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Abstract 

With the increasing application of deep learning based generative models for de novo 

molecule design, quantitative estimation of molecular synthetic accessibility becomes 

a crucial factor for prioritizing the structures generated from generative models. On the 

other hand, it is also useful for helping prioritization of hit/lead compounds and guiding 

retro-synthesis analysis. In current study, based on the USPTO and Pistachio reaction 

datasets, we created a refined chemical reaction network, in which a depth-first search 

was performed for identification of the reaction paths of product compounds. This 

reaction dataset was then used to build predictive model for distinguishing the organic 

compounds either as easy synthesize (ES) or hard-to synthesize (HS) classes. Three 

synthesis accessibility (SA) models were built using deep learning/machine learning 



algorithms. The comparison between our three SA scoring functions with other existing 

synthesis accessibility scoring schemes, such as SYBA, SCScore, SAScore were also 

carried out. and the graph based deep learning model outperforms those existing SA 

scores. Our results show that prediction models based on historical reaction knowledge 

could be a useful tool for measuring molecule complexity and estimating molecule SA. 

Introduction 

The fact that the drug-like chemical space1–3 is around 1060- 10100 makes the process of 

finding a compound which satisfies the plethora of criteria such as bioactivity, drug 

metabolism and pharmacokinetic (DMPK) profile, synthetic accessibility 

simultaneously, as difficult as finding a needle in a hay stack4–6. Hence both medicinal 

and computational chemists attempted to develop approaches to efficiently explore 

chemical space for the purpose of identifying the compounds with desirable 

pharmacological activities as well as ADMET properties7–11. Among these efforts, 

virtual library based de novo molecule design method represents an important 

computational paradigm.12–15 The application of deep generative modelling for de novo 

molecule design has emerged in recent years. One major benefit of generative model 

method is that it can exhaustively explore a much larger chemical space comparing with 

virtual library based method. However, one of the big hurdle for structure generation in 

generative model is how to control the structural complexity of generated compounds. 

Ideally, the compounds designed by those generative models should be synthesized 

within in relative few synthesis steps.  



The definition of molecular complexity is context-dependent and ambiguous, for 

example multifunctional, multi-ring containing or multi-chiral-centre compounds can 

be complex to synthesize. Herein, ‘synthesis accessibility’ (SA) was considered as the 

synonymous definition of complexity. In recent years, various metrics of SA was 

extensively used in virtual screening (VS) workflow.16-20 For example, various metrics 

developed based on notions such as: assessing whether broken bonds between certain 

atomic types16 are reasonable; whether individual building blocks17,18 could be 

connected from the experiences of existing chemical reactions etc. Moreover, retro-

synthetic rules were also integrated into VS process19,20. 

Simple SA assessment can be done by simply calculating some physicochemical 

properties such as number of atom, bond, ring and some unconventional hard-to-

synthesis motifs, such as stereo-centre and macrocycles etc. SAScore21, one of the first 

SA computation methods, was developed based on the frequency analysis of molecular 

ECFP422 fragment occurrence in PubChem database. It was proved to be a useful tool 

in many cheminformatics applications23–26. The rationale of the method is that 

correlating the SA of a molecule to the fragment occurring frequency. Each fragment is 

assigned a numerical SA score. The higher the fragment occurring frequency in 

PubChem database27 is, the greater its SA score is. In addition, SAScore also took into 

account some complex structure motifs as penalty, such as stereo centers, spiro-rings 

and bridge ring atoms. But generally, the structural complexity and SA are not strongly 

correlated, partially because it does not incorporate the availability of the starting 

materials. For example, the total synthesis of a steroid is a tedious and challenging task, 



but if starting from readily prepared intermediates like cholesterol, the synthesis might 

only require very few reaction steps28. Therefore the molecular complexity based 

metrics could underestimate the SA of the molecules which can be easily synthesized 

from already existing precursors29,30. Hence, more general SA metric is needed.  

