSR models, where KS/QP HOMO
and LUMO energies are visualized in black and ∆-ML/QP HOMO and LUMO energies in orange and green, respectively.
(c) A correlation plot for the simultaneous prediction of HOMO and LUMO energies in an 2-OSR model, where KS/QP
HOMO/LUMO energies are represented in black and ∆-ML in orange/green. The inset in each correlation plot shows the
histogram of QP (white) and KS (black) energies. (d)-(f) HOMO, LUMO, and HOMO-LUMO ∆-ML learning curves for QP
predictions with various orbital independent (black) and orbital dependent representations (orange, green, and orange/green).

tically indistinguishable from the one based on explicit
QP energies (shaded area).

Finally, we compare in Tab. I the MAE of predictions
of quasiparticle energies obtained with generic and dif-
ferent orbital-sensitive representations. As also appar-
ent from Fig. 2(d,e), the addition of orbital information
into the representation reduces the MAE even for the
single-orbital models by up to 50 %. Differences between
CM, BoB, and BAT are very small in these cases. Re-
garding the use of different techniques to obtain effective
orbital charges, we note that GDMA yields ∼ 0.010 eV
lower MAEs than Mulliken populations, and the over-
all lowest MAE is obtained for the BAT-GDMA combi-
nation. Moving to the 2-OSR- and Multi-OSR models,
BoB-GDMA performs slightly better than BAT-GDMA
and CM-GDMA. In the 2-OSR model comprising HOMO
and LUMO, using Mulliken charges leads to a doubling
of the MAE, albeit still lower than 0.1eV. For Multi-
OSR, the MAE are expectedly a bit higher due to the

high-dimensionality of the data but the differences be-
tween the use of GDMA and Mulliken charges are rela-
tively smaller, in particular for BoB and BAT represen-
tations. While the Mulliken population based orbital-
sensitive representations appear to yield a slightly higher
MAE as compared to the GDMA-based ones, it should
be stressed that the latter come with a higher compu-
tational cost, noticeable in particular for larger systems
(see also Section III D), and are not widely available for
standard DFT applications.

C. Water Monomers and Dimers

In the QM8 example we focused on predicting the full
QP spectra of single molecules. In this example we want
to show that a single ∆-ML model can predict the full
QP spectra of water dimers and monomers simultane-
ously, i.e., that ∆MLQP is sensitive to intermolecular
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FIG. 3. Multi-OSR ∆-ML of full quasiparticle spectra of QM8 molecules with a single model. (a) Correlation plot of ∆-ML/QP
energies, where the arrows are pointing at randomly chosen molecules. The inset shows the histogram of ML (orange) and QP
(black) energies. (b) The density of states of a randomly chosen QM8 molecule, where the shaded area (light orange) represents
the QP energies, while the green and orange lines describe the KS and ML energies, respectively. (c) Learning curves for QP
energy predictions with various orbital independent (black) and orbital dependent representations (orange).

TABLE I. Mean Absolute Errors (in eV) of Predicting evGW
Quasiparticle Energies by Kernel Ridge Regression using stan-
dard CM, BoB and BAT representations, as well as our
orbital-sensitive extension based on GDMA and Mulliken or-
bital charges, respectively.a

HOMO LUMO 2-OSR Multi-OSR
CM 0.043 0.073 — —
BoB 0.036 0.057 — —
BAT 0.032 0.051 — —

CM-GDMA 0.022 0.020 0.046 0.104
BoB-GDMA 0.021 0.019 0.029 0.083
BAT-GDMA 0.017 0.017 0.034 0.089

CM-Mulliken 0.031 0.038 0.109 0.155
BoB-Mulliken 0.026 0.033 0.070 0.108
BAT-Mulliken 0.024 0.030 0.072 0.107

a The best performing models are marked in bold.

conformations as well.

The molecular geometries used in this application orig-
inate from the H2O-13 dataset [27] that consists of 2000
water dimers with O-O distances less than 4.5 Å obtained
from an MD simulation. All GW properties used in the
training and testing set were calculated as mentioned
for the QM8 data in the previous section. To build a
Multi-OSR ∆MLQP model, we first consider not only the
2000 dimer structures but also extract 4000 monomers
from them. In water dimers (monomers) 18 quasiparti-
cle states are taken into account, so the orbital dataset
we have used contains 52000 samples in total. From this
set, 30000 randomly selected samples are used for train-
ing and 5K for testing.

