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Abstract 24 

Recent technological advances in mass spectrometry have enabled us to screen biological samples for a 25 

very broad spectrum of chemical compounds allowing us to more comprehensively characterize the human 26 

exposome in critical periods of development. The goal of this study was three-fold: 1) to analyze 590 matched 27 

maternal and cord blood samples (total 295 pairs) using non-targeted analysis (NTA); 2) examine the differences 28 

in chemical abundance between maternal and cord blood samples; and 3) examine the associations between 29 

exogenous chemicals and endogenous metabolites. We analyzed all samples with high-resolution mass 30 

spectrometry (HRMS) using liquid chromatography – quadrupole time-of-flight mass spectrometry (LC-31 

QTOF/MS), in both positive and negative electrospray ionization modes (ESI+ and ESI-) and in soft ionization 32 

(MS) and fragmentation (MS/MS) modes for prioritized features. We confirmed 19 unique compounds with 33 

analytical standards, we tentatively identified 73 compounds with MS/MS spectra matching, and we annotated 98 34 

compounds using an annotation algorithm. We observed 103 significant associations in maternal and 128 in cord 35 

samples between compounds annotated as endogenous and compounds annotated as exogenous. An example of 36 

these relationships was an association between 3 poly and perfluoroalkyl substances (PFAS) and endogenous fatty 37 

acids in both the maternal and cord samples indicating potential interactions between PFAS and fatty acid 38 

regulating proteins.  39 
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1. Introduction 48 

The exposome describes the sum of all our exposures, both external and internal, throughout our lives 49 

from conception and onwards.1,2 Humans are exposed to multiple and variable environmental contaminants in 50 

both the indoor and outdoor environments through inhalation, ingestion, and dermal absorption. Environmental 51 

exposures have been shown to play an important role in the development of human disease along with exposures 52 

to endogenous chemicals and genetic predisposition.1,2  53 

 Exposures to environmental contaminants during pregnancy are of critical importance due to the 54 

increased risk for adverse health outcomes that occur during periods of critical and unique susceptibility to 55 

biological perturbations, which can increase the risk of both maternal and child adverse health outcomes3–6. 56 

Prenatal exposures to industrial chemicals have been shown to increase the risk of complications during 57 

pregnancy, such as preterm birth, pregnancy-related hypertension, adverse birth outcomes, developmental and 58 

neurodevelopmental problems during infancy, and disease during adulthood.3–6 59 

 Approximately 40,000 chemicals are registered on the inventory of the Toxic Substances Control Act 60 

(TSCA) as actively used chemicals in the U.S.7,8 This number does not include chemicals that are regulated by 61 

other U.S. statutes, such as pesticides, foods and food additives, drugs, cosmetics, tobacco and tobacco products, 62 

and nuclear materials and munitions.7,8 The actual number of all chemicals used in the U.S. remains unclear but 63 

exceeds 40,000. 64 

 Conventional biomonitoring and human exposure research rely on targeted analytical chemistry 65 

techniques, in which one measures chemicals selected prior to the analysis. Up to now, with targeted techniques, 66 

only about 350 chemicals are biomonitored regularly via U.S. NHANES, constituting less than 1% of the 67 

chemicals used in the US. This limited number of measured targeted chemicals hinders our understanding of 68 

human exposure to chemicals and how they may impact human health. Considering the large number of 69 

chemicals that are not covered by these approaches, there is a need to develop more high-throughput approaches 70 

that cover a broader spectrum of human exposure to environmental contaminants.9 71 



 Recent advances in high-resolution mass spectrometry have brought non-targeted analysis (NTA) and 72 

suspect screening to the forefront of analytical chemistry. Non-targeted analysis techniques offer the possibility to 73 

screen biological and environmental samples for a very broad spectrum of chemicals that would previously 74 

remain undetected with conventional targeted analytical techniques. Such high-throughput analytical techniques 75 

enable a more holistic characterization of the exposome incorporating both internal (endogenous) and external 76 

(exogenous) exposures. Previous non-targeted and suspect screening studies10–15 have demonstrated the value of 77 