A more realistic solution for estimating SA is to take the reaction route complexity31 

into account, which means that the more reaction steps is needed for synthesizing the 

compound, the lower the synthesis accessibility of the compound is. Although there are 

some domain-specific knowledge on what a good or reasonable synthetic route should 

be, in general, the synthesis complexity of compound becomes more large when more 

synthesis steps are needed32,33. Aligning with this principle, SCScore28 was recently 

developed based on one simple premise: on average, reaction products are synthetically 

more complex than their corresponding reactants. By building 22 million reactant-

product pairs from the commercial Reaxys database34, a deep feed-forward neural 

network was trained to assign the synthetic accessibility score between 1 and 5. The 

main idea of the SCScore was to learn a synthetic complexity score which correlates 

with the number of reaction steps. But merely taking isolated reactant-product pairs into 

consideration and lack of consideration on the relationship among compounds cross 

different pairs will probably make the method not general enough for characterizing the 

SA. SYBA35, another recent method for synthetic accessibility assessment, is a 

fragment-based method for classifying organic compounds as ES or HS. To quantify 

this, a Bernoulli naïve Bayes classifier was trained on ES molecules available from 

ZINC15 and corresponding HS molecule generated by Nonpher36 algorithm. However, 



SYBA has the same problems as SCScore in terms of construction of dataset as one-to-

one (ES and HS) pairs, both methods are lack of systematic comparison in a large 

chemical reaction database. It is worth mentioning that recently appeared RAscore37, a 

feed forward neural network classifier, based on the AI driven computer aided synthesis 

planning (CASP) tool -- AiZynthFinder38, could determine whether a synthetic route 

can be found for a particular compound, and how difficult (a retrosynthetic accessibility 

value) it may be to realize the route in the wet lab. In terms of dataset selection, it has 

little to do with the chemical reaction. ES dataset was generated by randomly sampling 

200,000 compounds from ChEMBL, and HS dataset was collected from GDB17 

database39.  

Gryzbowski et al40 reported their work in constructing reaction knowledge graph aka 

NOC (network of chemistry), where large amount of compounds are inter-connected as 

either reactants or products. In current study, a similar knowledge graph based on 

reaction dataset of USPTO41 and Pistachio42 was constructed and, according to 

direction of the connected edges, nodes in the network were classified into two types 

of node: the node serving only as reactant (i.e. starting materials) and normal node 

which can serve either as reactant or product. The edge distance between the normal 

node and the reactant only node in the graph is used to represent possible reaction steps 

for synthesizing a compound. According to the number of synthesis step, an organic 

compound can be labeled as either ES or HS.  

Instead of constructing data set in the pairwise manner like SCScore and SYBA, a 

dataset based on existing reaction evidence in the reaction knowledge graph can be 



curated. Various classification models based on machine learning, which includes graph 

neural network as well as the fully connected feed-forward neural network, were built 

to predict compound’s SA. A comparison between our deep learning models and 

existing SA scoring functions like SYBA, SCScore and SAScore was also carried out. 

Our results show that the graph neural network model outperforms those available SA 

scoring functions. 

Methods 

Reaction dataset 

The reaction dataset used in the present work contains the publicly available United 

States Patent Office extracts (USPTO41) ranging from 1976 to 2016, and the 

commercially available Pistachio42 database provided by NextMove. After removing 

duplicates, all reactions were atom-mapped and classified using Filbert and HasELNut 

program provided by Nextmove, and 12,985,183 reaction items were remained. We 

then cleaned the data set using predefined filtering criteria described by Takkar et al43 

and removing some undesirable reactions (such as incomplete reactions, reactions 

which can’t generate template), 9,041,882 valid reaction items were obtained. This data 

set was further processed with the workflow as shown in Figure 1 to prepare datasets 

for template extraction, knowledge graph generation and building of various predictive 

models.  



 

Figure. 1 The workflow of chemical reaction processing. It was divided into four steps, (1) dataset preparation; (2) 

generation of reaction templates; (3) role designation and generation of chemical reaction knowledge graph; (4) 

curation of ES and HS data set. 



Template extraction and role designation 

Coley et al44,45 recently reported the development of a toolkit, RDChiral, for reaction 

template extraction. This toolkit not only can recognize the immediate neighborhood of 

reaction centers (red atoms in Figure 2), but also the required extended environment 

including special functional groups (green atoms in Figure 2) and neighboring carbon 

atoms as the extended motif (grey atoms in Figure 2) based on the user-defined radius 

(default value radius=1 used here). It is worth mentioning that Thakkar et al43 added 70 

additional functional groups and protecting groups besides the original 75 special 

groups that were included in RDChiral. The above mentioned valid reaction set was 

subsequently processed using RDKit and RDChiral45 for template extraction. In total, 

7,466,854 reaction templates were produced.  

 

 

Figure 2. Examples of template extraction, in which colored sites are added to reaction template. The red atom 

refers to the reaction center where the reaction occurs; The green atom refers to the special functional group 

around the reaction center; The grey atom corresponds to the extended motif which is the carbon atoms within 



certain distance to the reaction center. 

 

Figure 3. Four examples of original flawed chemical reaction records. 

It was found that, in the obtained reaction records going through the previous procedure, 

the reagent part in reaction SMILES very often was misplaced into the reactant part. 

