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Pressure plays essential roles in chemistry by altering structures and controlling chemical

reactions. The extreme-pressure polarizable continuum model (XP-PCM) is an emerg-

ing method with an efficient quantum mechanical description of small and medium-size

molecules at high pressure (on the order of GPa). However, its application to large molec-

ular systems was previously hampered by CPU computation bottleneck: the Pauli repul-

sion potential unique to XP-PCM requires the evaluation of a large number of electric field

integrals, resulting in significant computational overhead compared to the gas-phase or

standard-pressure polarizable continuum model calculations. Here, we exploit advances in

Graphical Processing Units (GPUs) to accelerate the XP-PCM integral evaluations. This

enables high-pressure quantum chemistry simulation of proteins that used to be computa-

tionally intractable. We benchmarked the performance using 18 small proteins in aqueous

solutions. Using a single GPU, our method evaluates the XP-PCM free energy of a pro-

tein with over 500 atoms and 4000 basis functions within half an hour. The time taken by

the XP-PCM-integral evaluation is typically 1% of the time taken for a gas-phase density

functional theory (DFT) on the same system. The overall XP-PCM calculations require

less computational effort than that for their gas-phase counterpart due to the improved

convergence of self-consistent field iterations. Therefore, the description of the high-

pressure effects with our GPU accelerated XP-PCM is feasible for any molecule tractable

for gas-phase DFT calculation. We have also validated the accuracy of our method on small

molecules whose properties under high pressure are known from experiments or previous

theoretical studies.

a)Electronic mail: fang.liu@emory.edu
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I. INTRODUCTION

Pressure plays important roles in chemistry by inducing phase transitions of molecule crystals,1–3

altering chemical bonds,4,5 controlling chemical reaction rates,6–8 and tuning photochemical

reactions.9,10 Modeling the influence of pressure in quantum chemical calculations is of great

importance to reveal the mechanism of exotic phenomena under high pressure, including pressure-

induced α-helix stabilization,11–13 formation mechanism of amino acids in deep space,14,15 and

metallic behavior of hydrogen under extreme pressure.16–18 Highly-efficient quantum chemistry

simulation under high pressure will also enable virtual high-throughput screening19 using pressure

as a tuning parameter for chemical discovery.

Periodic density functional theory (DFT) and Hartree-Fock have been used to investigate high-

pressure effects in materials and molecule crystals in the past few decades.20–23 However, pressure

effects on large molecules, such as proteins, can hardly be simulated with periodic DFT approach

due to the high computational cost for systems with hundreds or thousands of atoms per unit

cell. Classical molecular dynamics, as a low-cost alternative, lacks the description of electronic

structure changes under pressure. Its accuracy in describing high-pressure phenomena is highly

dependent on the force field parameterization,24 and could lead to results contradicting experimen-

tal findings.25–27

The extreme pressure polarizable continuum model (XP-PCM) by Cammi and co-workers28–30

emerges as a computationally efficient approach to incorporate pressure effects (on the order

of GPa29) into quantum chemistry calculations on single molecules. It has been applied to the

study of small to medium size molecules from single atoms,30–32 small organic molecules,29,33

to crystals34,35 and fullerenes.36 While XP-PCM DFT calculations are much more efficient than

their periodic DFT counterparts,35 their applications in quantum chemistry calculation of large

molecular and biomolecular systems are still hampered by the high computational overhead for

evaluating large numbers of related electron integrals. Unlike the DFT calculations in the gas

phase or in standard-pressure conductor-like screening models,37,38 XP-PCM DFT calculations

involve the unique Pauli repulsion potential, whose evaluation requires O(MN2) of electric field

integrals. Here, N is the number of basis functions, and M is the number of XP-PCM cavity grid

points typically at O(10N) or O(100N). This large number of electric field integrals can result in

computational overhead many times greater than the total runtime of the corresponding gas-phase

DFT calculation. Because of this prohibitively high computational overhead, no XP-PCM calcu-
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lation has been reported for proteins. Graphical Processing Units (GPUs) are especially suitable

for parallel computing involving massive data,39 and have been successfully applied in acceler-

ating various types of electron integrals by numerous groups.40–43 Speedups of more than two

orders of magnitude have been observed in the GPU-accelerated quantum chemistry methods at

different levels of theory, including Hartree-Fock,40,44 density functional theory,45 second-order

Moller-Plesset perturbation theory,46 coupled-cluster theory,47 and multireference methods.48,49

Here we exploit the advances of GPUs to accelerate the electric field integrals uniquely required

in XP-PCM calculations and enable quantum chemistry simulation of large molecular systems

under high pressure.

II. THEORY

The XP-PCM theory is an extension of conductor-like screening models (COSMO,37 C-

PCM,38 GCOSMO,50 and IEF-PCM51–53), which are introduced to describe the free energy of

solvated molecules. In these models, the solute molecule is embedded in a dielectric continuum

with permittivity ε , forming a cavity with unit permittivity. The solute polarizes the continuum,

whose electric field is described by a set of polarization charges on the cavity surface. Then, the

free energy of a solvated system in C-PCM can be expressed as

GC-PCM = E0 +Gpol, (1)

where E0 is the energy of the solute, and Gpol is the electrostatic component of the solvation

free energy represented by the interaction between the polarization charges and the solute, in

addition to the self-energy of the surface charges. Numerous publications have described the

detailed formalism of Gpol
37,38,50,54,55 and algorithms for large molecular systems,43,56–59 so we

will not elaborate on them in this work.

