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ABSTRACT  

The accurate description of protein binding sites is essential to the determination of similarity and 

the application of machine learning methods to relate the binding sites to observed functions. This 

work describes CAVIAR, a new open source tool for generating descriptors for binding sites, using 

protein structures in PDB and mmCIF format as well as trajectory frames from molecular 

dynamics simulations as input. The applicability of CAVIAR descriptors is showcased by 

computing machine learning predictions of binding site ligandability. The method can also 

automatically assign subcavities, even in the absence of a bound ligand. The defined subpockets 

mimic the empirical definitions used in medicinal chemistry projects. It is shown that the 

experimental binding affinity scales relatively well with the number of subcavities filled by the 

ligand, with compounds binding to more than three subcavities having nanomolar or better 

affinities to the target. The CAVIAR descriptors and methods can be used in any machine learning-

based investigations of problems involving binding sites, from protein engineering to hit 

identification. The full software code is available on GitHub and a conda package is hosted on 

Anaconda cloud. 
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INTRODUCTION  

The PDB hosts more than 150,000 experimentally determined structures of macromolecules. Drug 

targets are particularly well represented in this dataset, with 88% of the targets of new molecular 

entities approved by the US food and drug administration in the period 2010-2016 being publicly 

and freely accessible in the PDB at date of approval [1]. This great wealth of data provides fantastic 

opportunities to extract meaningful information for drug design efforts. Protein cavities are at the 

basis of the functions of folded proteins, from enzymatic activity to binding of endogenous 

molecules and signal transduction. Small sets of binding pockets can be characterized manually 

by analyzing holo structures of protein-ligand complexes. However, the analysis of bigger datasets 

and the application of machine learning (ML) methods, requires automatic algorithms to describe 

binding sites. The cavity detection field has been prolific in the last three decades [2–4]. Successful 

applications include the prediction of target ligandability [5–9],  identification of off-targets [10–

14], functional annotation [15–18] and ligand design and drug repurposing [19–22].  

Structure-based cavity detection methods can be grouped into two general families: energy-

based algorithms and geometry-based [2, 23, 24]. Energy-based methods rely on the calculation 

of the interaction energy between chemical or pseudo-chemical probes and the surface of proteins. 

They can produce very valuable information about hot spots for intermolecular interactions for 

medicinal chemistry, but may require a careful preparation of the protein (e.g., typing and 

protonation) and are inherently computationally intensive [25–30]. Geometry-based methods are 

less resource demanding and potentially more resilient to small changes in the pocket through side-

chain positioning, which gives them a different scope as they can be applied on large scales and 

easily automated for the integration in workflows. Cavities are detected based on their shapes and 

are sometimes augmented with other properties, e.g., buriedness, pharmacophores, or conservation 

of certain residues overrepresented in binding pockets [10, 31–34]. A variety of geometry-based 

methods for pocket detection have been developed, i.e., algorithms relying on (1) enclosure of grid 

points around the protein, (2) space filling, (3) Voronoi diagram, and (4) imaging science (Table 

1). Consensus methods combining results from more than one method have also been described 

[35, 36]. Recent versions of these software perform generally well on validation datasets, with a 

reported ability to detect the correct ligand binding pocket in their top three scoring cavities being 

around 80 to 90% [4]. 

Table 1. Common methods for geometry-based cavity detection.  

Method Core principle Representative examples 

Enclosure of grid 

points 

The enclosure of grid points around 

the protein, i.e., how many close 

contacts with protein atoms, defines 

potential cavities 

POCKET [37], LIGSITE [38], 

PocketDeptha, d [39], PocketPicker 

[23], McVola [40], VICE [41], 

VolSite [9], SiteMapb, c [7] 

Space filling Spheres are placed around the protein 

surface to detect empty spaces in the 

protein convex hull 

SURFNET [42], PASS [43], 

PHECOMa [44], KVFindera [45], 

GHECOMa, d [46], SCREEN [8], 

POCASAd [47] 
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Voronoi diagram The Voronoi decomposition of the 

space of protein atoms serves as basis 

to identify clefts 

FindSurf [48], CASTc, d [49], 

APROPOS [50], Fpocketa, b, c, d [6], 

SiteFinderc (MOE) 

Imaging science Gaussian surfaces approximate the 

protein shape  

DoGSited [24], CavVisa [51] 

aOpen-source software available at the time of the study. 
bSoftware permitting the analysis of molecular dynamics trajectories. 

cmmCIF format ready software. 
dWebserver. 

 

 Cavity segmentation into subcavities is crucial in structure-based drug design, to help 

medicinal chemists to optimize properties like potency and selectivity [29, 52–55]. Similar 

proteins may have binding pockets with different subcavities and dissimilar proteins may have 

conserved subcavities. Many of the largest drug target classes exhibit geometrically well-defined 

subpockets, such as proteases, kinases and GPCRs, which are used extensively in order to develop 

selective compounds [53]. Two independent studies concluded that drug-like ligands typically 

occupy about a third of the volume of the whole binding pocket, filling only some of the subpockets 

[56, 57]. Efforts have been made to try to characterize the chemical fragment preference of certain 

residues [58, 59] and link the fragment chemical space to binding pocket microenvironments [60–

63]. These methods extract and store information of fragmented ligands from the PDB and their 

interactions with surrounding amino acids. However, they lack a clear protein-centric definition of 

the subcavities and circumvent it by running queries on empirical ligand- or coordinate-based 

definition of subpockets. One potential exception is DoGSite, which was developed as a ligand-

agnostic cavity identification tool, borrowing concepts from the computational image recognition 

field [24]. Briefly, DoGSite uses a difference of Gaussians algorithm to identify hotspots, inflates 

them before merging into larger cavities. Primitive hotspots are smaller components of very large 

pockets and may be eventually called subpockets. However, the subsites defined by DoGSite do 

not reproduce the concept of subpockets used in medicinal chemistry, i.e., small and localized parts 

of a cavity encompassing defined functional groups of a ligand. DoGSite hotspots circumvent 

pocket overspanning, with one single subpocket encompassing the ligand in 87% of the cases [24, 

64]. Therefore, the automatic decomposition of (apo) binding pockets into medicinal chemistry-

compatible subcavities is an unresolved matter.  

This study describes CAVIAR, an open-source software in python for the generation of cavity 

descriptors.  CAVIAR is freely available under the MIT license and can be easily adapted for use 

by many other application. Descriptors are exported as python objects that are compatible with 

widely used libraries such as scikit-learn [65], TensorFlow [66] and PyTorch [67]. The manuscript 

is structured as follows. First, we perform a brief review of some of the main published 

methodologies for cavity identification and subcavity decomposition. This is the foundation upon 

which the descriptors are built. Then, we describe the details of the cavity detection and 

segmentation algorithms of CAVIAR. Our results section benchmark CAVIAR against other 

standard methods, showing that CAVIAR has best in class performance for cavity identification 

on standard datasets and can handle major cavity overspanning issues without losing performance. 

The quality of the subpocket segmentation algorithm is discussed based on representative 

examples. After that, we examine the performance of key global descriptors for liganded and apo 
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pockets at the PDB level; and demonstrate the relationship between the number of subcavities 

filled by ligands and the binding affinities to their target. We showcase an application of CAVIAR 

descriptors for generating ML models for ligandability prediction. Finally, limitations of the 

method are critically discussed. 