NTA as an important screening tool for compound discovery in environmental applications. The compounds 78 

discovered through NTA can then inform more traditional targeted analytical approaches to further evaluate 79 

chemicals of interest with more stringent quality assurances that include further examination with analytical 80 

standards and quantification. 81 

Our work builds upon previous NTA and suspect screening studies11–13,16–18 of other scientific groups that 82 

have laid the groundwork for further analysis and have inspired further exploration. In our study, we developed an 83 

enhanced NTA workflow to screen human biological samples for a broad spectrum of chemicals that can be 84 

identified or tentatively identified, and then applied this approach to study exogenous and endogenous chemical 85 

exposures in a large racially and socioeconomically diverse population of pregnant women. The novelty of our 86 

work lies primarily in the analysis of a large cohort of maternal and cord blood samples and in the selection and 87 

combination of computational tools for the analysis and interpretation of non-targeted analysis data. Our study 88 

aims to explore the computational, analytical and environmental chemistry aspects of non-targeted analysis and 89 

explore the human exposome during pregnancy through the lens of chemistry.  90 

 The goal of this study was three-fold: 1) to analyze 590 matched maternal and cord blood samples (total 91 

295 matched pairs) using NTA to characterize the maternal/fetal exposome; 2) examine the differences in 92 

chemical feature enrichment between maternal and cord blood samples; and 3) examine the associations between 93 

exogenous chemicals and endogenous metabolites in an attempt to understand the interplay between the 94 

exposome and the metabolome. 95 



2. Materials and Methods 96 

2.1 Study population 97 

 The study population consisted of 295 pregnant women recruited during the Chemicals in Our Bodies 98 

(CIOB) study (Table 1) at the University of California, San Francisco (UCSF). The CIOB study consists of about 99 

700 (as of the time of this publication) English or Spanish-speaking pregnant women, aged 18 to 40 years old and 100 

with singleton pregnancies, recruited between March 1, 2014 and June 30, 2017 from the Mission Bay and San 101 

Francisco General Hospital (SFGH) hospitals at UCSF that serve a racially and socioeconomically diverse 102 

population. Our study population consists of 31.5% Non-Hispanic White women, 20.7% Hispanic/Latinx women 103 

and 33.6% earns less than $100,000/year. Additional demographic data and data from medical records are shown 104 

in Tables S1 and S2. 105 

 106 

Table 1: Demographics of the CIOB cohort (N = 295) from San Francisco, CA. When a variable is shown as 107 

“missing”, it indicates that the participant did not answer that question in the questionnaire. The numbers in the 108 

parentheses show the percentages (%) and standard deviations (std) as indicated in the table. 109 
 

Population 

Baseline demographic, n (%) 295 (100) 

Maternal age, y (std) 33.2 (5.1) 

Gravidity, n (std) 2.4 (1.6) 

Ethnicity group 1 (%)  

   African American or Black 3.7 

   American Indian or Alaskan Native 1.4 

   Asian or Asian American 11.2 

   White 31.5 

   Other 15.6 

   Missing 36.6 

Ethnicity group 2 (%) 
 

   Hispanic/Latino 20.7 

   Non-Hispanic 50.5 

   Missing 28.8 

Income (%) 
 

   < $40,000 21.4 

   $40,000-$99,999 12.2 

   > $100,000 65.1 

   Missing 1.3 



 110 

 111 

2.2 Non-targeted analysis workflow 112 

 Our non-targeted analysis workflow consisted of four main steps: i) chemical analysis, ii) database 113 

searching and annotations, iii) data clean-up and processing, and iv) data analysis (Fig. 1). Briefly, we analyzed 114 

serum samples with high resolution mass spectrometry and deduced chemical formulas from the detected 115 

molecular masses. We conducted MS/MS fragmentation for selected chemicals and tentatively confirmed the 116 

presence of a chemical by matching the experimental spectrum to database spectra, including experimental and in 117 

silico predicted spectra. We then used analytical standards for a select number of chemicals to confirm with the 118 

highest level of confidence. For our annotations, we employed the annotation scheme proposed by Schymanski et 119 

al.19, where level 1 annotations are confirmed chemicals with analytical standards, level 2 annotations are 120 

tentative identifications with MS/MS spectra, level 3 annotations have some diagnostic evidence based on 121 

literature and data sources, and level 4 annotations are just molecular formulas without proposed structures.  We 122 

examined the presence of the chemicals in chemical databases to search for potential matches to industrial uses. 123 