To describe molecules at extreme pressure, Cammi and coworkers28–30 proposed the XP-PCM

method, where the free energy of the system at the given pressure p is

GXP-PCM(p) = E0(p)+Gpol(p)+Gr(p)+Gcav(p). (2)

Compared to the free energy formula of C-PCM [Eq. (1)], the XP-PCM free energy [Eq. (2)]

introduces the Pauli repulsion contribution, Gr, and the cavitation energy term, Gcav.

The cavitation energy Gcav is the isotherm-isobar reversible work required for the forma-

tion of a void cavity to host the molecular solute in the pure solvent at the given pressure and
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temperature.33,60,61 The Gcav term does not contribute to the electronic Hamiltonian of the solute,

and is sometimes omitted in XP-PCM implementations.30 The XP-PCM free energy excluding

Gcav is denoted as

Ger = E0(p)+Gpol(p)+Gr(p). (3)

In this work, we only focus on Ger without considering Gcav. The Pauli repulsion term, Gr, de-

scribes the exchange-repulsion term of the interaction energy of the solute electrons and the solvent

electrons. Evaluation of Gr modifies the electronic Hamiltonian and is essential for implementing

XP-PCM in self-consistent field (SCF) calculations.

In the following subsections, we describe the essential equations for XP-PCM, focusing on the

evaluation of Gr.

A. Basic Formula of Pauli Repulsion Potential

In the XP-PCM model, the electronic Schrodinger equation for the solute molecule is given by(
Ĥ0 +V̂pol +V̂r

)
Ψ = EΨ (4)

where Ĥ0 is the Hamiltonian of the solute molecule in vacuum, Ψ is the solute wave function, V̂pol

is the electrostatic solute-solvent interaction covered in C-PCM, V̂r is the Pauli repulsion operator,

and E is the energy eigenvalue.

The Pauli repulsion operator corresponds to a repulsive potential located at the boundary of the

solute cavity:

V̂r =
N

∑
i

∫
ρ̂(r)Γ(r)dr (5)

Here, ρ̂(r) = ∑
N
i δ (r− ri) is the electron density operator over the N electrons of the solute

molecule, and the repulsion potential Γ(r) is a step barrier potential at the boundary of the cavity:

Γ(r) = ZΘC(r),

ΘC(r) =

0,r⊆ DC

1,r *DC

(6)

where DC denotes the domain of the physical space inside the cavity, and the height of the step

barrier, Z, is determined by the extent to which the cavity is compressed and can be expressed as

a function of the cavity scaling parameter f ,

Z( f ) = Z0

(
Vc( f )
Vc( f0)

)−(3+η)
3

. (7)
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Here, f0 = 1.2 is the value of f at the standard condition of pressure; Vc( f ) is the volume of the

molecular cavity obtained with the cavity scaling parameter f ; η is a semi-empirical parameter

that gauges how strong the Pauli repulsive barrier of the external medium is; and Z0 is the barrier

at standard pressure calculated from the following equation [adapted from Eq. (13) of Ref. 62]:

Z0 = (4π/ξ )ρBnB
pair. (8)

Here, ρB is the number density of the solvent molecule B; nB
pair is the number of valence elec-

tron pairs of the solvent; and ξ = 0.7 is the exponent of the Gaussian representation of localized

orbitals.62 In practical implementations, an empirical scaling coefficient is applied,62 given by

Z0 = 0.063ρB
nB

val
MB

, (9)

where ρB is redefined as the density of the solvent relative to the density of water at 298 K, nB
val is

the number of valence electrons of the solvent, and MB is the molecular weight of the solvent.

In HF/DFT, |Ψ〉 is the ground state Slater determinant, so we can apply the rules for the integral

of Slater determinants with one-electron operators63 and get

Gr =
〈
Ψ
∣∣V̂r
∣∣Ψ〉= ∑

µν

∑
σ=α,β

Pσ
µν 〈µ |Γ(r)|ν〉 , (10)

where Pσ is the density matrix of the solute electrons with spin σ ; µ and ν are atomic basis

functions. The contribution of Pauli repulsion to the Fock matrix is

hr
µν =

∂Gr

∂Pσ
µν

= 〈µ |Γ(r)|ν〉 , (11)

Combining Eqs. (6), (7) and (11), hr
µν can be rewritten as62

hr
µν = Z( f )

(
Sµν −S(in)

µν

)
, (12)

where Sµν is an element of the overlap matrix, and

S(in)
µν =− 1

4π

{

S(C)

(
Eµν · n̂

)
dS (13)

is the electric flux of the electric field (Eµν ) contributed by the electron density µ(r)ν(r) through

the cavity surface S(C). Here n̂ is the surface normal vector. Gauss’ Law is used to convert the

volume integral inside the cavity [Eqs. (5)-(6)] to the surface integral in Eqs. (12)-(13). A detailed

derivation is provided in Supplementary Materials Text S1.
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FIG. 1. Schematic presentation of the discretization of the SAS in the SWIG approach for a water molecule

as an example. The atomic spheres have centers RA and radii { f ·R0
A +Rsolv f/ f0}, where {R0

A} are the

VWD radii, f is the cavity scaling factor, and Rsolv is the solvent radius. The space inside the cavity (white

background) and outside the cavity (blue background) are denoted by r ⊆ DC and r * DC, respectively.

Cavity surface grid points (located at {rk} with norm vectors {n̂k}) are presented by dots colored by the

element of the center atom (red for O, gray for H). Transparency of the grid points indicates the value of the

switching function (opaque for exposed points with Sk ≈ 1 , transparent for partially "buried" points with

Sk << 1, S is defined in Eq. (16)). An example pair density µ(r)ν(r) contributed by the atomic basis

functions µ(r) (centered around R1) and ν(r) (centered around R2) is presented by yellow volume, with its

electric field presented by Eµν .