 

MATERIAL AND METHODS  

Cavity identification  

CAVIAR supports input in PDB and mmCIF format, as well as DCD molecular dynamics 

trajectory files. The molecular dynamics frames analysis routines contain an orientation-invariant 

clustering of pockets to determine the occupancy of cavities within a trajectory and identify the 

representative structures (details in Supplementary Material 1). The cavity detection algorithm is 

inspired by well-established concepts of enclosure of grid points algorithms and augmented with 

novel ideas to refine the resulting cavities, e.g., double pass to estimate buriedness, intense 

trimming of spurious points and exclusion of loosely connected nodes. Protein atoms are enclosed 

in a cubic grid, with a spacing of 1.0 Å and a margin of 2.0 Å around the minimum and maximum 

coordinates on each axis. Grid points further than 6.0 Å from protein atoms are filtered out for 

computational efficiency. Grid points within the protein surface, i.e., within 1.0 Å of the van der 

Waals envelope of an atom, are assigned as a protein type. The remaining grid points are 

considered as solvent grid points and investigated further (Fig. 1a). For each solvent grid point, 

fourteen cubic directions, (three axes and the four cubic diagonals, all in both positive and negative 

directions), are investigated for contacts with protein grid points. Exploring each direction, a 

counter is incremented if a protein grid point is encountered within four grid spacings, (4 Å for the 

three axis and 6.9 Å for the cubic diagonals, assuming a grid spacing of 1 Å). The final counter 

value for a grid point has a value between 0 and 14, and represents the “buriedness” of a solvent 

grid point (Fig. 1b). Grid points with a buriedness of 8 or above are considered as putative cavity 

grid points, and grid points with a buriedness of 7 or less are investigated in a second pass. The 

second pass is similar to the first one, except that only solvent grid points that are in vicinity (three 

grid spacings) of the previously defined (putative) cavity grid points are investigated. Solvent grid 

points with at least 8 contacts with putative grid points are added to the set of putative cavity grid 

points. This second pass is necessary to include points that are in the middle of large cavities and 

may be missed by the first pass, which would otherwise create voids in large cavities (Fig. 1c). 

One risk associated with grid based algorithms is cavity overspanning, i.e., very large cavities can 

be created by expanding the site over the surface of the protein: these cavities have cavity grid 

points connecting cavities that should not be joined (Fig. 1d). To address this, we developed a 

metric to estimate how a grid point is surrounded by its peers within its cavity ensemble. The 

number of surrounding cavity grid points within 2 grid spacings (Nneighbors, max. = 124) and their 

average buriedness (Bavg, max. = 14) is used to calculate a “trim score” (scoretrim, equation 1). The 

trim score measures how mingled a cavity grid point is in a set of cavity grid points. Points with a 

trim score below 500 are removed(Fig. 1e-f). 

𝑠𝑐𝑜𝑟𝑒𝑡𝑟𝑖𝑚 = 𝑁𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ∗ 10
𝐵𝑎𝑣𝑔/10     (Eq. 1) 
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Fig. 1. Visual depiction of the grid-based cavity identification algorithm. (a) The protein, 

represented as a gray shape, is embedded in a regular 3D grid. (b) The number of contacts between 

grid points outside of the protein surface and grid points inside the protein surface is investigated; 

this defines putative cavity grid points. (c) A second pass detects grid points surrounded by putative 

grid points that would have been missed in B. (d) Cavity grid points connect a cavity in the light 

gray protein chain and another one in the dark gray chain. (e) Zoom into the cavity grid points of 

panel d. Grid points are colored according to a color gradient representing buriedness. Dark blue 

points are more buried, light blue less buried. Red points symbolize grid points added by the second 

pass and yellow points connect the two cavities and could be trimmed out. For each cavity point, 

the count of neighbors and the average buriedness are measured to calculate the trim score. (f) 

Grid points with a trim score below 500 are eliminated from the cavity grid points set. Two yellow 

grid points are discarded, and the cavity is split into two cavities. 

Putative grid points are embedded in a graph data structure, where edges are built around 

adjacent grid points (nodes) in the cube. Bridges and self-loops are filtered out, as well as nodes 

with a degree of three or less. At this stage, clusters of more than 40 grid points are identified as 

cavities. Cavity grid points are assigned pseudotype descriptors according to the pharmacophore 

type of the closest protein atom: aliphatic, aromatic, hydrogen bond donor/acceptor, negative 

(charged group of Asp/Glu), positive (charged group of Lys/Arg), and other specific types (S atom 

of Cys, ring of His, metal ion). Global cavity descriptors are calculated and stored: hydrophobicity 

(proportion of grid points of type aliphatic and aromatic), cavity score (equation 2), median 

buriedness of cavity points, cavity size in grid points, presence of a ligand, list of cavity residues 

and if the cavity has missing atoms, alternate locations or is between different protein chains. By 

default, cavities with missing residues or belonging to the 8th quantile of buriedness of 10 or less 

are excluded. This additional filtering step is performed to avoid generating noise from spurious 

cavities based on missing atoms, or cavities unlikely to be binding pockets because of high solvent 

exposure. Finally, cavities are ranked according to the cavity score (scorecavity, equation 2) and 

exported as a PDB file.  

𝑠𝑐𝑜𝑟𝑒𝑐𝑎𝑣𝑖𝑡𝑦 =
𝑠𝑖𝑧𝑒∗𝑚𝑒𝑑𝑖𝑎𝑛∗𝑞

100
     (Eq. 2) 

where size is the size of the cavity in grid points, median is the median buriedness and q is the 8th 

quantile of buriedness. 

(a) (b) 

(c) 

(d) (e) 

(f) 
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Calculations are performed with NumPy (1.17.3) and SciPy (1.4.1). Graph operations use the 

NetworkX (2.4) library. A total of 190,080 combinations of parameters was scanned to optimize 

cavity detection and to avoid overspanning. Details can be found in the Supplementary Material 

items S1 and S2. Descriptors are accessible directly from the CAVIAR library or can be exported 

as Python pickled format and include the following global cavity descriptors: size, statistics of 

distribution of pharmacophores and buriedness (average, median, quantiles), scorecavity, list of 

residues, hydrophobicity and count of subcavities. Local descriptors that cover the information of 

all grid points either as a NetworkX graph or as 3D image are also available: buriedness, 

pharmacophore, local asphericity, scoretrim and subcavity affiliation. 

Validation sets for cavity identification 

We assembled the following datasets: from the literature, Kahraman et al [57], Huang and 

Schroeder [33], the 198 drug-target set of MetaPocket [36], the DUD-e 102 targets [68]; from 

databases, scPDB [69] and PDBbind [70]; from our own compiled datasets, GPCR set and drugs 

set. The GPCR set contains 174 GPCR structures with drug-like ligands, including orthosteric and 

allosteric binders. The drugs set contains 540 drugs in PDB structures curated from the RCSB 

PDB drug mapping tool. The complete set of PDB files used for validation is available in the 

GitHub repository of the CAVIAR package (link in the code availability paragraph), dataset size 

and count of unique ligands per dataset are indicated in Table 2. 

These datasets vary by size, from under 100 in the literature sets to more than 11,000 in scPDB 

database, as well as in their scope and composition. The use of multiple datasets is aimed at 

avoiding any bias arising in one dataset. There is a discrepancy between some of the numbers in 

the published cavity identification validation sets and our data. For example, the original 

“MetaPocket” dataset contains 198 drug targets, while there are 196 PDB entries in our 

“MetaPocket” validation set. Two of the structures in the original dataset have been removed from 

the distribution of released RCSB PDB entries. The absence of the specified ligand identifier in 

the PDB file, as well as duplicated PDB entries are two other reasons for count inconsistencies. 

Success in cavity identification is defined by the overlap between cavity points and ligand atoms 

within 1 Å. The comparison with other algorithms is performed on Huang and Schroeder’s dataset 

[33]: success is defined by the presence of a ligand atom within 4 Å of the geometric center of the 

cavity, for direct comparison with the literature. 

Subcavity decomposition 

Either all available cavities, liganded cavities, or user-specified cavities can be investigated for 

subcavities decomposition. We borrowed concepts from computer image recognition for cavity 

segmentation [71]. First, the cavity grid points ensemble is converted into a 3D image, which is 

then remodeled with an Euclidean distance transform. Grid points are assigned values 

corresponding to their distance to the cavity surface. The points with the highest values are used 

as seeds for a watershed algorithm [71], which segments cavities into subgroups. Seed points are 

separated by at least 3 Å, to prevent over-segmentation. The watershed algorithm uses the values 

from the Euclidean distance at each cavity grid point as markers of local topography to flood basins 

starting from each seed until the different basins meet (Fig. 2a-d). 
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The watershed algorithm tends to over-segment images [71]. A careful definition of the seed 

points and topological values is necessary in order to obtain a reasonable separation of objects. We 

tried to balance the Euclidean distance transform values with the local pharmacophore information 

around each grid point (Shannon entropy of pharmacophore values), but it did not significantly 

change the results.  As a consequence, we implemented steps to merge small “spurious” 

subcavities with their largest neighbor (Fig. 2e-h). The first step involves the detection of small 

subcavities (less than 50 grid points). Then, the number of direct contacts, i.e., at 1 Å, between 

these small subcavities and other subcavities is calculated. If more than two thirds of the small 

subcavity grid points are in contact with neighboring subcavities, we merge it with its neighbor 

involved in the most contacts. Subcavities filling these two criteria are usually either extended and 

lying on top of another subcavity (Fig. 2e), or interstitial and disk-shaped between several 

subcavities (Fig. 2f). Image segmentation routines are performed with the scikit-image (0.16.2) 

library.  