The details of the analytical method are described in the sections below. 124 

 In an attempt to navigate the complexity and high dimensionality of non-targeted analysis datasets, we 125 

selected and applied various software tools that helped us analyze our data and interpret our findings. The 126 

selection of the software packages was done based on the specific aims we tried to address in every step in our 127 

workflow (Fig. 1). When selecting software packages, we had to consider the capabilities of the software to 128 

address the aims of our study. For our purposes, we used i) commercial software (e.g., Agilent software packages) 129 

when available and suitable, ii) open-source tools if their application made an important contribution or offered a 130 

different approach compared to the commercial software (e.g., MS-Dial and different MS/MS databases), and iii) 131 

in-house built algorithms if we were not able to find an existing tool that could help us tackle a certain challenge 132 

in our study (e.g., level 3 annotations19 for man-made/industrial chemicals). In the sections below we provide an 133 

explanation for the selection of each package. 134 

 135 



 136 

 137 

Figure 1: Flowchart describing the individual steps of analyzing the maternal and cord samples and processing the 138 

collected data from our LC/QTOF nontargeted analysis. 139 

 140 

2.3 Sample preparation 141 

 We analyzed 295 maternal and 295 matched cord blood samples (n total = 590). The blood samples were 142 

stored in the freezer at -80 oC at the University of California, San Francisco (UCSF). Prior to analysis, the samples 143 

were centrifuged (3000 rpm) to separate the serum from the red platelets. The serum samples were transported on 144 



dry ice to the Environmental Chemistry Laboratory (ECL) of the Department of Toxic Substances Control 145 

(DTSC) of California, in Berkeley, CA. The method is described in detail below and in our previous study.14  146 

Briefly, aliquots of 250 μL of serum were extracted by protein precipitation with methanol and the samples were 147 

mixed and stored at 4 oC until they were analyzed with ultra-high pressure liquid chromatography – quadrupole 148 

time-of-flight / mass spectrometry (UPLC-QTOF/MS). At the time of analysis, 10 μL of extract were injected into 149 

the UPLC-QTOF/MS system. 150 

2.4 Instrumental analysis 151 

 The extracts were analyzed with an Agilent UPLC coupled to an Agilent 6550 QTOF (Agilent 152 

Technologies, Santa Clara, CA) operated in both positive and negative electrospray ionization modes (ESI+ and 153 

ESI-). Full scan accurate mass spectra (MS) were acquired in the range of 100-1000 Da with resolving power of 154 

40,000 and a mass accuracy of <5 ppm. The MS/MS fragmentation ion spectra (MS/MS) were collected at 10, 20 155 

and 40 eV collision energies and a mass accuracy of 10 ppm. The QTOF was calibrated before each batch and the 156 

mass accuracy was regularly corrected with reference standards of reference masses 112.985587 and 157 

1033.988109. The UPLC was operated with an Agilent Zorbax Extend-C18 column (2.1 x 50 mm, 1.8 μm) and a 158 

gradient solvent program of 0.3 mL/min with 5 mM ammonium acetate in 90% methanol/water increasing the 159 

organic phase from 10% to 100% over 15 min, following a 4 min equilibration at 100%.  160 

 The collected data from the total ion chromatograms (TIC) were processed with Agilent MassHunter 161 

Profinder for feature extraction. The features were then aligned using Mass Profiler Professional (MPP) across all 162 

batches and the features found in blanks were subtracted from the samples. The features were matched to 163 

formulas via screening with an in-house database of 2,420 unique formulas. The database was originally compiled 164 

to contain 3,535 structures of exogenous chemicals of interest based on a literature search and expert curation. 165 