Fig. 4(a) shows the QP-KS correlation (black) and QP-
ML correlation (orange/green), respectively. The Multi-

OSR ∆MLQP approach based on BAT is able to trans-
form the Kohn-Sham energies to quasiparticle energies
with great accuracy (MAE 0.03 eV). In Fig. 4(b), we
plot the DOS of a randomly chosen water dimer and
its constituent monomers broadened by 0.022 Hartree.
On the shown scale, the small differences among the
two monomers are hard to distinguish, independent of
the method. More importantly, it is apparent that the
∆MLQP captures the respective openings of the HOMO-
LUMO gaps and energy dependent quasiparticle correc-
tions, as well as the effects of intermolecular interactions
in the dimer conformation. This point is emphasized by
the analysis of the difference between the actual dimer
DOS and a simple superposition of the two monomer
DOS as in the top panel of Fig. 4(c), evaluated based on
the explicit QP energies (solid black) and the one pre-
dicted by ∆MLQP (dashed). These differences reveal
the shifts of the coupled dimer energy levels due to in-
termolecular interactions and the effects are captured by
∆MLQP at very good accuracy not only near the gap
but even for, e.g., the deep O2s levels. The lower panel
in Fig. 4(c) shows monotonous decay of the prediction
errors as a function of training set size, where orbital
sensitive BoB and BAT perform slightly better than the
orbital sensitive CM. Again, we see from the correlation
plots, DOS and the learning curves indicate that the full
QP spectra of water dimers and monomers can be accu-
rately reproduced with just a single delta machine learn-
ing model.

D. Acetone in Water

We now consider an example of even more complex
molecular clusters: aqueous acetone. The increased com-
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FIG. 4. Multi-OSR ∆-ML of full quasiparticle spectra of water monomers and dimers with a single model. (a) A correlation
plot for the simultaneous prediction of all orbital energies, where KS/QP HOMO/LUMO energies are represented in black
and ∆-ML in orange for the levels below the HOMO-LUMO gap and green for the levels above the gap. The inset shows
the histogram of QP (white) and KS (black) energies. (b) Density of states plot for a randomly chosen water dimer and its
monomers, where the shaded area (light orange) represents the QP energies, while the green and orange lines describe the KS
and ML energies, respectively. (c) The difference between the dimer DOS and the monomer DOS’ summed together, where the
QP DOS is represented in black and ML in dashed orange. (d) Learning curves for QP energy predictions with various orbital
dependent representations.

plexity stems from combining two different molecular
species and considering more molecules in the clusters,
leading to a very high-dimensional problem as the num-
ber of states and conformations increase dramatically.
Specifically, the choice for aqueous acetone is motivated
by the fact that it known to exhibit a solvatochromic
shift of the lowest coupled electron-hole excitation energy
of ∼ 0.2 eV[48–50], a combined effect of similar shifts to
the individual quasiparticle energies and modified screen-
ing of the electron-hole interaction in water. From the
perspective of our ∆MLQP model, this poses the ad-
ditional question of whether its predictions are accurate
enough in such a case to embed them into the calculation
of the electron-hole excitation energies via the Bethe–
Salpeter Equation (BSE@ML vs BSE@GW ), as noted in
the workflow scheme in Fig. 1(a).

To answer this question, we first generate structural
data by performing classical Molecular Dynamics simu-
lations of a single acetone in 219 water molecules using
an OPLS-AA type forcefield for acetone, automatically
generated by LigParGen [51], and the TIP3P model for
water [52]. Geometric mixing rules for Lennard-Jones
diameters and energies were used for atoms of differ-
ent species [53]. Non-bonded interactions between atom
pairs within a molecule separated by one or two bonds
were excluded. Interaction was reduced by a factor of
1/2 for atoms separated by three bonds and more. Sim-
ulations were run using GROMACS version 2019.6 [54].
A 0.9 nm cutoff was employed for the real space part
of electrostatics and Lennard-Jones interactions. The
long-range electrostatics were calculated using particle-
mesh Ewald (PME) [55] with the reciprocal-space inter-