Fig. 2.  2D representation of the watershed algorithm. (a) Two overlapping circles, e.g., a cavity 

that we could segment. (b) The local topography of the image is defined by an Euclidean distance 

transform of the original image. The darkest points are the most distant points to the image 

boundary. (c) Segmented image, with two objects, one in green and one in red, separated after 

applying the watershed algorithm. (d) An example obtained by moving the left object. In this case, 

an additional seed is defined in between the two object, and generates a spurious third segment in 

light yellow. (e) and (f) are two examples of cavity oversegmentation. In some cases, flat 

subcavities are created at the surface (e), and sometimes they are generated in between other main 

subcavities (f). (g) Summary of the criteria used to detect potentially spurious subcavities and 

identify the merging partner. (h) Result of (g) on (e). In both (d) and (e), the yellow subcavity is 

merged with the dark blue one. 

To qualitatively assess the relevance of the subcavity decomposition tool, we assembled a 

carefully hand-picked dataset of 59 proteins (available in the GitHub repository of the CAVIAR 

package, link in the code availability paragraph) for which subcavities can be defined with a high 

level of confidence, based on experimental knowledge. This dataset contains 17 protease 

structures, which are a gold standard for proteins with binding pockets divided in precisely defined 

subpockets. In addition, we compiled 13 GPCR structures, 5 bromodomains, 5 kinases, 2 

acetylcholine esterases, 3 ligases E3, and 14 other structures: FKBP, EGFR, Glucocorticoid 

receptor, TLR4, SMO, DOT1L, CYP51, SYI1, Acetylcholine receptor, HMGCoA reductase, 

tubulin alpha, NaK ATPase, Alpha amylase, and HSP90 alpha. 

 

Segmented 

objects 

Overlapped 

objects 

Distance 

transform 

Over-

segmentation 

(a) (b) (c) (d) (e) (f) (g) (h) 
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RESULTS AND DISCUSSION 

Performance of CAVIAR for cavity identification 

The definition of a cavity is a case-by-case subjective concept, which makes it difficult to extract 

meaningful statistics for the comparison of pocket identification algorithms. Success in cavity 

identification is defined as finding at least one ligand atom overlapping with cavity grid points. 

Table 2 shows a summary of results. CAVIAR successfully identifies almost all cavities in the 

large datasets, e.g., reaching 99% of success on the 11,816 complexes of scPDB and 92% on the 

4,227 cases of PDBBind. The performance is similarly high across all datasets except the 

MetaPocket set (81%). The MetaPocket dataset is enriched in very solvent-exposed ligand-protein 

complexes, with low curvature at the surface of the protein (e.g., PDB codes 1pk2, 1gtb, 1lu1, 

1q8m, 1sxk, 1tt6, 2c6g), which, by design, CAVIAR does not detect with default parameters (cf. 

limitations). Our validation datasets, especially the larger ones, contain a number of problematic 

PDB structures. More specifically, we noticed several cases of inappropriate ligand identifiers 

(e.g., a cosolvent instead of the ligand-like compound) in the scPDB, PDBBind and MetaPocket 

datasets, which we corrected, but not exhaustively. The manual curation of all of these structures 

would be valuable, but is beyond the scope of this work. Interestingly, restricting the PDBBind 

dataset to high affinity complexes (micromolar affinity or better) results in a higher success rate 

for binding pocket identification (Table 2).  

Table 2. General performance of CAVIAR on different datasets. 

 n PDB n ligands top 1 top 3 any missed 

scPDB 11,816 5,459 79% 94% 99% 1% 

PDBBind 4,227 3,277 67% 84% 92% 8% 

PDBBind-HA* 3,335 2,145 74% 90% 95% 5% 

Drugs 554 257 67% 83% 96% 4% 

MetaPocket 196 95 60% 76% 81% 19% 

GPCR 174 123 89% 97% 99% 1% 

DUD-e 102 102 83% 95% 96% 4% 

Kahraman 98 12 77% 90% 95% 5% 

Percentages define success in finding the specified ligand in the top 1, top 3 of ranked cavities or 

at all (any). “n PDB” indicates the count of PDB structures in the dataset, and “n ligands” the count 

of unique ligands (the same ligand can be present in different PDB structures). *PDBBind-HA is 

the PDBBind dataset restricted to high affinity complexes, with an affinity of 1 µM or lower. 

In addition, we used Huang and Schroeder’s dataset [33], a dataset commonly used and for 

which we have performance data for various methods, to compare the results from CAVIAR to 

those of state of the art cavity identification software (Table 3). Overall, CAVIAR performs well 

both on the 48 unbound structures and the 48 bound structures, with success rates of 83% and 94% 

respectively in the top 3 ranked cavities. This is similar to the performances of VICE [41], 

DoGSite[24] and Fpocket [6]. CAVIAR fails on three cases of the bound dataset, all three are very 

exposed ligand on flat surfaces of the protein (Table S3).  
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Table 3. Comparison of CAVIAR against state of art methods for cavity identification on a dataset 

of 48 bound and 48 unbound diverse protein complexes. 

 
Top1 Top3 

method unbound bound unbound bound 

VICE [41] 83% 85% 90% 94% 

CAVIAR* 77% 88% 85% 94% 

DoGSite [24] 71% 83% 92% 92% 

Fpocket* [6] 69% 83% 94% 92% 

LSite [24] 75% 75% 85% 88% 

PocketPicker [23] 69% 72% 85% 85% 

DSite [24] 65% 69% 77% 79% 

LIGSITE [38] 58% 69% 75% 87% 

CAST [50] 58% 67% 75% 83% 

PASS [43] 60% 63% 71% 81% 

SURFNET [42] 52% 54% 75% 78% 

Percentages define success in finding the specified ligand in the top 1 or top 3 of ranked cavities. 

Values of all algorithms except CAVIAR were extracted from [24]. CAVIAR’s success values 

were calculated with the definition of [24]. * indicates open-source software available at the time 

of the study. 

Cavities are ranked according to their cavity descriptor scores, which are estimates of 

importance based on size and buriedness. This score was not developed with the intention to rank 

cavities with regards to their ligandability but rather to have a heuristic to limit the number of 

stored cavities in the case of a large scale analysis of the PDB. The software also provides a 

separate ligandability descriptor (Supplementary Material items S1 and S5). The cavity detection 

success values in the top 1 and top 3 in Tables 2 and 3 are underestimates of the actual performance 

of the tool in detecting ligand binding sites. First, interface cavities between protein chains are 

often larger in volume and will therefore have higher cavity scores (and ranks) than smaller 

enclosed binding sites. PDB files with repeats of a protein chain can contain repeats of the same 

cavity, with small variations of scores due to small rearrangements in the binding pocket or grid 

orientation dependency. These repeated cavities may not all contain ligands, which can place the 

actual liganded cavity at second or third instead of first rank. The (underestimated) statistics and 

the visual inspection of the results of the small datasets demonstrate CAVIAR’s good performance 

in detecting liganded cavities with a high confidence, which is a good basis to proceed with 

detailed descriptor calculations. 

Subcavity segmentation 

We assembled a dataset of 59 diverse proteins to judge qualitatively the performance of CAVIAR 

for the decomposition of pockets into subpockets. These proteins are classified by the RCSB PDB 

as follows: 21 hydrolases, 14 membrane proteins, 7 transferases, 5 transcription regulators, 4 

ligases, 2 oxidoreductases, 2 hormone receptors, 1 chaperone, 1 choline binding protein, 1 

structural protein and 1 immune system protein. The subcavity segmentation algorithm fits 

qualitatively to the empirical description of binding subpockets in most cases, but depends on the 

quality of the detected cavity. In some cases, subpockets are missing because the cavity is not 

entirely detected, or there are spurious subcavities when the cavity has overspanned. Despite the 
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introduction of the merging step described above, the decomposition algorithm tends to 

oversegment cavities. We discuss here four cases of successful cases of cavity segmentation with 

CAVIAR (Fig. 3) as well as two cases of failures (Fig. 4). These results are also compared with 

DoGSite default output, to provide a state-of-the-art benchmark, although DoGSite’s definition of 

subpockets is different to CAVIAR’s medicinal chemistry focused approach (cf introduction). We 

selected these six cases with respect to CAVIAR, not a consensus of CAVIAR and DoGSite. The 

latter was run a posteriori, and may not represent an accurate depiction of DoGSite’s performance. 