Briefly, the database was compiled with the purpose of gathering manmade chemicals of high production volumes 166 

and chemicals of concern for environmental health scientists due to their potential for adverse health effects. The 167 

original database and the steps for its compilation are presented in our previous study.14 However, in this study, 168 

we expanded our database by including all isomers corresponding to the 2,420 formulas and could be found on 169 

EPA’s Dashboard20. After collecting all structural isomers, the updated version of the database contained 65,535 170 



compounds (Supporting Spreadsheet 0-database). The updated version of the database contains both endogenous 171 

and exogenous compounds, however, the vast majority of the features are exogenous. Matched features were 172 

evaluated based on mass accuracy and isotopic pattern. Features of interests were prioritized for validation of 173 

identification with data dependent acquisition and with targeted MS/MS. The MS/MS spectra of the prioritized 174 

features were reviewed by empirical check of possible fragmentation peaks and were compared with spectra in 175 

online experimental MS/MS databases: MassBank of Europe and North America21–23, Human Metabolome 176 

Database (HMDB)24,25 and mzCloud26 and with support from in silico fragmentation tools: CFM-ID27,28 177 

(Competitive Fragmentation Modeling for Metabolite Identification). 178 

 The acquired spectra were then used to search both experimental and in silico databases for potential 179 

matches with at least one fragment peak, aside from the molecular ion, and within a mass error of 10 ppm. We 180 

limited our search to chemical features for which we could observe a clear chromatographic peak for the 181 

molecular ion and for which the isotopic pattern match gave a score of 70 or higher. We then used the top 182 

candidate structure proposed by the software to annotate the chemical features for which we found potential 183 

matches. 184 

 In addition to MassHunter Profinder, we also utilized MS-Dial29, which is an open source software for 185 

high-resolution mass spectrometry (HRMS) data processing and it was developed at University of California, 186 

Davis and the RIKEN Center for Sustainable Resource Science (Japan).29 Adding MD-Dial to our search, enabled 187 

us to expand our search with additional databases. For MS-Dial, we used the same software parameters as for 188 

MassHunter Profiler (Supporting Spreadsheet 1). The databases we used were: “All public MS/MS databases for 189 

positive MS/MS” (13,303 unique compounds) and “All public MS/MS databases for negative MS/MS” (12,879 190 

unique compounds). 191 

Finally, matched chemical features were further compared with purchased reference standards for 192 

confirmation. The confirmation with chemical standards was done by comparing the retention times (RTs) and the 193 

MS/MS spectra of the chemical feature in the sample to the analytical standard. The selection of features for 194 

confirmation with analytical standards is described in detail in our earlier study.14 195 

2.5 Quality assurance (QA) / Quality control (QC) 196 



Extraction blanks, spike blanks and QC samples were included with each set of 20 extracted samples. 197 

Every batch analyzed with LC-QTOF/MS was accompanied by a water blank, a matrix blank and a matrix spike 198 

analyzed in the same sequence. QC samples were used to monitor the instrument’s performance by inspecting RT 199 

shifts, changes in mass accuracy and changes in peak intensity. In ESI+, we used triphenyl phosphate D15 and 200 

DL-cotinine (methyl D3) as internal standards, while in ESI-, we used Perfluoro-n-[1,2-13C2] octanoic acid 201 

(M2PFOA). We used blank samples to correct the abundances of the chemical features and to remove features for 202 

which the abundances in the samples were not higher than two times that found in the blanks. The blanks 203 

consisted of LCMS grade ultraclean water (Water, Burdick & Jackson™ for HPLC, LC365-1) and were 204 

processed in the same way as the samples. The QC samples consisted of commercially available human AB 205 

serum (Corning™ Human AB Serum, 35060CI) spiked with 7 poly and perfluoroalkyl substances (PFAS) and 6 206 

organophosphate flame retardants (OPFRs) (Supporting Spreadsheet 1: QC samples) at 10 ng/ml. The QC 207 

samples were treated in the same way as the real samples and followed the same process (Supporting Spreadsheet 208 