Therefore, in practical XP-PCM implementations, the essential task is to evaluate the Pauli

repulsion matrix hr [Eq. (11)], and hence, the one-electron integrals S(in)
µν . We will elaborate on

the details of the numerical evaluation of S(in)
µν in Section II C after introducing the discretization

scheme in Section II B.

B. Discretization of the molecular cavity surface in switching-Gaussian approach

In conductor-like screening models, the electrostatic interaction V̂pol is evaluated numerically

by discretizing the cavity surface into "tesserae".37 To evaluate the S(in)
µν integrals in XP-PCM,

we use the readily built solvent accessible surface (SAS) discretized by the switching-Gaussian

(SWIG) approach,54 to be consistent with our implementation of V̂pol (Figure 1). In this discretiza-

tion scheme, the molecular surface is formed from inter-locking Van der Waals (VDW) spheres
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centered around the composing atoms, and the surface of each sphere is discretized by Lebedev

grid points54. Geometry of the solvent molecule is represented by expanding the VDW radii with

a scaling factor f , and adding an optional effective solvent radius Rsolv. The radius of each VDW

sphere, RJ is then expressed as

RJ = f R0
J +Rsolv f/ f0 (14)

where R0
J is the Bondi radius64,65 of atom J, and Rsolv is the solvent radius, and the scaling factor

f/ f0 for Rsolv is adapted from the scaling of solvent radius in the solvent exclusion surface (SES).29

To avoid singularities in the evaluation of V̂pol, surface polarization charges are presented as

spherical Gaussian functions centered at the grid point, and the Gaussian exponent for the kth

point charge belonging to the Ith nucleus is given as

ζk =
ζ

RI
√

wk
(15)

where ζ is an optimized exponent for the specific Lebedev quadrature level being used (as tabu-

lated by York and Karplus),54 wk is the Lebedev quadrature66 weight for the kth point, and RI is

the atomic radius of the Ith nucleus that the kth tessera belongs to.

To get a smooth change of cavity surface area during geometry optimization, the switching

function is introduced to indicate how much a grid point is either buried inside the molecular sur-

face or exposed and accessible to solvent molecules. For the improved SWIG (ISWIG) scheme67

used by default in our implementation, the switching function is defined as

Sk =
atoms

∏
J,k/∈J

Swf(rk,RJ) (16)

Swf(rk,RJ) = 1− 1
2
{erf[ζk(RJ−|rk−RJ|)]

+ erf[ζk(RJ + |rk−RJ|)]} (17)

where rk is the location of the kth Lebedev point, RJ is the location of the Jth nucleus with atomic

radius RJ , and erf is the Gauss error function. The area of the kth tessara can then be calculated as

ak = wkR2
I Sk. (18)
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C. Numerical Evaluation of Pauli Repulsion Integrals

With the discretization scheme of section II B (also see Figure 1), the S(in)
µν integral [Eq. (13)]

can be rewritten as

S(in)
µν =− 1

4π

M

∑
k

(
Ek

µν · n̂k

)
ak. (19)

Here, n̂k is the norm vector of the kth tessera pointing outward from the cavity, ak is the area of

the kth tessera [Eq (18)], and Ek
µν is the electric field caused by the electron distribution of basis

function pair µ(r)ν(r) at the kth tessera center

Ek
µν =−

∫
µ(r)ν(r)

rk− r
|rk− r|3

dr, (20)

where rk is the position of the kth Lebedev grid point (Figure 1). It is worth noting that this type

of electric field integral does not exist in C-PCM, where only the electric potential integrals are

evaluated to obtain V̂pol. As usual, the atom-centered basis functions are contractions over a set of

primitive atom-centered Gaussian functions

µ(r) =
lµ

∑
i=1

cµiχi(r) (21)

Thus, the one-electron integral S(in)
µν [Eq. (19)] can be expressed as

S(in)
µν =

1
4π

M

∑
k

(
µ(r)µ(r)

∣∣∣∣(rk− r) · n̂k
|rk− r|3

)

=
1

4π

lµ

∑
i=1

lν

∑
j=1

M

∑
k

cµicν j

[
χi(r)χ j(r)

∣∣∣∣(rk− r) · n̂k
|rk− r|3

]
(22)

where we use brackets to denote one-electron integrals over primitive basis functions and paren-

theses to denote such integrals for contracted basis functions. In the following, we use the indices

µ,ν for contracted basis functions, and the indices i, j for primitive Gaussian basis functions. We

discuss the GPU algorithm for evaluating S(in)
µν in Section III.

D. Numerical Calculation of Pressure

We use the numerical fitting approach proposed by Cammi and coworkers33 to calculate the

pressure p associated with each value of the cavity scaling factor f . For a given molecule with

fixed structure, multiple XP-PCM calculations with different f values are performed to obtain a
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series of Ger values. These Ger values are fitted as a nonlinear function of the associated cavity

volumes, Vc, based on the following expression68

Ger(Vc) = Ger(V 0
c )+aVc

[
1

b−1

(
V 0

c
Vc

)b

+1

]
+ cVc (23)

where a,b, and c are fitting parameters. Then the pressure p can be computed by differentiation

(derivation available in Supplementary Materials Text S2)

p( f ) =−∂Ger(Vc)

∂Vc
= a

[(
V 0

c
Vc

)b

−1

]
− c. (24)

III. IMPLEMENTATION ON GPUS

Unlike the V̂pol related integrals that need to be re-evaluated in each SCF iteration, S(in)
µν is

evaluated only once before the SCF calculation starts and is directly added to the core Hamiltonian.