The whole set of results, including PDB files, cavities and subcavities, is available on the GitHub 

repository of the CAVIAR package (link in the Availability paragraph). 

The first example is the binding pocket of the chaperone protein hsp90-α. It contains two 

subpockets, namely the adenine subpocket, where the natural ligand, ADP, binds, and a lipophilic 

subpocket, exploited by small molecule inhibitors to improve their selectivity profiles [72, 73]. 

CAVIAR correctly identifies the main binding pocket and splits it into two subcavities. One 

subpocket is occupied by the adenine head group of the ligand, and the other one by its iodo-

benzodioxole group (Fig. 3a). DoGSite recognizes the two subpockets, but produces a much larger 

cavity and generates four subcavities in total (Fig. 3b). The second successful example is HIV-1 

protease, which contains six well defined subsites, recognizing specifically amino acid side chains 

of the peptidic substrate [74, 75]. CAVIAR generates seven subcavities, six of which corresponds 

to the six standard subsites S1 to S3 and S1’ to S3’. The S1 subsite is segmented into two 

subcavities, which correspond in the selected PDB entries to the piperazine and the benzofurane 

groups of the ligand (Fig. 3c, chemical groups in magenta and dark blue). In the literature, these 

two subcavities are referred to as the S1 and extended S1 pockets [74]. DoGSite, on the other hand, 

correctly predicts the binding pocket, but fails to decompose it into subpockets, i.e., outputs only 

one single pocket (Fig. 3d). Our third example is the M1 muscarinic acetylcholine receptor 

(GPCR) complexed with an antagonist. Two subpockets overlap with the orthosteric pocket of the 

receptor, where the ligand is present, and three additional subpockets are detected at the level of 

the allosteric pocket (Fig. 3e). In both CAVIAR and DoGSite analyses, the orthosteric and 

allosteric pockets are connected. At the level of the orthosteric site, one of the two subcavities of 

CAVIAR overlaps with the amine binding subpocket and contains the quartenary amine of the 

ligand, while the other defines the more hydrophobic part of the binding pocket and hosts the two 

thiophen moieties of the inhibitor (Thal et al., 2016). DoGSite results are similar to CAVIAR, 

except that the orthosteric pocketis not segmented into subsites (Fig. 3f). The last successful case 

is the EGFR kinase domain bound to lapatinib, for which CAVIAR detects six subpockets (Fig. 

3g). The main binding region of ATP, i.e., the adenine, ribose and phosphate regions, is described 

by one large subpocket, occupied by the main hinge binding motif of the ligand and its furan 

substituent [77]. More granularity appears at the front and back pockets. The front pocket is 

divided into two subpockets, not occupied by the ligand. The back pocket contains three 

subpockets, which correspond to three parts of the ligand: one contains the chloroaniline, one the 

flexible linker, and the last one the terminal fluorobenzene. The sulfonyl tail of the ligand is solvent 

exposed and not covered by any cavity grid point. The cavity from DoGSite overlaps similarly 

with the ligand, but does not decompose the pocket into subcomponents; it detects other connected 

subpockets far from the ligand binding groove, and produces a site pocket that significantly 

overspans (Fig. 3h). 
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Fig. 3. Examples of successful decomposition by CAVIAR and comparison to DoGSite. In all 

panels, the atoms in the 2D structure of the ligand are depicted with a color code corresponding to 

the subcavity segmentation, or in black if not covered by subcavities. (a) and (b) Chaperone protein 

hsp90, PDB code 2fwz. (a) The CAVIAR subpocket algorithm correctly identifies the adenine 

pocket, in orange and the lipophilic pocket, in blue. (b) DoGSite identifies the two subpockets 

(same colors), but overspans. (c) and (d) HIV-1 protease, PDB code 1c70. (c) CAVIAR correctly 

identifies the six protease subsites (S3 in cyan, unoccupied by the ligand, S2 in light blue, S1 in 

pink and dark blue, S1’ in green, S2’ in yellow, and S3’ in orange), as well as further decomposes 

the S1 site into its main site (pink) and an extended S1 pocket (dark blue). (d) DoGSite fails to 

segment the pocket into subsites. (e) and (f) M1 muscarinic acetylcholine receptor, GPCR, PDB 

code 5cxv. (e) CAVIAR detects two subpockets in the orthosteric site, which correspond to the 

amine site (orange spheres) and the lipophilic pocket (blue spheres). (f) DoGSite fails to segment 

the orthosteric pocket. (g) and (h) EGFR kinase, PDB code 1xkk. (g) CAVIAR pulls together one 

main subpocket for the adenine site, the sugar site and the phosphates region (red spheres). It 

(a) (b) (c) 

(d) 

(e) (f) 

(g) (h) 
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further splits the pocket into its front pocket region (two subpockets in light blue and yellow) and 

into its back pocket (three pockets in light green, orange and light blue). (h) DoGSite significantly 

overspans towards the back of the protein (salmon and pink dots). 

In some cases, CAVIAR fails to produce any relevant deconstruction of cavities into 

subpockets. Examples of such include factor Xa (PDB code 2bqw) and HCV NS3 protease (PDB 

code 3kee). In both cases, parts of the ligands and the cavities are very solvent-exposed, which 

hinders the detection of the entirety of the cavities (Fig. 4). As the detected cavity is too small, it 

cannot be segmented effectively into subpockets. Both CAVIAR and DoGSite fail in these two 

cases, although DoGSite tends to detect larger portions of the binding pocket.  

Fig. 4. Examples of unsuccessful decomposition by CAVIAR and comparison to DoGSite. In all 

panels, the 2D structure of the ligand is depicted with a color code corresponding to the subcavity 

segmentation, or in black if not covered by subcavities. (a) CAVIAR and (b) DoGSite cavity 

detection and segmentation of factor Xa protease, PDB code 2bqw. (c) CAVIAR and (d) DoGSite 

cavity detection and segmentation of HCV NS3 protease. In all cases, both approaches fail to 

describe correctly the entirety of the cavities and their complexity in terms of subpockets. 

Liganded cavities have higher complexity than apo cavities 

We analyzed 97,221 X-ray structures from the PDB that passed a filtering protocol: only X-ray 

structures with a resolution better than 2.5 Å; no flag as obsolete or other warnings in the PDB 

header. On average, each PDB structure has 8.3 ± 11.6 cavities and a median of 5, with the number 

of cavities per PDB file increasing with the number of residues in the PDB file and the number of 

protein chains. Cavities are segmented on average into 2.7 ± 2.9 subcavities, with a median of 2. 

About 140,000 of the 800,000 detected cavities are liganded, with an average ligand coverage of 

79 ± 25% and a median of 88%. The analysis of holo cavities tend to show that cavities do no 

overspan significantly, as the average cavity coverage by ligand atom is 60 ± 31% and a median 

of 62%. This is a much higher cavity coverage compared to previous reports, which argued that 

ligands fill on average only a third of their binding pockets [56, 57]. If the analysis is focused on 

the drug-like ligands of the PDBBind dataset, the cavity coverage rises to 74 ± 26% with a median 

of 82%. Liganded cavities tend to be bigger, more hydrophobic, more ligandable and more 

(c) (a) (b) (d) 
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geometrically complex (segmented into more subcavities) compared to apo cavities (Table 4). 

Ligands occupy on average 2.5 ± 1.5 subcavities with a median of 2.  

Table 4. Differences between liganded cavities and holo cavities in the PDB. 

 
Liganded cavities 

N=138,632 

Apo cavities 

N=668,621 

Size (Å3) 
353 ± 423 

Median = 238 

145 ± 208 

Median = 83 

Number of subcavities 
4.4 ± 4.6 

Median = 3.0 

2.3 ± 2.3 

Median = 2.0 

Hydrophobicity 
45 ± 17% 

Median = 43% 

39 ± 17% 

Median =  38% 

Ligandability 
0.62 ± 0.27 

Median = 0.60 

0.51 ± 0.26 

Median = 0.40 

All comparisons are significant with Kolmogorov-Smirnov tests with a significance level of 0.01 

(Table S8). 