For example, in Figure 4a, it was obviously wrong to put the Sodium (Na) into reactant 

list and methanol should be solvent; In Figure 4b, Iodide ion should not be in this 

reaction, methylene dichloride should be solvent. The exact role of Boron trichloride is 

unknown, but it’s clear that boron trichloride and the ammonium ion does not contribute 

mass to the product and shouldn’t belong to reactant; In Figure 4c, Pd should be catalyst, 

sodium methanolate should serve as base, and methyl alcohol should be solvent; In 

Figure 4d, methyl alcohol should be solvent, the HCl provides acidic environment and 

should be assigned to reagent. In those problematic reaction records, the 

reagents/solvents in the reaction SMILES were mixed with the reactants and this could 

make troubles in identifying the correct reactant structures for later creating the reaction 



network. This misplacement though did not affect the template extraction process, as 

this operation treated all non-product parts equally. Extracted reaction templates above 

were used to identify the reaction roles (mainly the reactants and reagents). A Knime46 

workflow was developed to clean up the reactant list of each reaction and following 

steps were carried out to identify reagent components: 

(1) Before extracting templates, along with reactants, all reagent components (solvent 

and catalyst) of original reaction records were treated as reactants and formed original 

reactants (ORs) 

(2) Template extraction procedure was carried out based on the reorganized reaction 

SMILES, both normal and inverse reaction templates were generated. The product 

structures were then put into the inverse reaction template to generate the predicted 

reactants (PRs) by using RDChiral functions.  

(3) For each reaction record, the generated PRs were then compared with ORs. For each 

PR component, any OR component which matched exactly or had highest pairwise 

Tanimoto similarity with it was regarded as the true reactant corresponding to the PR. 

After all PRs were compared, the remaining ORs were then designated as reagents. In 

general, the structure similarity between reactants and reagents is quite low, reagents 

can be easily distinguished and removed from the reactant list. 



 

Figure 4. The process of role designation. (1) Rearrange ORs; (2) Generate inverse reaction templates; (3) Match 

original product with inverse templates and get PRs; (4) Compare PRs with ORs 

Reaction knowledge graph  

Gryzbowski et al40 constructed directed complex networks using known organic 

chemical reactions, in which the nodes refer to the chemical substances (either reactants 

or products) and the directed edges correspond to the chemical reactions where the 

substances involve in. In current study, a similar network was constructed based on the 

combined Pistachio and USPTO datasets. After going through the above mentioned 

cleaning process, substances that don’t directly contribute to the reactions such as 



solvents, catalysts were removed and finally a refined chemical reaction network 

containing 2,192,740 nodes was constructed (as shown in Figure 5) and its details are 

listed in Table 1. The network file (GraphML format) generated from USPTO data set 

after clearing can be found in https://github.com/jidushanbojue/YaSAScore/data. 

 

Figure 5. Some example nodes of the reaction network. (A) Part of the reaction network. (B)Details of some 

exemplified nodes. The width of the line represents the number of chemical patents involved in the reaction. 

As shown in Figure 5, the starting nodes of the directed edge are reactants of the 

reaction and the destination nodes are the products. There are two types of node in the 

reaction knowledge graph, one type is the node which doesn’t connect to any in-flux 

edge and only connect to out-flux edges, it is called terminal node which only serves as 

reactant and there are 488,220 terminal nodes existed in the graph. The terminal nodes 

may be limited by the data set which was used to build the knowledge graph and are 

not necessary starting materials. Here we used a set of commercial available building 

block molecules38 from ZINC database47 to identify the starting materials among the 



terminal nodes and in total 38,664 terminal nodes were identified as starting material. 

The other type is the normal node which connects to both in-flux and out-flux edges 

and there are 691,830 nodes in total. The normal node can be recognized as either the 

product of the starting materials, or the reactant for other products. The path (if exists) 

length between a starting material (terminal node) and a product (normal node) on the 

graph can be referred as possible reaction steps (RS) for synthesizing a compound. 

From a practical point of view, the route with minimum step to the product can be 

regarded as the best reaction route for synthesizing the product. Some example 

structures are shown in Figure 6.  

 

Figure 6. The reaction steps of four example structures in the graph. A, B, C, and D are all ZINC starting materials. 

It takes at least 17 steps from A to Product 1, at least 10 steps from B to Product 2, at least 3 steps from C to 

Product 3 and 1 step from D to Product 4. 