actions evaluated on a 0.18 grid with cubic interpola-
tion of order 4. An initial configuration was prepared in
cubic box of size 2 nm and energy minimized using the
steepest descents algorithm, followed by a 6 ns simula-
tion in constant particle number, volume and tempera-
ture (NVT) ensemble. Temperature was kept constant
at 300 K using the stochastic velocity rescaling thermo-
stat [56] with time constant 0.5 ps, and the velocity-Verlet
algorithm [57] was employed to integrate the equations
of motions with 1 fs time step. Simulations were then
continued for 200 ns in constant particle number, pres-
sure and temperature (NpT) ensemble at 300 K and 1 bar
controlled by the Berendsen [58] barostat with a cou-
pling time constant of 2.0 ps. From the last 100 ns of
this run, 10000 snapshots at a time interval of 10 ps are
extracted and clusters containing acetone and the ten
water molecules closest to it are selected for the GW -
BSE calculations. With this choice we ascertain that
the first solvation shell is included in the cluster, con-
tributing the strongest to the expected solvatochromic
shifts. Note that we are not strictly targeting quantita-
tive accuracy of the actual excitation energies compared
to experiment with this study, but to demonstrate the
internal consistency between BSE@GW and BSE@ML
in our Multi-OSR ∆MLQP approach.

GW -BSE calculations are performed on the selected
clusters without and with the water molecules included,
following the same protocol as before, with the exception
of the treatment of the frequency-dependence in Eq. 4,
for which we employ here a two-parameter generalized
Plasmon-Pole Model [38, 39, 59]. Explicit quasiparticle
corrections are determined for the four highest occupied
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FIG. 5. Multi-OSR ∆-ML of full quasiparticle spectra of acetone and acetone in water with a single model and application to
calculating n → π∗ excitation energies with BSE. (a) The black bars are a visual representation of the HOMO-LUMO gap in
acetone in vacuum (orange) and acetone in water (green) with ML predictions. The shaded areas represent the HOMO and
LUMO distributions as resulting from explicit evGW calculations, while the one resulting from the 2-OSR ∆MLQP model are
shown as dashed lines. (b) Prediction errors as a function of training set size for the 8-OSR-BoB model to be used in BSE@ML
calculations. (c) QP-ML quasiparticle energy correlation for 8-OSR-BoB. (d) Correlation between S1 (n → π∗) energies from
BSE@GW and BSE@ML. (e) S1 energy distributions of a single acetone (orange) and acetone in water (green) from BSE@GW
and BSE@ML.

and four lowest unoccupied molecular orbitals, while the
full single-particle spectrum is included in the formation
of the product basis for the BSE.

We first construct as a proof-of-concept a 2-OSR-BoB
model including HOMO and LUMO in the absence and
presence of a water solvation shell. From the total of
80000 samples, we select 5000 for training and 1000 for
testing, ensuring that the sets have an equal amount of
data for both HOMO and LUMO, with and without wa-
ter, respectively. The energy distributions as obtained
from the explicit calculations of εQP in vacuum (in wa-
ter), calculated on 400 (100 of each case) out of sample
data points, are shown as filled orange (green) areas in
Fig. 5(a). Indicated are also the means and their er-
ror, showing a distinct lowering of 0.50 eV and 0.92 eV
for the HOMO and LUMO, respectively, in the presence
of water, thereby decreasing the HOMO-LUMO gap by
0.42 eV. Comparing the respective distributions obtained
from the 2-OSR ∆MLQP model shown as dashed lines
in Fig. 5(a), hardly any differences can be observed.