Binding affinity increases with the number of subcavities filled by the ligand 

We compared the binding affinities of ligand to their targets and the number of subcavities they 

interact with using the PDBBind dataset and with a focus on two types of drug targets, proteases 

and kinases. The more subcavities a compound fills, the higher the affinity. This effect is more 

pronounced for compounds binding to more than three subcavities, most of them having a binding 

affinity in the nanomolar range or better (Fig. 5). 

Fig. 5. Distribution of binding affinities expressed as –log(affinity) in function of the numbers of 

subcavities filled by the ligand. (a) Protease dataset. In blue, ligands filling one or two subcavities 

(n=453), orange three subcavities (n=154), and green four or more subcavities (n=194). The peak 

of activity is in all cases in the nanomolar range, however, the more subcavities are filled, the less 

there are micromolar or worse binders and the more low nanomolar or better binders are found. 

(b) Kinase dataset. Same colors as A, with 249 molecules binding to one or two subcavities, 122 

to three and 103 to four or more. (c) Entire PDBBind dataset. Same colors as A, with 2,456 

molecules binding to one or two subcavities, 800 to three and 579 to four or more. 

Binding affinities increase linearly in the protease dataset as more subpockets are involved in 

ligand binding (Table 5). In detail, 801 unique proteases pockets contain ligands and the average 

–log(affinity) ranges from 6.7 for ligands filling only one subcavity to 7.0 for two, 7.5 for three 

(a)  Proteases (b)  Kinases (c)  Entire PDBBind 
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and 8.2 for four and more subcavities. Differences between subsets are significant according to 

Kolmogorov-Smirnov tests for all subsets, i.e., one, two or three subcavities filled versus the four 

or more subcavities subset, but also joined subsets of two and less subcavities versus four and 

more, and three or less versus the four and more subcavities (detailed statistics in Table S8). 

Table 5. Affinities according to number of subcavities bound by the ligand in the protease dataset. 

 1 subcav 2 subcavs 3 subcavs >3 subcavs 

Proteases (n = 801) 6.7 +/- 2.0 (207) 7.0 +/- 2.0 (246) 7.5 +/- 1.9 (154) 8.2 +/- 1.6 (194) 

Mean values and standard deviation of –log(affinity) are given, with the number of PDB entries 

for each category in parenthesis. 

In general, if we extend the analysis to kinases and the rest of the PDBBind dataset, compounds 

filling four or more subpockets have a substantially more favorable binding affinity to their drug 

target. Only 9%, 16% and 19% of ligands binding to at least four subpockets have an affinity to 

their target in the micromolar range or lower in the proteases (17 out of 194), kinases (16 out of 

103), and entire PDBBind datasets (111 out of 570), respectively. Compounds binding to a 

maximum of three subcavities are 29%, 36% and 42% in the micromolar or lower range, in the 

proteases, kinases and entire PDBBind datasets, respectively (Table 6). 

Table 6. Comparison of binding affinities of ligands occupying up to three subcavities and ligands 

occupying more. 

Micromolar or worse 

ligands occupying 

Proteases 

(801) 

Kinases 

(474) 

PDBBind 

(3,826) 

Up to 3 subcavities 29% (of 607) 36% (of 371) 42% (of 3,256) 

> 3 subcavities 9% (of 194) 16% (of 103) 19% (of 570) 

Numbers in parenthesis indicate the total count of unique PDB in each set. The proportion of weak 

binders binding to up to three subcavities is doubled to tripled in all datasets compared to ligands 

binding four or more subcavities. 

Using CAVIAR binding site descriptors: ligandability 

We tested CAVIAR descriptors in ML models of binding site ligandability predictions. Datasets 

from the non-redundant set of druggable and less druggable binding sites (NRDLD) [78], as 

described by others [9, 78, 79], were taken and fifteen ML models based on 27 global binding site 

descriptors generated with CAVIAR were built (further details in Supplementary Materials items 

S1 and S5). The best model, a k-nearest neighbors algorithm, performs similarly to state-of-the-

art methods [9, 78, 79] on the minimalistic validation set of the NRDLD (23 ligandable and 14 

unligandable binding sites), with a Matthews correlation coefficient of 0.73 (Table 7, S4 and S5). 

Interestingly, the five outliers in the model are non ligandable cavities being predicted as 

ligandable, but four of these five cavities are actually liganded. This model will benefit from a 

larger training set and a broader use of the different CAVIAR descriptors. 
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Table 7. Matthews correlation coefficient (MCC) and accuracy of five software for the prediction 

of ligandability of cavities.   

 k-NN 

(CAVIAR) 
VolSite DrugPred PockDrug Fpocket SiteMap 

MCC 0.73 0.77 0.77 0.54 0.39 0.24 

Accuracy 0.86 0.89 0.89 0.76 0.73 0.65 

Values for VolSite [9], DrugPred [78], Fpocket [80] and SiteMap [7] are extracted from [9], values 

for PockDrug from [79]. 

Limitations of the method 

The most obvious limitations of CAVIAR are inherent to the experimental data it relies on, 

primarily protein structures obtained with X-ray crystallography and cryogenic electron 

microscopy. This is common to all methods, and cannot be circumvented. If a flexible cryptic 

pocket of interest is not present in the structure given as input to CAVIAR, it will not detect it. 

While this limitation cannot be solved systematically, it can be mitigated by generating series of 

structures in silico, e.g., by generating conformational ensembles from sampling methods [81–83]. 

Crystal contacts, artifacts and protein chain repeats can produce spurious non-productive 

interchain cavities (Fig. 6a). Significant work has been invested into detecting biologically relevant 

protein chains contacts [84, 85] and we plan to implement such an algorithm in later versions of 

our tool. The second intrinsic limitation of CAVIAR is that it is designed for discovering cavities 

that potentially bind small organic drug-like compounds, which tends to exclude surface patches 

such as protein-protein interfaces and very exposed ligand binding grooves (Fig. 6b). Different 

sets of parameters could be identified and optimized for detecting surface patches, or even protein-

protein interaction interfaces; this is work in progress. Key parameter settings are stored in a 

configuration file:optimizing the software for the detection of exposed binding grooves mostly 

requires the assembly of carefully curated target optimization datasets. 

Technically, CAVIAR suffers from other kind of limitations. As other cavity detection tools, 

it may overspan cavities because validation scores tend to reward larger pockets that are more 

likely to contain the ligand. We optimized the algorithm and the parameters to restrict to 

identifying cavities from the direct surroundings of known ligands, but edge cases still evade our 

best efforts and produce very large invaginations (Fig. 6c). The validation of protein cavity 

detection algorithms is not simple, as there is no ground truth definition of what is a “protein 

cavity” and so it is hard to design a meaningful validation dataset. This shortcoming is exacerbated 

for the segmentation of cavities into subcavities, as again a systematic definition simply does not 

exist, to our knowledge. Provided that the input cavity is correctly described, the subsite 

decomposition suffers from very few false negatives. In other words, it tends to produce more 
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subpockets rather than fewer, that is, the algorithm oversegments the pocket rather than fail to 

characterize a subcavity. 

Fig. 6. Representative cases of failure with CAVIAR. (a) Spurious interchain cavity. A cavity, in 

orange spheres, is found at the interface between two protein chains, in white cartoons, which is a 

crystal contact and not biologically relevant (PDB code 1ejd). (b) Case of an exposed ligand, in 

blue sticks, on top of a flat surface of a protein, in white surface (PDB code 2pk4). The binding 

surface patch is too exposed to be detected with CAVIAR’s default set of parameters. (c) A cavity, 

in orange spheres, overspans inside the entire protein chain, in white surface representation (PDB 

code 2cvc). However, in this case, numerous ligands, in blue sticks, are present everywhere inside 

the cavity. 