 

 

 



Table 1. Statistics in the reaction knowledge graph 

Products 1,368,588 

Terminal node 488,220 

Normal node 691,830 

Starting material 38,664 

Reactant + Product (network node) 2,192,740 

Agent (not network node) 20,286 

Reactant + Product + Agent 2,213,026 

 

Synthesis accessibility prediction model 

The main goal of current study is to use the reaction step (RS) data which was obtained 

from the reaction knowledge graph as the surrogate of SA to build classification models 

of compound SA. Given that a compound in the graph has multiple paths to reach the 

starting materials, the minimum step was chosen to represent SA. The distribution of 

the minimum RS can be seen in Figure 7, it seems that distribution of RS is quite uneven, 

most of the compounds’ RS is less than 3 steps. Accordingly, we considered compounds 

whose minimum RS is less than or equal to 3 as ES class (753,842 compounds in total) 

and compounds whose RS is great than or equal to 4 as HS class (122,248 compounds 

in total). In order to create a balanced data set for model training, a structural clustering 

analysis was done on the ES class compounds to select a diverse ES compound set 

which also had roughly the same number of compounds to the HS class. The oetoolkit48 

based program Flush49 was used for clustering and the Tanimoto similarity threshold 



that was calculated based on Foyfi fingerprints50 was set as 0.62. The seed of each 

cluster was selected and a data set containing 123,837 compounds was curated, in which 

the ratio of ES and HS compound is roughly at 1:1. This balanced data set was then 

split into training, validation and test set with the ratio of 8:1:1. In addition, a full test 

set was also composed by adding those remained ES class compounds into the balanced 

test set for evaluating the model performance on all compounds not included in the 

training set.   

 

Figure 7. The distribution of the minimum RS. Compounds whose minimum RS is less than or equal to 3 as ES 

class (753,842 compounds in total) and compounds whose RS is great than or equal to 4 as HS class (122,248 

compounds in total) 

The fully connected deep neural network (DNN) models using molecular fingerprint as 

input were built, in which the 2048-length bit string Extended-Connectivity 

Fingerprints (ECFPs) by setting the maximum searching depth to 2 was generated using 

RDkit (https://www.rdkit.org/). Graph convolution neural network based model using 

molecular 2D structure directly as input were also built. Here the modified message 

passing neural network, CMPNN51, was employed for constructing the graph neural 



network. The DNN classifier were trained using Keras with Tensorflow as the back end, 

the RMSprop optimizer was used and binary cross-entropy was chosen as the loss 

function. The learning rate was decayed on plateau by a factor of 0.5. The optimal 

combination of parameters for the model was searched based on the model performance 

on the validation set. The CMPNN classifier was trained using default parameters as in 

the original literature51. Additionally, the performance of several existing SA models 

like SYBA, SCScore and SAScore were also examined on our data set for comparison 

purpose. The hyper-parameters of those models can be found in Supporting Information 

Table S1. 

Performance evaluation 

The performance of the SA prediction models was evaluated by three different 

indicators: the classification accuracy (ACC), Matthews correlation coefficient (MCC) 

and area under the ROC curve (AUC).  

           𝐴𝐶𝐶 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                         (1) 

        𝑀𝐶𝐶 =  
𝑇𝑃∗𝑇𝑁−𝐹𝑁∗𝐹𝑃

√(𝑇𝑃+𝐹𝑁)(𝑇𝑃+𝐹𝑃)(𝑇𝑁+𝐹𝑁)(𝑇𝑁+𝐹𝑃)
                (2) 

Where true positive (TP) refers to the true ES, and true negative (TN) refers to the true 

HS. ACC represents the percentage of correctly classified samples regardless of their 

predicted classes. ROC-AUC and MCC52 are two important metrics which make trade-

off between TP rate and FP rate over the whole possible thresholds. MCC, ACC and 

ROC-AUC are commonly used metrics for measuring the performance of binary 

classification model. 



Results and Discussion 

Analysis of chemical space of the data set 

In order to examine the chemical space of the ES and HS class compounds, a PCA 

(principal component analysis) analysis was carried out on the whole ES and HS 

compound sets based on six physicochemical descriptors which was calculated using 

RDkit package, i.e. MW (molecular weight), TPSA (topological polar surface area), 

RTB (number of rotatable bonds), HBD (number of H bond donors), HBA (number of 

H bond acceptors). The dimensionality of the input space was reduced by PCA to the 

top 2 components that explained 80% of the variance in the data. Figure 8 showed that 

the chemical spaces of ES and HS compound are basically identical. The distribution 

of individual properties can be seen in Figure 9 and they are also identical. These results 

demonstrate that using these physicochemical properties either alone or collectively is 

difficult to separate ES and HS molecules and a dedicated model is needed to predict 

SA. 