1). 209 

2.6 Database searching for feature annotation 210 

We used a suspect screening approach for annotation. First, we searched the HUMANBLOOD database 211 

in EPA’s Chemistry Dashboard20, which contains chemicals that are endogenous and have been previously 212 

detected in human blood. The database is an aggregate from public resources, including the Human Metabolome 213 

Database (HMDB)24, WikiPathways30, Wikipedia31 and literature articles20. The database excludes metals, metal 214 

ions, gases, drugs and drug metabolites. Screening this database allowed us to distinguish between features that 215 

are more likely to be endogenous and features that are more likely to be exogenous. To do that, we searched every 216 

formula in the database and marked the ones that had a hit in the database. Then, we labeled all features 217 

corresponding to these formulas as endogenous and the remaining as exogenous. The rationale behind this 218 

approach is that since we know we are analyzing blood samples and HUMANBLOOD is an extensive database 219 

about all endogenous compounds that have been previously detected in blood, if a detected feature in our samples 220 

has a formula that is present in the HUMANBLOOD database, then that feature is most likely an endogenous 221 

compound. We then searched the HUMANBLOOD database for all isomers corresponding to our endogenous 222 



formulas and the remaining databases in EPA’s Chemistry Dashboard for all isomers corresponding to our 223 

exogenous formulas. We then applied an algorithm developed by the first author, Dr. Abrahamsson, to rank the 224 

isomers of each formula based on (i) total number of available isomers on the Dashboard, (ii) the number of data 225 

sources in the Chemistry Dashboard, (iii) number of PubChem data sources, and (iv) number of PubMed 226 

publications. We then used the top ranked isomer to annotate the chemical features that were not confirmed with 227 

MS/MS spectra matching or with analytical standards. For example, searching C8HF17O3S gives us two isomers: 228 

perfluorodecanoic acid and perfluoro-3,7-dimethyloctanoic acid. If we were to randomly select one of the isomers 229 

our probability of picking the right isomer would be 0.5. Then, making the assumption that more prevalent 230 

isomers have a higher number of literature and data sources, we can adjust that probability by taking into account 231 

that information after normalizing all numbers for (ii), (iii), and (iv) from 0-1. So, while the probability of 232 

randomly picking the right isomer for C8HF17O3S is 0.5, perfluorodecanoic acid has a higher probability (0.73) of 233 

being the right isomer because it has more literature and data sources than perfluoro-3,7-dimethyloctanoic acid 234 

(0.27). It is important to acknowledge that these estimates are amenable to change as EPA’s Chemistry Dashboard 235 

is a dynamic project and keeps being updated with additional chemicals. Furthermore, these annotations may be 236 

susceptible to the Matthew effect32, where researchers prioritize chemicals to study mainly because other 237 

researchers have prioritized the same chemicals. However, since these are just annotations and serve only in 238 

providing diagnostic evidence for the identification of chemical compounds, we deemed them as sufficient for 239 

that purpose. The code for the algorithm is available on GitHub 240 

(https://github.com/dimitriabrahamsson/nontarget-maternalcord.git ). 241 

In order to evaluate the effectiveness of the algorithm, we compared the level 3 annotations of the 242 

algorithm to the level 1 and 2 annotations and observed how many times the predictions of the algorithm agreed 243 

with the level 1 and 2 annotations (Supporting Spreadsheet 1: algorithm validation). Although the level 3 244 

annotations are just annotations and not confirmations, in some cases they can be very informative and help 245 

compose a diagnostic picture for the underlying structure of a detected chemical feature. This is particularly 246 

helpful for certain chemicals that are more targetable than others. For instance, the presence of fluorine in a 247 

formula would indicate that this compound is an exogenous compound and it most likely belongs to the category 248 



of poly and perfluoroalkyl substances (PFAS). Another example is when a chemical formula has only a limited 249 

number of potential isomers (e.g., 5-10 isomers) and all potential isomers are endogenous compounds with very 250 

similar function and properties (e.g. chenodeoxycholic acid).20 251 

2.7 Data clean-up and data processing 252 

2.7.1 Imputation of values below detection limit 253 

To impute below detection limit values, we used a computational approach which assigned missing 254 

values based on the distribution of the data points. We log transformed the data from the MS analysis for each 255 

chemical across samples and calculated the median, the minimum and the standard deviation of the distribution. 256 