 

CONCLUSIONS  

The fruitful investigation of protein binding sites by ML requires robust and meaningful 

descriptors, which in turn rely upon a reliable cavity detection method. The open-source 

availability of CAVIAR on GitHub and Anaconda combined with its comprehensive Python 

interface defines it as a powerful toolkit for this purpose. The descriptors computed by the software 

are readily usable in standard ML packages, such as scikit-learn and TensorFlow.  CAVIAR is 

mmCIF-ready, and incorporates a molecular dynamics trajectory parser; the subpocket 

characterization relies on on the protein, and does not require a bound ligand to work. A dedicated 

website is available with step-by-step usage notes and an extended manual to help tune CAVIAR 

to their datasets (see links in the code availability paragraph). The cavity detection, 

characterization and segmentation runs fast, ranging from a five seconds average on the DUD-e 

102 targets, to a ten seconds average on the scPDB dataset on one core of a Xeon E5-4620 CPU 

of 2012 with a clock speed of 2.20 GHz. A qualitative comparison of CAVIAR, DoGSite, 

(a) (b) (c) 
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Schrödinger’s SiteMap and Fpocket on few test cases indicates that CAVIAR is much faster than 

DoGSite or SiteMap, but slower than Fpocket. 

Some novel notions were introduced as an attempt to refine the cavity detection and address 

challenges that are not resolved in the literature:  cavity overspanning of buriedness-based 

algorithms, and the analysis of protein subpockets.  A novel approach to scoring and trimming of 

cavity points is presented;  this has been shown to prevent major cavity overspanning. CAVIAR 

describes cavities that exhibits very high cavity coverage of ligand atoms, with a median of 62% 

in the entire PDB and 82% in the drug-like structural database PDBBind: other published method 

have ligand-cavity coverage of around 33% [56, 57]. CAVIAR is able to identify binding subsites 

in both apo and holo protein structures. CAVIAR aims at a systematic detection and classification 

of protein subcavities. The investigation of protein subcavities may help to understand selectivity 

issues or polypharmacological effects of certain drugs, also known as chemoisosterism of protein 

environments [86]. In other words, it is possible to define matched “subcavities” pairs of protein 

cavities in the same manner as matched molecular pairs of chemicals [87]. The notion of subcavity 

is not a well-defined concept and the robust partitioning of binding pockets into subpockets is an 

unmet need. The deconstruction of pockets into subcavities may help for partial cavity matching 

in the context of cavity comparison [88]. Our analysis of the PDB database led to the identification 

of significant differences between apo and holo cavities, in terms of size, ligandability, 

hydrophobicity and complexity. Finally, in line with the fragment-based drug design paradigm 

[52, 54], we found that the binding affinity of small molecule ligands scales with the number of 

subcavities they fill, with a propensity towards high affinities, in the nanomolar range or better, 

for ligands binding to more than three subcavities. 

 

ACKNOWLEDGMENT 

The authors thank Imtiaz Hossein, Michael Schaefer and Richard Lewis for insightful discussions. 

J.-R.M. thanks the ProDy development team and generally all contributors to open source codes 

for their crucial work. 

 

REFERENCES 

1.  Westbrook JD, Burley SK (2019) How Structural Biologists and the Protein Data Bank 

Contributed to Recent FDA New Drug Approvals. Structure 27:211–217. 

https://doi.org/10.1016/j.str.2018.11.007 

2.  Simões T, Lopes D, Dias S, et al (2017) Geometric Detection Algorithms for Cavities on 

Protein Surfaces in Molecular Graphics: A Survey. Comput Graph Forum 36:643–683. 

https://doi.org/10.1111/cgf.13158 

3.  Volkamer A, Behren MM von, Bietz S, Rarey M (2018) Prediction, Analysis, and 

Comparison of Active Sites. In: Applied Chemoinformatics. John Wiley & Sons, Ltd, pp 

283–311 



 

 19 

4.  Macari G, Toti D, Polticelli F (2019) Computational methods and tools for binding site 

recognition between proteins and small molecules: from classical geometrical approaches to 

modern machine learning strategies. J Comput Aided Mol Des 33:887–903. 

https://doi.org/10.1007/s10822-019-00235-7 

5.  Volkamer A, Kuhn D, Rippmann F, Rarey M (2012) DoGSiteScorer: a web server for 

automatic binding site prediction, analysis and druggability assessment. Bioinformatics 

28:2074–2075. https://doi.org/10.1093/bioinformatics/bts310 

6.  Le Guilloux V, Schmidtke P, Tuffery P (2009) Fpocket: An open source platform for ligand 

pocket detection. BMC Bioinformatics 10:168. https://doi.org/10.1186/1471-2105-10-168 

7.  Halgren TA (2009) Identifying and Characterizing Binding Sites and Assessing Druggability. 

J Chem Inf Model 49:377–389. https://doi.org/10.1021/ci800324m 

8.  Nayal M, Honig B (2006) On the nature of cavities on protein surfaces: Application to the 

identification of drug-binding sites. Proteins Struct Funct Bioinforma 63:892–906. 

https://doi.org/10.1002/prot.20897 

9.  Desaphy J, Azdimousa K, Kellenberger E, Rognan D (2012) Comparison and Druggability 

Prediction of Protein–Ligand Binding Sites from Pharmacophore-Annotated Cavity Shapes. 

J Chem Inf Model 52:2287–2299. https://doi.org/10.1021/ci300184x 

10.  Ehrt C, Brinkjost T, Koch O (2016) Impact of Binding Site Comparisons on Medicinal 

Chemistry and Rational Molecular Design. J Med Chem 59:4121–4151. 

https://doi.org/10.1021/acs.jmedchem.6b00078 

11.  Xie L, Evangelidis T, Xie L, Bourne PE (2011) Drug Discovery Using Chemical Systems 

Biology: Weak Inhibition of Multiple Kinases May Contribute to the Anti-Cancer Effect of 

Nelfinavir. PLOS Comput Biol 7:e1002037. https://doi.org/10.1371/journal.pcbi.1002037 

12.  Möller-Acuña P, Contreras-Riquelme JS, Rojas-Fuentes C, et al (2015) Similarities between 

the Binding Sites of SB-206553 at Serotonin Type 2 and Alpha7 Acetylcholine Nicotinic 

Receptors: Rationale for Its Polypharmacological Profile. PLOS ONE 10:e0134444. 

https://doi.org/10.1371/journal.pone.0134444 

13.  Schumann M, Armen RS (2013) Identification of Distant Drug Off-Targets by Direct 

Superposition of Binding Pocket Surfaces. PLOS ONE 8:e83533. 

https://doi.org/10.1371/journal.pone.0083533 

14.  Schirris TJJ, Ritschel T, Herma Renkema G, et al (2015) Mitochondrial ADP/ATP exchange 

inhibition: a novel off-target mechanism underlying ibipinabant-induced myotoxicity. Sci 

Rep 5:1–12. https://doi.org/10.1038/srep14533 

15.  Kuhn D, Weskamp N, Schmitt S, et al (2006) From the Similarity Analysis of Protein Cavities 

to the Functional Classification of Protein Families Using Cavbase. J Mol Biol 359:1023–

1044. https://doi.org/10.1016/j.jmb.2006.04.024 



 

 20 

16.  Kinoshita K, Furui J, Nakamura H (2002) Identification of protein functions from a molecular 

surface database, eF-site. J Struct Funct Genomics 2:9–22. 

https://doi.org/10.1023/A:1011318527094 

17.  Konc J, Hodošček M, Ogrizek M, et al (2013) Structure-Based Function Prediction of 

Uncharacterized Protein Using Binding Sites Comparison. PLOS Comput Biol 9:e1003341. 

https://doi.org/10.1371/journal.pcbi.1003341 

18.  Anand P, Sankaran S, Mukherjee S, et al (2011) Structural Annotation of Mycobacterium 

tuberculosis Proteome. PLOS ONE 6:e27044. https://doi.org/10.1371/journal.pone.0027044 

19.  Al‐Gharabli SI, Shah STA, Weik S, et al (2006) An Efficient Method for the Synthesis of 

Peptide Aldehyde Libraries Employed in the Discovery of Reversible SARS Coronavirus 

Main Protease (SARS-CoV Mpro) Inhibitors. ChemBioChem 7:1048–1055. 

https://doi.org/10.1002/cbic.200500533 

20.  Willmann D, Lim S, Wetzel S, et al (2012) Impairment of prostate cancer cell growth by a 

selective and reversible lysine-specific demethylase 1 inhibitor. Int J Cancer 131:2704–2709. 

https://doi.org/10.1002/ijc.27555 

21.  Kooistra AJ, Leurs R, de Esch IJP, de Graaf C (2015) Structure-Based Prediction of G-

Protein-Coupled Receptor Ligand Function: A β-Adrenoceptor Case Study. J Chem Inf 