 

Figure. 8 PCA analysis on the physicochemical descriptors of the ES and HS datasets.  



Figure. 9 The distribution of physicochemical descriptors on the ES and HS datasets.  

Evaluation of model performance 

Table 2 the performance of different models on the balanced test set 

MODEL ROC-

AUC 

ACC MCC 

CMPNN 0.791 0.715 0.434 

DNN-ECFP 0.749 0.685 0.371 

SYBA 0.465 0.497 -0.012 

SYBA-21 0.76 0.69 0.382 

SAScore 0.513 0.498 -0.011 

SCScore 0.621 0.582 0.167 

SYBA-21: retrained the SYBA model on our own dataset 

Various predictive models were built on the data set. For CMPNN and DNN model, the 



optimal parameters were determined based the performance on the validation set. For 

DNN models, the ECFP fingerprint was used as the input descriptor. Table 2 shows that, 

among all models, CMPNN model achieved best results. Those existing SA models 

(SYBA, SAScore and SCScore) performed worse than both DNN-ECFP and CMPNN 

models. It is worth noting that SYBA-2 is a model which was retrained on our own 

training set using SYBA algorithm and the performance of SYBA-2 is still worse than 

that of CMPNN model.  

Table 3 the performance of different models on AllTestSet 

MODEL ROC-AUC ACC MCC 

CMPNN 0.741 0.582 0.096 

DNN-ECFP 0.734 0.646 0.098 

SYBA 0.569 0.973 0.017 

SYBA-2 0.694 0.651 0.079 

SAScore 0.569 0.972 0.009 

SCScore 0.584 0.459 0.035 

Because the number of ES (753,842) compound is much greater than the number of HS 

(122,248), after clustering analysis, around 630K ES molecules were left out. To gain 

a full picture of the model performance, those remained ES compounds was also 

evaluated. In this case, all the remaining compounds from the clustering analysis were 

added into the test set and the predictions were done on all compounds in the test set. 

The full test set results for each model were shown in Table 3. In this much larger and 

unbalanced data set, CMPNN ROC-AUC value was almost the same to that of the 

previous balanced test set and it was still the best model, while DNN-ECFP model 



ranked as the second best model. The retrained SYBA-2 model performed worse when 

the predictions on the remaining ES compounds were taken into account. It is worth 

mentioning that the SYBA and SAScore model have extremely high ACC score, but 

their performance on ROC-AUC is very poor, which suggests these models always tend 

to classify compounds as ES class, and have difficulty in identifying HS molecules.   

These results suggest that the structural complexity of molecule doesn’t correlate well 

the actual reaction step data. Models built with actual reaction step data may better 

reflect the SA. Conceptually, SAScore and SYBA methods are different to the method 

used in the present work. The SCScore model was built on the reaction data but it only 

consider the relationship between reactant-product pairs, while our model is built on 

the true reaction step data. Overall, our model at some extent should reflect the true 

synthesis accessibility instead of only structural complexity.  

Conclusion 

In the present work, we have developed predictive models for quantifying synthesis 

accessibility based directly on a refined chemical reaction network constructed on the 

USPTO and Pistachio reaction datasets. In contrast to existing SA methods which was 

built based on compound complexity, we used the minimum synthesis step of a product 

compound, which was obtained by carrying out the depth-first search of a chemical 

reaction network, as the surrogate of the synthesis accessibility. Compounds was 

designated as either ES or HS classes depending on their minimum synthesis step and 

three SA prediction models were built using deep learning/machine learning algorithms. 



We compared these SA scoring functions with existing SA scoring schemes, such as 

SYBA, SCScore, SAScore. The graph convolution neural network model outperforms 

those existing SA scores. Our analysis of reaction knowledge graph is still at the early 

stage. We expect building SA prediction models based on historical reaction data could 

be an interesting future direction for quantitively assessing molecular SA. With more 

reaction data and bigger reaction network, SA prediction model could be further 

improved. 

Data and Software Available 

Pistachio dataset was commercial chemical reaction database and used with 

permissions. Filbert, NameRxn and HazelNut were used for atom-mapping and 

classification under license from NextMove software. The detailed hyperparameters of 

all models can be found in supplementary materials. The scripts of templates extraction, 

generation of chemical reaction network, and the training, predicting and analysis 

process of each model can be found in the GitHub repository 

https://github.com/jidushanbojue/YaSAScore. The KNIME workflow of chemical 

reaction role designation, and the refined network file (GraphML format) of open-

source USPTO could also be found in the GitHub repository, 

https://github.com/jidushanbojue/YaSAScore. 
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