However, this does not mean that the evaluation of S(in)
µν is computationally trivial. In Section V A,

we will demonstrate that XP-PCM usually requires a significantly denser grid than regular C-PCM

to ensure numerical integration accuracy, which increases computational cost significantly if no

acceleration strategy is applied.

Building S(in)
µν requires one-electron integral evaluations and involves a significant amount of

data parallelism, making it well suited for GPU acceleration. We elaborate the GPU-based accel-

eration strategies in the following subsections.

A. Fine-grained parallelism

Analogous to our GPU-based implementation of V̂pol related integrals in C-PCM,43,56 we wrote

six separate GPU kernels for evaluating S(in)
µν of the following angular momentum classes: ss, sp,

sd, pp, pd, and dd. Each individual GPU thread calculates integrals corresponding to a batch of

primitive pairs sharing the same set of pair quantities, similar to the One Thread ↔ One Batch

mapping42originally proposed for the evaluation of Coulomb integrals. For instance, in the ss

kernel, each GPU thread calculates a single integral, [χs1 χs2], in each loop, whereas in the sp

kernel, each GPU thread calculates 3 primitive pairs, [χsχ
x
p], [χsχ

y
p], and [χsχ

z
p].

The algorithm for evaluating S(in)
µν for sp pairs is shown schematically in Figure 2 for a system

with one s shell and two p shells and a GPU block size of 1× 6 threads. The s shell contains
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FIG. 2. Algorithm for calculating S(in) for sp integrals of a system composed of one s shell and two p

shells (the s shell contains 2 primitive Gaussian function each; the first and second p shells have 2 and 3

primitive Gaussian functions, respectively). On top of the graph, the pale green array represents primitive

pairs belonging to sp shell pairs. The GPU cores are represented by orange squares (threads) embedded

in pale yellow rectangles (one-dimensional blocks with 6 threads/block). The 1 × 6 block is used for

illustrative purposes only, and a 1 × 128 block is used in actual implementation. The output is a 3×Nthreads

array where each GPU thread generates 3 integrals for primitive pairs [χsχ
x
p], [χsχ

y
p], and [χsχ

z
p] . Primitive

pair integrals are finally added to the Fock matrix entry of the corresponding contracted function pair. All

red lines and text indicate contracted Gaussian integrals. Blue arrows and text indicate memory operations.

2 primitive Gaussian functions; the first and second p shells have 2 and 3 primitive Gaussian

functions, respectively. A block of size 1 × 6 is used for illustrative purposes. In practice, a 1

× 128 block is used for optimal occupancy and memory coalescence. Primitive pairs, χiχ j, that

make negligible contributions are not calculated, and these are determined by using a Schwartz-

like bound69 with a cutoff, εscreen = 10−14 atomic units

[i j|Schwartz =
[
χiχ j |χiχ j

]1/2
< ε

screen. (25)
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Here we use a tighter threshold than the default 10−12 threshold for V̂pol
43 because Gr usually has

a smaller magnitude than Gpol and thus is more sensitive to the integral threshold.

The surviving pair quantities are preloaded to the GPU global memory, and each GPU thread

fetches a batch of 3 sp primitive pairs sharing the same set of pair quantities at the beginning of

the integral kernel. Quantities related to each Lebedev grid point (area ak, coordinates rk, and

norm vector n̂k pointing towards outside of cavity) are also preloaded in global memory. Each

GPU thread loops over all Lebedev grid points to accumulate the electric flux of the electric field

contributed by its primitive pair [χiχ j] through all tesserae of the cavity surface as follows

S(in)
i j =

1
4π

M

∑
k

[
χi(r)χ j(r)

∣∣∣∣(rk− r) · n̂k
|rk− r|3

]
(26)

It worth noting that for the GPU kernel shown in Figure 2, which evaluates the sp angular mo-

mentum class, three integrals in the form of Eq. (26) are evaluated by each GPU thread for the

primitive pairs [χsχ
x
p], [χsχ

y
p], and [χsχ

z
p]. Evaluation of the primitive integral of Eq. (26) is dis-

cussed in subsection III B.

The result is stored to an output array in GPU global memory, which is later copied to the CPU

memory after the accumulation of S(in)
i j is done. The last step is to form S(in)

µν

S(in)µν =
lµ

∑
i=1

lν

∑
j=1

cµicν jS
(in)
i j (27)

on the CPU by adding each entry of the output array (primitive pair) to its corresponding atomic

orbital pair entry.

All algorithms discussed above can be easily generalized to other angular momentum classes

other than sp. The numbers of primitive pairs evaluated by each GPU thread in momentum classes

ss, sp, sd, pp, pd, and dd are 1, 3, 6, 9, 18, and 36, respectively, since our implementation uses

Cartesian format basis function and each d orbital has 6 components. These kernels are launched

sequentially.

B. Evaluation of primitive integrals

The primitive electric field integral of Eq. (26) for different angular momentum classes are eval-

uated analytically based on the algorithm of McMurchie and Davidson.70 For a pair of Cartesian
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Gaussian basis functions

χi = xn
Ayl

Azm
A exp(−αAr2

A) (28)

χ j = xn̄
Byl̄

Bzm̄
B exp(−αBr2

B) (29)

centered at A= (xA,yA,zA) and B= (xB,yB,zB), the product χiχ j can be expanded as combinations

of Hermite polynomial Gaussians

[χiχ j|=
n+n̄

∑
N

m+m̄

∑
M

l+l̄

∑
L

DNLMΛN(xP)ΛL(yP)ΛM(zP)exp(−αPr2
P)

= ∑
NLM

DNLM[NLM| (30)

Here, the Hermite polynomial Gaussian Λ j is related to the Hermite polynomial H j by Γ j(xP;αP)=

α
j/2

P H j(α
1/2
P xP); P = (xp,yp,zp) is the center of the product Gaussian function formed from the

overlap of the two Gaussian functions in Eq (28) and (29), and αP is the Gaussian exponent of

the product Gaussian; indices (N,L,M) run over all possible combinations within the appropriate

range.