As mentioned above, the determination of electron-
hole excitation energies with BSE@GW requires inclu-
sion of eight explicitly corrected orbitals near the gap.
For this purpose, we now build an 8-OSR ∆MLQP
model, for which Fig. 5(b) shows the learning curves.
With more than 10K samples, a MAE of lower than
0.5 kcal/mol can be achieved. Figure 5(c) shows the cor-
responding correlation between explicitly calculated QP
energies, and the ones from 8-OSR ∆MLQP, for which
we have selected from the full dataset comprising 320K
orbitals, 120K for training and 10K for testing. Clearly,
the ∆MLQP model again provides excellent predictions
for the eight different orbital energies in vacuum and so-
lution, respectively. In the following step, these predicted

quasiparticle energies for the eight explicitly corrected or-
bitals are used as input for the BSE. The remaining oc-
cupied (unoccupied) single-particle energies are scissors
shifted by according to the highest absolute quasipar-
ticle correction among the explicitly corrected occupied
(unoccupied) orbitals, as in the BSE@GW reference. In
Fig. 5(d) we show the correlation between the determined
S1 energies of the n→ π∗ transition. Two interesting as-
pects should be noted: the subset of results for BSE@ML
for the vacuum structure (orange) appear to agree better
than the one for the acetone-water clusters (green), which
is not surprising due to the bigger conformational space
of the latter. More importantly, however, one can clearly
see a systematic shift of the S1 energies in aqueous so-
lution to higher energies compared to in vacuo – equally
obtained for both BSE@GW and BSE@ML – qualita-
tively in line with the experimental observations.

Finally, we show in Fig. 5(e) distributions of the
n→ S1 excitation energies of acetone as obtained by the
BSE@GW (filled curves) and BSE@ML (dashed lines)
approaches in vacuum (orange) and in water (green), re-
spectively. It is evident that both methods predict both a
broadening of the distribution upon solvation, as well as
a shift to higher energies. Differences of the distributions
on BSE@GW and BSE@ML levels are miniscule. The
predicted solvatochromic shift of the mean of the dis-
tributions amount to 0.30 eV, as indicated by the dashed
lines in Fig. 5(e). From peak-to-peak, the shift is 0.13 eV.

IV. SUMMARY

We have introduced orbital-sensitive augmentations of
graph-based representations in ∆-machine learning of full
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quasiparticle excitation energies in molecules and clus-
ters. The proposed ∆MLQP approach is capable of pre-
dicting the GW energies of multiple orbitals across mul-
tiple molecules and/or intra- and inter molecular con-
formations in a single kernel ridge regression based su-
pervised learning model. We have demonstrated this in
application to the QM8 molecular dataset and to water
monomers and dimers. Furthermore, it has been shown
that a single orbital-sensitive ∆-ML model for quasipar-
ticle energies can be embedded in multiscale simulation
workflows, showcased in the prediction of solvatochromic
shifts of excitation energies in aqueous acetone.
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[8] Çaylak, O.; von Lilienfeld, O. A.; Baumeier, B. Wasser-
stein Metric for Improved Quantum Machine Learning
with Adjacency Matrix Representations. Mach. Learn.:
Sci. Technol. 2020, 1, 03LT01.

[9] von Lilienfeld, O. A.; Burke, K. Retrospective on a
Decade of Machine Learning for Chemical Discovery. Nat.
Commun. 2020, 11, 1–4.

[10] Wang, A. Y.-T.; Murdock, R. J.; Kauwe, S. K.;
Oliynyk, A. O.; Gurlo, A.; Brgoch, J.; Persson, K. A.;
Sparks, T. D. Machine Learning for Materials Scientists:
An Introductory Guide toward Best Practices. Chem.
Mater. 2020, 32, 4954–4965.

[11] Song, Z.; Chen, X.; Meng, F.; Cheng, G.; Wang, C.;
Sun, Z.; Yin, W.-J. Machine Learning in Materials De-
sign: Algorithm and Application. Chinese Phys. B 2020,
29, 116103.

[12] Tkatchenko, A. Machine Learning for Chemical Discov-
ery. Nat. Commun. 2020, 11, 4125.

[13] von Lilienfeld, O. A.; Müller, K.-R.; Tkatchenko, A. Ex-
ploring Chemical Compound Space with Quantum-Based
Machine Learning. Nat. Rev. Chem. 2020, 4, 347–358.

[14] Lemm, D.; von Rudorff, G. F.; von Lilienfeld, O. A.
Energy-Free Machine Learning Predictions of {ab Initio}
Structures. 2021,
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