We then fit a normal distribution to the data points based on the median and the standard deviation that we 257 

calculated from the experimental data. The model then generated random values between the minimum measured 258 

experimental value (~5,000) and the absolute minimum (0). The minimum measured value is dependent on the 259 

cut-off point set in the software during the first processing steps of the chromatograms. Since in non-targeted 260 

analysis studies the true method detection limit in unknown, this cut-off point is set so that it represents a safe 261 

margin from the baseline of the chromatogram. So, for example, if the abundance for the baseline is 1,000 then 262 

the cut-off point is set as 5 x 1,000. The code for the imputation is available as supporting information on GitHub 263 

(https://github.com/dimitriabrahamsson/nontarget-maternalcord.git ) 264 

2.7.2 Batch correction 265 

 We analyzed 590 samples in total consisting of 295 maternal and 295 cord blood samples. The samples 266 

were analyzed in two shipments of approximately 300 samples (150 maternal samples and 150 cord samples) in 267 

each shipment. Within a shipment, the 300 samples were analyzed in 15 batches yielding 20 samples per batch 268 

(15 batches x 20 = 300). Each batch of 20 consisted of 10 maternal and 10 cord blood samples. Before the 269 

analysis, the samples were randomized, however, in every batch, the maternal samples were analyzed with their 270 

corresponding cord samples in order to avoid introducing additional batch effects between maternal and cord 271 

samples. To clarify even further, the maternal and cord samples within each batch were randomized and were not 272 

analyzed in pairs of maternal and cord. To correct the abundances of the chemicals measured in the samples for 273 



batch effect, we employed the ComBat package for python33. ComBat uses a parametric and non-parametric 274 

Bayes framework to adjust the values for batch effects. The method requires that the batch parameter is known 275 

and that the data are log transformed (method is described in detail in Johnson et al.34). For our dataset, we first 276 

applied the ComBat package to each shipment separately to correct for batch effect within shipment. Then we 277 

applied the package again to correct for batch effect across shipments. 278 

2.7.3 Combining shipments 279 

 As our samples were analyzed in two separate shipments of approximately 150 samples each, one of the 280 

challenges was to combine the two datasets of the two shipments, given the potential shifts in RT and differences 281 

in peak alignment. This step was done after batch correction for within shipment variability. In order to address 282 

this issue, we grouped all chemical features by their formulas and sorted them by ascending RTs. We then created 283 

an index for each group of formulas (1, 2, 3, etc.), which we then used to create an identifier based on the formula 284 

and the position of each isomer in the index. For example, if the formula C5H13NO had three isomers, the first 285 

isomer was named C5H13NO_1, the second isomer as C5H13NO_2 and the third isomer as C5H13NO_3. We 286 

then merged the two datasets on the identifier and removed features that were present in only one of the datasets. 287 

We examined the difference in the RT and molecular mass and removed those features for which RT differed by 288 

more than 0.5 min or where the mass difference was more than 15 ppm. A limitation associated with this 289 

approach is that there could be cases where we are removing valid features if the molecular formula assigned in 290 

one shipment does not match the molecular formula assigned in the other shipment. This would then lead to false 291 

negatives and can result in underestimating the number of truly detected compounds. This would be more likely 292 

to happen in instances where multiple formulas can be assigned to a given chemical feature. This challenge 293 

warrants further exploration to ensure that we can leverage the full potential of NTA datasets. 294 

2.7.4 Removing adducts 295 

 Electrospray ionization adducts are chemicals that are formed inside the instrument during analysis of the 296 

samples as the salts ions from the electrolytes used to enhance ionization bind to the ions of the organic molecules 297 

formed during electrospray ionization. We filtered out these chemicals by identifying the features that strongly 298 



correlate (r > 0.5) with each other and have distinct mass differences corresponding to salt ions, such as sodium 299 