The electric field integral of χiχ j can then be calculated as combinations of the electric field

integral of Hermite polynomial Gaussians (N,M,L):

S(in)
i j =

1
4π

M

∑
k

∑
NLM

DNLM
([

NLM
∣∣xkr−3

k

]
n̂k,x

+
[
NLM

∣∣ykr−3
k

]
n̂k,y +

[
NLM

∣∣zkr−3
k

]
n̂k,z
)

(31)

where n̂k,x, n̂k,y, and n̂k,z are the components of n̂k in x, y, and z directions, and the integrals of

[NML| are given by [
NLM|xkr−3

k

]
=−(2π/αP)RN+1,L,M[

NLM|ykr−3
k

]
=−(2π/αP)RN,L+1,M, (32)[

NLM|zkr−3
k

]
=−(2π/αP)RN,L,M+1

Here, the auxiliary functions RNLM can be calculated from recursive relations to tabulated Boys

functions.71

We wrote separate GPU kernel functions for evaluating the primitive integrals of each mo-

mentum class. Each kernel function generates expansions of primitive pairs [Eq. (30)] based on

recursive relations of DNLM, and then evaluates the electric field integrals of Eq. (32) in terms of

Boys functions.
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FIG. 3. Structures for the benchmark proteins for XP-PCM performance test. For each protein, the PDB

ID, number of atoms, and the number of orbitals with 6-31G* basis set are listed.

IV. COMPUTATIONAL DETAILS

We have implemented a GPU-accelerated XP-PCM formulation in a development version of

the TERACHEM72,73 package. All XP-PCM calculations use parameters stated as follows unless

otherwise specified. An ISWIG screening threshold of 10−8 is used, meaning that molecular

surface (MS) points with a switching function value less than this threshold are ignored. The Pauli

repulsion gauge parameter η is set to 6 as recommended by literature.30 This choice of η is known

to give a dependence of the computed pressure on the cavity volume Vc in reasonable agreement

with the dependence of the experimental pressure on the molar volume in molecular solids.33

To study the computational performance of our GPU implementation on large biomolecules, we

select a test set of 18 experimental protein structures74 obtained with aqueous solution NMR where

inclusion of a solvent environment was essential to find optimized structures in good agreement

with experimental results (Figure 3). The proteins range in size from around 70 to 500 atoms,

and their detailed properties (PDB ID, number of residues and atoms, charge, secondary structure)

are summarized in the Supplementary Materials Table S1. For these test molecules, we conduct

a number of XP-PCM single-point energy evaluations at B3LYP75–77/6-31G*78 level of theory,
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with the cavity scaling factor f values ranging from 0.85 to 1.20 (pressure values on the order

100 GPa to 1 GPa, see Supplementary Materials Figure S1 and S2). The environment dielectric

constant corresponds to aqueous solvation (ε = 78.39, ρB = 1.0, nB
val = 8, MB=18). The default

revised Bondi radii65 are used (R0
H = 1.1 Å, R0

C = 1.7 Å, R0
N = 1.55 Å, R0

O = 1.52 Å, and R0
S = 1.8

Å). Similar calculations are carried out in the gas phase and in C-PCM implicit solvent to test the

computational cost of adding in the XP-PCM high pressure environment. All timings have been

obtained using a single core of the Intel Xeon Gold 6248 “Cascade Lake” CPU clocked at 2.50

GHz and one NVIDIA Tesla V100 GPU.

To validate our XP-PCM implementation, we carry out XP-PCM calculations on an argon

(Ar) atom and an acetylene molecule. To simplify the comparison with previous XP-PCM works

by Cammi et al. on these systems,30 we have used the same simulation parameters wherever

possible. Therefore, we fix the geometry at the equilibrium geometry optimized in the gas phase

without XP-PCM. Due to the lack of f-type basis functions in TERACHEM, we are not able to

use the aug-cc-pVTZ basis set in Cammi’s work,30 and the single point calculations are carried

out at B3LYP/aug-cc-pVDZ level of theory. The environment dielectric constant corresponds to

cyclohexane (ε = 2.0165, ρB = 0.779, nB
val = 36, MB=84.16). We use the same set of Bondi atomic

radii (R0
H = 1.2 Å, R0

C = 1.7 Å, and R0
Ar = 1.88 Å) as Cammi’s work30 to facilitate comparison of

results. The hydrogen atom radius is slightly different from the default revised Bondi radius65 used

in TERACHEM (R0
H = 1.1). The cavity uses an ISWIG67 discretization density of 1202 Lebedev

points/atom and cavity radii that are varied by applying a scaling factor f on the Bondi radii.64

V. RESULTS AND DISCUSSION

The GPU implementation of XP-PCM could be a computationally efficient approach to investi-

gate the electronic structure of molecular and biomolecular systems. In this section, we investigate

the efficiency and accuracy of our XP-PCM implementations. We first look for the appropriate dis-

cretization level to obtain numerically converged XP-PCM results for a small protein. With the

optimal discretization parameter, we benchmark the performance of XP-PCM calculation of a set

of proteins varying in sizes to estimate the time scaling and the applicability of the this to large

biomolecules. Then we compare the computational performance of the XP-PCM, C-PCM, and

the gas phase counterpart to evaluate the extra computational cost for describing the pressure and

solvent effects. Finally, we assess the quality of our implementation for describing high pressure
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effects by applying the method on an Argon atom and an acetylene molecule.