Model 55:1045–1061. https://doi.org/10.1021/acs.jcim.5b00066 

22.  Weber A, Casini A, Heine A, et al (2004) Unexpected Nanomolar Inhibition of Carbonic 

Anhydrase by COX-2-Selective Celecoxib:  New Pharmacological Opportunities Due to 

Related Binding Site Recognition. J Med Chem 47:550–557. 

https://doi.org/10.1021/jm030912m 

23.  Weisel M, Proschak E, Schneider G (2007) PocketPicker: analysis of ligand binding-sites 

with shape descriptors. Chem Cent J 1:7. https://doi.org/10.1186/1752-153X-1-7 

24.  Volkamer A, Griewel A, Grombacher T, Rarey M (2010) Analyzing the Topology of Active 

Sites: On the Prediction of Pockets and Subpockets. J Chem Inf Model 50:2041–2052. 

https://doi.org/10.1021/ci100241y 

25.  Goodford PJ (1985) A computational procedure for determining energetically favorable 

binding sites on biologically important macromolecules. J Med Chem 28:849–857. 

https://doi.org/10.1021/jm00145a002 

26.  Bliznyuk AA, Gready JE (1998) Identification and energetic ranking of possible docking 

sites for pterin on dihydrofolate reductase. J Comput Aided Mol Des 12:325–333. 

https://doi.org/10.1023/A:1008039000355 

27.  Ngan CH, Bohnuud T, Mottarella SE, et al (2012) FTMAP: extended protein mapping with 

user-selected probe molecules. Nucleic Acids Res 40:W271–W275. 

https://doi.org/10.1093/nar/gks441 



 

 21 

28.  Laurie ATR, Jackson RM (2005) Q-SiteFinder: an energy-based method for the prediction 

of protein–ligand binding sites. Bioinformatics 21:1908–1916. 

https://doi.org/10.1093/bioinformatics/bti315 

29.  Marchand J-R, Caflisch A (2018) In silico fragment-based drug design with SEED. Eur J 

Med Chem 156:907–917. https://doi.org/10.1016/j.ejmech.2018.07.042 

30.  Miranker A, Karplus M (1991) Functionality maps of binding sites: A multiple copy 

simultaneous search method. Proteins Struct Funct Bioinforma 11:29–34. 

https://doi.org/10.1002/prot.340110104 

31.  Simões T, Lopes D, Dias S, et al (2017) Geometric Detection Algorithms for Cavities on 

Protein Surfaces in Molecular Graphics: A Survey. Comput Graph Forum J Eur Assoc 

Comput Graph 36:643–683. https://doi.org/10.1111/cgf.13158 

32.  Xie Z-R, Hwang M-J (2015) Methods for Predicting Protein–Ligand Binding Sites. In: Kukol 

A (ed) Molecular Modeling of Proteins. Springer, New York, NY, pp 383–398 

33.  Huang B, Schroeder M (2006) LIGSITEcsc: predicting ligand binding sites using the 

Connolly surface and degree of conservation. BMC Struct Biol 6:19. 

https://doi.org/10.1186/1472-6807-6-19 

34.  Capra JA, Laskowski RA, Thornton JM, et al (2009) Predicting Protein Ligand Binding Sites 

by Combining Evolutionary Sequence Conservation and 3D Structure. PLOS Comput Biol 

5:e1000585. https://doi.org/10.1371/journal.pcbi.1000585 

35.  Huang B (2009) MetaPocket: A Meta Approach to Improve Protein Ligand Binding Site 

Prediction. OMICS J Integr Biol 13:325–330. https://doi.org/10.1089/omi.2009.0045 

36.  Zhang Z, Li Y, Lin B, et al (2011) Identification of cavities on protein surface using multiple 

computational approaches for drug binding site prediction. Bioinformatics 27:2083–2088. 

https://doi.org/10.1093/bioinformatics/btr331 

37.  Levitt DG, Banaszak LJ (1992) POCKET: A computer graphies method for identifying and 

displaying protein cavities and their surrounding amino acids. J Mol Graph 10:229–234. 

https://doi.org/10.1016/0263-7855(92)80074-N 

38.  Hendlich M, Rippmann F, Barnickel G (1997) LIGSITE: automatic and efficient detection 

of potential small molecule-binding sites in proteins. J Mol Graph Model 15:359–363. 

https://doi.org/10.1016/S1093-3263(98)00002-3 

39.  Kalidas Y, Chandra N (2008) PocketDepth: a new depth based algorithm for identification 

of ligand binding sites in proteins. J Struct Biol 161:31–42. 

https://doi.org/10.1016/j.jsb.2007.09.005 

40.  Till MS, Ullmann GM (2010) McVol - A program for calculating protein volumes and 

identifying cavities by a Monte Carlo algorithm. J Mol Model 16:419–429. 

https://doi.org/10.1007/s00894-009-0541-y 



 

 22 

41.  Tripathi A, Kellogg GE (2010) A novel and efficient tool for locating and characterizing 

protein cavities and binding sites. Proteins Struct Funct Bioinforma 78:825–842. 

https://doi.org/10.1002/prot.22608 

42.  Laskowski RA (1995) SURFNET: A program for visualizing molecular surfaces, cavities, 

and intermolecular interactions. J Mol Graph 13:323–330. https://doi.org/10.1016/0263-

7855(95)00073-9 

43.  Brady GP, Stouten PFW (2000) Fast prediction and visualization of protein binding pockets 

with PASS. J Comput Aided Mol Des 14:383–401. 

https://doi.org/10.1023/A:1008124202956 

44.  Kawabata T, Go N (2007) Detection of pockets on protein surfaces using small and large 

probe spheres to find putative ligand binding sites. Proteins 68:516–529. 

https://doi.org/10.1002/prot.21283 

45.  Oliveira SH, Ferraz FA, Honorato RV, et al (2014) KVFinder: steered identification of 

protein cavities as a PyMOL plugin. BMC Bioinformatics 15:197. 

https://doi.org/10.1186/1471-2105-15-197 

46.  Kawabata T (2010) Detection of multiscale pockets on protein surfaces using mathematical 

morphology. Proteins Struct Funct Bioinforma 78:1195–1211. 

https://doi.org/10.1002/prot.22639 

47.  Yu J, Zhou Y, Tanaka I, Yao M (2010) Roll: a new algorithm for the detection of protein 

pockets and cavities with a rolling probe sphere. Bioinformatics 26:46–52. 

https://doi.org/10.1093/bioinformatics/btp599 

48.  Lewis RA (1989) Determination of clefts in receptor structures. J Comput Aided Mol Des 

3:133–147. https://doi.org/10.1007/BF01557724 

49.  Peters KP, Fauck J, Frömmel C (1996) The Automatic Search for Ligand Binding Sites in 

Proteins of Known Three-dimensional Structure Using only Geometric Criteria. J Mol Biol 

256:201–213. https://doi.org/10.1006/jmbi.1996.0077 

50.  Liang J, Edelsbrunner H, Woodward C (1998) Anatomy of protein pockets and cavities: 

measurement of binding site geometry and implications for ligand design. Protein Sci Publ 

Protein Soc 7:1884–1897 

51.  Simões TMC, Gomes AJP (2019) CavVis—A Field-of-View Geometric Algorithm for 

Protein Cavity Detection. J Chem Inf Model 59:786–796. 

https://doi.org/10.1021/acs.jcim.8b00572 

52.  Hajduk PJ, Meadows RP, Fesik SW (1997) Discovering High-Affinity Ligands for Proteins. 

Science 278:497–499. https://doi.org/10.1126/science.278.5337.497 

53.  Bartolowits M, Davisson VJ (2016) Considerations of Protein Subpockets in Fragment-Based 

Drug Design. Chem Biol Drug Des 87:5–20. https://doi.org/10.1111/cbdd.12631 



 

 23 

54.  Erlanson DA, Fesik SW, Hubbard RE, et al (2016) Twenty years on: the impact of fragments 

on drug discovery. Nat Rev Drug Discov 15:605–619. https://doi.org/10.1038/nrd.2016.109 

55.  Marchand J-R, Dalle Vedove A, Lolli G, Caflisch A (2017) Discovery of Inhibitors of Four 

Bromodomains by Fragment-Anchored Ligand Docking. J Chem Inf Model 57:2584–2597. 