A. Convergence with respect to discretization level

In this subsection, we look for the optimal XP-PCM cavity discretization level that balances

the numerical accuracy and computational cost.

We examine the convergence of XP-PCM calculation with respect to the discretization level of

the cavity surface, which is defined as the density of Lebedev grid points per sphere (Figure 4).

For the tested peptide (PDB ID: 3FTR), both the Pauli repulsion energy (Gr) and the electrostatic

solvation free energy (Gpol) values vary with the discretization levels, and hence determine the

convergence behavior of the total free energy (Ger). At low, medium, high, and very high dis-

cretization levels (26-50, 110-302, 434-770, and 974-1202 points/atom), the relative error in Gpol

is typically less than %5, %1, %0.3, and %0.04, whereas the relative error for Gr rapidly changes

from %111 to %44, %7, and %2 (Figure 4 and Table I). Since Gpol and Gr have similar magnitudes

and opposite signs, it is essential to reach sufficient numerical accuracy for both terms to ensure

the accuracy of the total free energy.

Ideally, a very-high discretization level (>974 points/atom) is preferred, but the total runtime is

twice the runtime of the medium discretization level (Figure 4). As the grid density increases, the

number of effective (non-buried) Lebedev points increases linearly, and the number of XP-PCM

related primitive integrals (for both hr and V̂pol) increases linearly (Supplementary Materials Table

S2). Since V̂pol is re-evaluated for each SCF iteration, the increase in computational cost with grid

density is magnified, resulting in very high computational overhead (>50% of total runtime) at very

high discretization level (Supplementary Materials Table S3). To balance accuracy and efficiency,

a high discretization level of 434 points/atom is chosen for performance tests in sections V B and

V C unless otherwise specified.

It is worth noting that this choice of discretization level for XP-PCM is significantly higher than

the recommended discretization level for C-PCM,54 which only has free energy contribution from

Gpol. As shown in our test for 3FTR (Figure 4) as well as previous works in this field,54,67 sufficient

accuracy for Gpol (error≈ 1 kcal/mol) can already be reached at a medium discretization level (ca.

110 points/atom). Apart from the convergence of free energies, the convergence of cavity volume

is also crucial for XP-PCM because the volume is explicitly needed for deriving the pressure [Eq.

(5)]. Our choice of 434 points/atom has less than 0.2% error in cavity volume for the tested
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FIG. 4. Convergence of the free energies (Gr, Gpol, Ger in Eh) and runtime (in sec) with respect to dis-

cretization level (points/atom) for the XP-PCM B3LYP/6-31G* calculation of a peptide (PDB ID: 3FTR).

A constant cavity scaling factor f = 1.0 is used for all calculations. The main chain of 3FTR is shown in the

inset, with carbon, nitrogen, oxygen, and hydrogen colored grey, blue, red, and white, respectively. All XP-

PCM calculations are conducted with TERACHEM using a single core of Intel Xeon Gold 6248 “Cascade

Lake” CPU clocked at 2.50 GHz and one NVIDIA Tesla V100 GPU.

system, significantly lower than the 2% error at low discretization level (Supplementary Materials

Table S2). Because of the higher discretization level required in XP-PCM, a GPU accelerated

implementation is even more critical for XP-PCM than C-PCM to ensure its applicability to large

molecules where the electric field integral evaluations may dominate the total runtime.

B. Performance for large molecules

Two primary concerns about applying XP-PCM to large molecules are the time scaling of

the algorithm and the efficiency compared to its gas phase, or normal-pressure solution-phase

counterparts. To test these, we collected the timings of XP-PCM calculation of a set of proteins

at different pressures presented by different cavity scaling factors f (Figure 5). The observed

empirical scaling of the evaluation of Pauli-Repulsion matrix hr unique to XP-PCM is O(N1.9)

regardless of cavity scaling factor f . Here, the normal ( f = 1.2), moderately compressed ( f = 1.0),

and highly compressed ( f = 0.85) cavities correspond to pressure values on the order of 1 GPa,
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TABLE I. Free energies (Gr and Gpol, in Eh) obtained at different discretization levels compared to the results

obtained with the highest grid density (1202 points/atom) for the XP-PCM B3LYP/6-31G* calculation with

cavity scaling factor f = 1.0 of a protein fibril (PDB ID: 3FTR).

discretization grid density
Gr(Eh) Gpol(Eh)

relative error

level (pts./atom) Gr Gpol

low
26 0.451286 -0.392746 111.32% 4.51%

50 0.451692 -0.401015 111.51% 2.50%

medium

110 0.305759 -0.406418 43.18% 1.18%

194 0.264476 -0.408335 23.84% 0.72%

302 0.246270 -0.409623 15.32% 0.40%

high

434 0.229174 -0.410099 7.31% 0.29%

590 0.223057 -0.410603 4.45% 0.16%

770 0.218007 -0.410924 2.08% 0.09%

very high
974 0.218098 -0.411119 2.13% 0.04%

1202 0.213555 -0.411281 0.00% 0.00%

10 GPa, and 100 GPa, respectively (Supplementary Materials Figure S1 and S2). However, the

prefactor of the scaling increases as f decreases, meaning that the XP-PCM calculations at higher

pressure have higher computational costs for evaluating hr. This is a natural result of the fact that

the number of effective molecule surface grid points (not "buried" in the cavity) roughly increases

linearly as f increases (Supplementary Materials Figure S3). As the scaling factor f decreases,

the radii of the atom-centered spheres decreases, and there is less overlap between the spheres and

more exposure of grid points.

The total runtime of XP-PCM follows a similar trend. The runtime has O(N2.0) scaling at all

f values, but larger prefactors are observed at lower f values (Figure 5). Here the total runtime

includes the evaluation of hr, the electrostatic solvent effect term V̂pol, and other terms in regular

gas phase SCF. It is worth noting that the V̂pol evaluation also needs more computational cost at

lower f values because of the increase in grid points. For the largest protein (PDB ID: 2KJM) in

the benchmark set, the time for evaluating V̂pol doubles as the cavity is compressed from f = 1.2

to f = 0.8, while the time for evaluating hr also increases by 1.75 times (Supplementary Materials

Figure S4-S5).

17



0 1000 2000 3000 4000 5000

number of basis functions

0

250

500

750

1000

1250

1500

1750 f=0.85, y=1.4×10−5x2.2
f=1.00, y=5.7×10−6x2.3
f=1.20, y=6.3×10−6x2.3

0

2

4

6

8

10

f=0.85, y=6.5×10−7x1.9
f=1.00, y=6.6×10−7x1.9
f=1.20, y=5.7×10−7x1.9

Total

h
r

ti
m

e
 (

s
e

c
)

ti
m

e
 (

s
e

c
)

f=

=5.7×10−7x1.9

FIG. 5. Timings (in sec) for the XP-PCM B3LYP/6-31G* single point calculations for a set of 18 benchmark

proteins in normal ( f = 1.2, p at ca. 1 GPa), moderately compressed ( f = 1.0, p at ca. 10 GPa), and highly

compressed ( f = 0.85, p at ca. 100 GPa) cavities. An ISWIG discretization scheme is used with 434

Lebedev points/atom. Timing data are presented with dots, with curves with respective colors showing

the empirical scaling fitted by power function. Timings for the evaluation of the Pauli repulsion integral

(hr) (upper) and for the total single point calculation (lower), with representative proteins of different sizes

shown in the inset structure. All XP-PCM calculations are conducted with TERACHEM using a single core

of Intel Xeon Gold 6248 “Cascade Lake” CPU clocked at 2.50 GHz and one NVIDIA Tesla V100 GPU.

In summary, our XP-PCM implementation demonstrates a sub-quadratic scaling based on tests

of molecules with up to 5000 basis functions, which is similar to the performance of our GPU-

accelerated implementation of C-PCM.
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electrostatic interactions V̂pol, and their sum are presented by blue, red, and green dots, respectively. The

sum of these XP-PCM-specific components is denoted with grey dots. For each component, the average

value over the 18 protein set is indicated by a dotted line with the corresponding color. All XP-PCM calcu-

lations are conducted with TERACHEM using a single core of Intel Xeon Gold 6248 “Cascade Lake” CPU

clocked at 2.50 GHz and one NVIDIA Tesla V100 GPU.

C. Performance comparison to gas phase

To obtain a comprehensive comparison between XP-PCM and its gas phase or normal-pressure

solution-phase counterparts, we decompose the timings for XP-PCM at f = 1.0 (moderately com-

pressed, p at about 10 GPa) into different contributions (Figure 6). The total runtime of XP-PCM

can be partitioned into the XP-PCM-specific part, and other parts in common with gas phase SCF.

The former includes three major components: building the cavity surface, constructing the Pauli-

Repulsion matrix hr, and evaluating electrostatic solvent effects related terms V̂pol. Among these

terms, V̂pol takes the majority of the time because the related integrals depend on solute electron

density and are re-evaluated in each SCF iteration. The molecular cavity and the hr matrix only

need to be built once before SCF starts and take less than 0.2% and 1.4% of the time for any tested

protein. In total, the percentage of time taken by the XP-PCM specific terms fluctuate between

12%-26% with an average value of 17%. Based on these timings, and assuming that SCF con-

verges similarly in different environments, we expect that the runtime of an XP-PCM calculation

is about 1.2X of the gas phase runtime for the same system.

However, direct comparison of the runtime for XP-PCM, C-PCM, and gas phase calculations
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FIG. 7. Relative runtime (in seconds) taken by XP-PCM ( f =1.0) and C-PCM B3LYP/6-31G* single point

energy evaluations compared to their gas phase counterpart for benchmark proteins ordered by increasing

size. Two proteins (PDB ID: 1ODP and 2KJM) in the benchmark set are not included because of uncon-

verged gas phase calculations. An ISWIG discretization scheme is used with 434 Lebedev points/atom.

Runtime for XP-PCM and C-PCM are visually the same, because the extra time for building hr in XP-PCM

is negligible due to our efficient implementation. Timings were obtained with TERACHEM single core of

Intel Xeon Gold 6248 “Cascade Lake” CPU clocked at 2.50 GHz and one NVIDIA Tesla V100 GPU.

shows that XP-PCM and C-PCM require less runtime than the gas phase counterpart for all tested

proteins (Figure 7).

This is caused by the fact that DFT calculations of large molecules like proteins tend to con-

verge much faster in XP-PCM than in the gas phase, as was observed for the comparison between

C-PCM and gas phase in our previous works.43,56 The number of SCF iterations taken by the

gas phase calculation is 1.4X to 22.8X of that taken by XP-PCM (Supplementary Materials Table

S4). Two proteins (PDB IDs: 1ODP and 2KJM) that failed convergence in 2000 iterations in the

gas also successfully converged in XP-PCM within 17 steps. Hence, we expect that in practical

applications, XP-PCM is computationally feasible to any large molecular system that is computa-

tionally tractable in the gas phase.