https://doi.org/10.1021/acs.jcim.7b00336 

56.  Wirth M, Volkamer A, Zoete V, et al (2013) Protein pocket and ligand shape comparison and 

its application in virtual screening. J Comput Aided Mol Des 27:511–524. 

https://doi.org/10.1007/s10822-013-9659-1 

57.  Kahraman A, Morris RJ, Laskowski RA, Thornton JM (2007) Shape Variation in Protein 

Binding Pockets and their Ligands. J Mol Biol 368:283–301. 

https://doi.org/10.1016/j.jmb.2007.01.086 

58.  Chan AWE, Laskowski RA, Selwood DL (2010) Chemical Fragments that Hydrogen Bond 

to Asp, Glu, Arg, and His Side Chains in Protein Binding Sites. J Med Chem 53:3086–3094. 

https://doi.org/10.1021/jm901696w 

59.  Wang L, Xie Z, Wipf P, Xie X-Q (2011) Residue Preference Mapping of Ligand Fragments 

in the Protein Data Bank. J Chem Inf Model 51:807–815. https://doi.org/10.1021/ci100386y 

60.  Durrant JD, Friedman AJ, McCammon JA (2011) CrystalDock: A Novel Approach to 

Fragment-Based Drug Design. J Chem Inf Model 51:2573–2580. 

https://doi.org/10.1021/ci200357y 

61.  Tang GW, Altman RB (2014) Knowledge-based Fragment Binding Prediction. PLOS 

Comput Biol 10:e1003589. https://doi.org/10.1371/journal.pcbi.1003589 

62.  Kalliokoski T, Olsson TSG, Vulpetti A (2013) Subpocket Analysis Method for Fragment-

Based Drug Discovery. J Chem Inf Model 53:131–141. https://doi.org/10.1021/ci300523r 

63.  Wood DJ, Vlieg J de, Wagener M, Ritschel T (2012) Pharmacophore Fingerprint-Based 

Approach to Binding Site Subpocket Similarity and Its Application to Bioisostere 

Replacement. J Chem Inf Model 52:2031–2043. https://doi.org/10.1021/ci3000776 

64.  Volkamer A, Grombacher T, Rarey M (2010) Where are the boundaries? Automated pocket 

detection for druggability studies. J Cheminformatics 2:P11. https://doi.org/10.1186/1758-

2946-2-S1-P11 

65.  Pedregosa F, Varoquaux G, Gramfort A, et al (2011) Scikit-learn: Machine Learning in 

Python. J Mach Learn Res 12:2825–2830 

66.  Martín Abadi, Ashish Agarwal, Paul Barham, et al (2015) TensorFlow: Large-Scale Machine 

Learning on Heterogeneous Systems 

67.  Paszke A, Gross S, Massa F, et al (2019) PyTorch: An Imperative Style, High-Performance 

Deep Learning Library. Adv Neural Inf Process Syst 32:8026–8037 



 

 24 

68.  Mysinger MM, Carchia M, Irwin JohnJ, Shoichet BK (2012) Directory of Useful Decoys, 

Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking. J Med Chem 

55:6582–6594. https://doi.org/10.1021/jm300687e 

69.  Desaphy J, Bret G, Rognan D, Kellenberger E (2015) sc-PDB: a 3D-database of ligandable 

binding sites—10 years on. Nucleic Acids Res 43:D399–D404. 

https://doi.org/10.1093/nar/gku928 

70.  Liu Z, Li Y, Han L, et al (2015) PDB-wide collection of binding data: current status of the 

PDBbind database. Bioinformatics 31:405–412. 

https://doi.org/10.1093/bioinformatics/btu626 

71.  Beucher S (1994) Watershed, Hierarchical Segmentation and Waterfall Algorithm. In: Serra 

J, Soille P (eds) Mathematical Morphology and Its Applications to Image Processing. 

Springer Netherlands, Dordrecht, pp 69–76 

72.  Pirard B, Ertl P (2015) Evaluation of a Semi-Automated Workflow for Fragment Growing. J 

Chem Inf Model 55:180–193. https://doi.org/10.1021/ci5006355 

73.  Huth JR, Park C, Petros AM, et al (2007) Discovery and Design of Novel HSP90 Inhibitors 

Using Multiple Fragment-based Design Strategies. Chem Biol Drug Des 70:1–12. 

https://doi.org/10.1111/j.1747-0285.2007.00535.x 

74.  Ghosh AK, Osswald HL, Prato G (2016) Recent Progress in the Development of HIV-1 

Protease Inhibitors for the Treatment of HIV/AIDS. J Med Chem 59:5172–5208. 

https://doi.org/10.1021/acs.jmedchem.5b01697 

75.  Munshi S, Chen Z, Yan Y, et al (2000) An alternate binding site for the P1–P3 group of a 

class of potent HIV-1 protease inhibitors as a result of concerted structural change in the 80s 

loop of the protease. Acta Crystallogr D Biol Crystallogr 56:381–388. 

https://doi.org/10.1107/S0907444900000469 

76.  Thal DM, Sun B, Feng D, et al (2016) Crystal structures of the M1 and M4 muscarinic 

acetylcholine receptors. Nature 531:335–340. https://doi.org/10.1038/nature17188 

77.  Wood ER, Truesdale AT, McDonald OB, et al (2004) A Unique Structure for Epidermal 

Growth Factor Receptor Bound to GW572016 (Lapatinib): Relationships among Protein 

Conformation, Inhibitor Off-Rate, and Receptor Activity in Tumor Cells. Cancer Res 

64:6652–6659. https://doi.org/10.1158/0008-5472.CAN-04-1168 

78.  Krasowski A, Muthas D, Sarkar A, et al (2011) DrugPred: A Structure-Based Approach To 

Predict Protein Druggability Developed Using an Extensive Nonredundant Data Set. J Chem 

Inf Model 51:2829–2842. https://doi.org/10.1021/ci200266d 

79.  Borrel A, Regad L, Xhaard H, et al (2015) PockDrug: A Model for Predicting Pocket 

Druggability That Overcomes Pocket Estimation Uncertainties. J Chem Inf Model 55:882–

895. https://doi.org/10.1021/ci5006004 



 

 25 

80.  Schmidtke P, Barril X (2010) Understanding and Predicting Druggability. A High-

Throughput Method for Detection of Drug Binding Sites. J Med Chem 53:5858–5867. 

https://doi.org/10.1021/jm100574m 

81.  Bacci M, Langini C, Vymětal J, et al (2017) Focused conformational sampling in proteins. J 

Chem Phys 147:195102. https://doi.org/10.1063/1.4996879 

82.  Laio A, Gervasio FL (2008) Metadynamics: a method to simulate rare events and reconstruct 

the free energy in biophysics, chemistry and material science. Rep Prog Phys 71:126601. 

https://doi.org/10.1088/0034-4885/71/12/126601 

83.  Kuzmanic A, Bowman GR, Juarez-Jimenez J, et al (2020) Investigating Cryptic Binding Sites 

by Molecular Dynamics Simulations. Acc Chem Res. 

https://doi.org/10.1021/acs.accounts.9b00613 

84.  Duarte JM, Srebniak A, Schärer MA, Capitani G (2012) Protein interface classification by 

evolutionary analysis. BMC Bioinformatics 13:334. https://doi.org/10.1186/1471-2105-13-

334 

85.  Capitani G, Duarte JM, Baskaran K, et al (2016) Understanding the fabric of protein crystals: 

computational classification of biological interfaces and crystal contacts. Bioinformatics 

32:481–489. https://doi.org/10.1093/bioinformatics/btv622 

86.  Jalencas X, Mestres J (2013) Chemoisosterism in the Proteome. J Chem Inf Model 53:279–

292. https://doi.org/10.1021/ci3002974 

87.  Keefer CE, Chang G (2017) The use of matched molecular series networks for cross target 

structure activity relationship translation and potency prediction. MedChemComm 8:2067–

2078. https://doi.org/10.1039/C7MD00465F 

88.  Krotzky T, Rickmeyer T, Fober T, Klebe G (2014) Extraction of Protein Binding Pockets in 

Close Neighborhood of Bound Ligands Makes Comparisons Simple Due to Inherent Shape 

Similarity. J Chem Inf Model 54:3229–3237. https://doi.org/10.1021/ci500553a 

 