D. Compressed argon atom

To assess the accuracy of our implementation for describing high-pressure effects, we compare

our XP-PCM calculation of a compressed argon atom with previous theoretical and experimental

results. The free energy Ger at different cavity volumes (Vc) is obtained with XP-PCM calculations

at different cavity scaling factor values ( f = 0.85 – 1.20, Figure 8 and Supplementary Materials
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FIG. 8. (left) XP-PCM free energy of a compressed argon atom in cyclohexane solvent as a function of

cavity volume (cavity scaling factor f = 0.85 – 1.20). Ger is calculated relative to its value obtained with

f0=1.2. (right) Comparison of the volume compression of argon (Vc/V1) as a function of pressure obtained

with XP-PCM calculation (this work and Cammi et al. work30) and experiments.79 V1 is the reference

volume of the cavity corresponding to the pressure p = 1.1 GPa. Schematic illustration of the argon atom in

a compressed cavity is shown in the insets. Length of arrows indicates the strength of pressure.

Table S5). To obtain the corresponding pressures, we used Equation (23) to fit Ger as a function of

Vc (Figure 8 and Supplementary Materials Table S5). The fitting parameters for compressed argon

are a = 1.3048×10−4 Eh/Å3, b = 5.4057, and c = -1.7593 ×10−4 Eh/Å3. Using these parameters

with Equation (24), we determined the pressure as a function of the cavity volume (Figure 8 and

Supplementary Materials Table S6). We see excellent agreement with Cammi’s previous XP-PCM

work for the free energy and the pressure functions, due to the usage of a slightly different basis

set (see details in Section IV). We have also compared the volume compression as a function of

pressure to the experimental values for solid argon compression and found very good agreement

(Figure 8).

E. Compressed acetylene molecule

We further assessed the XP-PCM description of pressure effects in an acetylene molecule,

where the cavity has an irregular shape in contrast to argon’s spherical cavity. With a similar

numerical fitting approach, we obtained the pressure as a function of the cavity volume (Figure

9 and Supplementary Materials Table S7). The fitting parameters for compressed acetylene are
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a = 1.5457 ×10−4 Eh/Å3, b = 5.9367, and c = -1.8521×10−4 Eh/Å3. Although there are some

differences in the free energy values, the p−Vc curve gives a good agreement with Cammi’s

results.

It is not surprising that the energies are not the same, as we have noticed some differences

in the cavity definition. Although we obtained the same cavity volumes as Cammi’s results for

the argon atom, we noticed that our cavity volumes for acetylene are systematically lower at all

f values, even when the same set of atomic radii are used (Supplementary Materials Table S8).

The difference is likely caused by the fact that we use the switching Gaussian approach to smooth

the cavity surface, which can influence the calculation of Vc. To facilitate direct comparison with

Cammi’s work, we added a small solvent radius (0.135 Å) to our cavity to expand the volumes to

be more comparable to Cammi’s results, and the final results are reported in Figure 9). However,

we can still see subtle differences in volumes between this work and Cammi’s at the same f value.

This difference in cavity construction also influences hr, leading to the difference in Ger (Figure

9).

VI. CONCLUSIONS

In this work, we demonstrated that by implementing the Pauli repulsion integrals of primitive

basis functions with fine-grained parallelism, the free energy of the XP-PCM method can be ef-

ficiently evaluated on GPUs and can be applied to the simulation of large molecules under high

pressure.

The performance was tested by calculating the XP-PCM free energy of 18 proteins with a size

range of 70-500 atoms at high pressure (on the order of 1 to 100 GPa). The benchmark calculations

are used to demonstrate the feasibility of applying the method on large molecules under high

pressure with up to 5000 orbitals. We achieve the same scaling as the C-PCM method, showing

that the evaluation of Pauli repulsion integrals in XP-PCM only introduces minimal increase of

computational cost. For all tested proteins, the XP-PCM calculation took less runtime than its gas

phase counterpart due to improved SCF convergence. We showed our XP-PCM implementation

is feasible for any system that can be calculated in the gas phase. We also validated the accuracy

of our implementation by comparing the XP-PCM calculated pressure-volume relationship with

previous XP-PCM and experimental results. Very good agreement is obtained for an argon atom

and an acetylene molecule.
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cyclohexane. XP-PCM free energy Ger as a function of cavity volume for a compressed acetylene molecule

in cyclohexane solvent (upper). Ger is calculated relative to its value obtained with cavity scaling fac-

tor f0=1.2. Pressure-volume relationship derived from the numerical fitting approach of Eq. (23) (lower).

Schematic illustration of the acetylene molecule in a compressed cavity is shown in the insets. Length of

arrows indicates the strength of pressure.

In the future, we will extend our acceleration strategies to the evaluation of analytical energy

gradients29 and analytical pressure30 of XP-PCM method. These efforts will enable efficient ge-

ometry optimization and ab initio molecular dynamics of large molecular systems under pressure.

SUPPLEMENTARY MATERIAL

See the supplementary material for characteristics of benchmark protein set; convergence of

cavity volume as a function of grid density for 3FTR; detailed timings as a function of grid density

for protein 3FTR; number of grid points, runtime, and percentage runtime as functions of cavity
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scaling factor f for protein 2KJM; comparison of XP-PCM and gas phase timings and SCF itera-

tions for the benchmark protein data set; Ger and pressure as functions of cavity volume for argon

atom and acetylene; calculated and experimental volume compression Vc/V1 as a function of pres-

sure for argon atom; and cavity volume as function of f for acetylene obtained with difference

cavity radii. (PDF)

Geometries of all proteins in benchmark set; geometries of argon atom and acetylene molecule.

(ZIP)
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