(Na+), potassium (K+), formate (HCOO-) and ammonium (NH4
+). Na+ and K+ adducts particularly important in 300 

serum analysis as these elements occur naturally in the human body and can form adducts with analytes during 301 

ionization. For filtering out adducts, we used a mass accuracy filter of 15 ppm.  302 

2.8 Data Analysis 303 

2.8.1 Abundance and frequency calculations 304 

 We examined the relationship between chemical features in maternal samples and cord samples in terms 305 

of abundances and detection frequencies. For the abundances, we used the mean log transformed abundance of 306 

each chemical in maternal samples and compared it to the corresponding feature in the cord samples using a linear 307 

regression model. For the detection frequencies, we used a universal abundance cutoff of 5,000, which is 308 

comparable to the minimum measured value in the chemical features (~5000). We compared the detection 309 

frequencies of the chemical features between maternal and cord samples both in terms of kernel density estimates 310 

and in terms of absolute numbers. We also examined the differences in detection frequencies of endogenous and 311 

exogenous chemical features. 312 

2.8.2 Unsupervised clustering 313 

 We conducted a principal component analysis (PCA) to examine the differences in the PCs between 314 

maternal and cord samples. We then conducted a correlation analysis, where we examined the relationship of the 315 

first 3 PC components with technical features and clinical covariates, i.e., batch, shipment, sample type 316 

(maternal/cord) and gestational age group (preterm/full-term). We identified the features that were differentially 317 

enriched in maternal and in cord blood samples by comparing the abundances of the chemical features in maternal 318 

samples to those of cord samples and marking the features that showed a significant trend to be higher in maternal 319 

and lower in cord and vice versa (p < 0.05) after correcting for multiple hypothesis testing using the approach of 320 

Benjamini-Hochberg with a false discovery rate of 5%. We checked the cluster stability by comparing the PC1 321 

values of the maternal samples to the PC1 values of the cord samples using a two-sided Mann-Whitney-Wilcoxon 322 

test with Bonferroni correction. 323 



2.8.3 Network analysis for maternal and cord samples 324 

 The purpose of the network analysis was to assess whether maternal samples are more similar in terms of 325 

chemical abundances to their corresponding cord samples than to other maternal samples. For this analysis, we 326 

considered two network-based approaches.  327 

For the first approach, we conducted a matrix correlation of all samples using a linear regression model 328 

and calculated the correlation coefficients and p-values. We then adjusted the p-values by applying a multiple 329 

hypothesis correction using the Benjamini-Hochberg correction with a false discovery rate of 5% and we marked 330 

the maternal and cord sample pairs that remained significant after the multiple hypothesis correction. We then 331 

plotted the correlations as a correlation network using the NetworkX35 package for Python. We then divided the 332 

network into four subnetworks i) correlations between matched maternal-cord pairs only, ii) correlations between 333 

unmatched maternal cord pairs and between maternal only and cord only, iii) correlations between maternal 334 

samples only, and iv) correlations between cord samples only. We then calculated the number of connections in 335 

each subnetwork and the averages correlation coefficient for each subnetwork and compared the subnetworks to 336 

each other. 337 

For the second approach, we carried out permutation analysis randomly picking a matched pair of a 338 

maternal and cord samples (M1 and C1), and a random maternal sample (M2) 100 times. For each iteration, we 339 

then calculated the abundance ratios of all chemical features for every sample pair (M1-C1, M1-M2 and M2-C1). 340 

Chemical features with ratios in the range of 0.75 – 1.25 were considered “similar” chemical features between 341 

two samples. We calculated the number of chemicals for each pair and compared them to each other. We 342 

calculated the average number of similar chemicals for every pair and compared the pairs to each other. The code 343 

is available on GitHub (https://github.com/dimitriabrahamsson/nontarget-maternalcord.git ). 344 

2.8.4 Partitioning of chemical features between maternal and cord 345 

As part of our analysis, we wanted to understand why different chemicals exhibit different partitioning 346 

behaviors between maternal and cord blood. We examined the partitioning behavior of the detected chemical 347 

features between maternal and cord by calculating the cord/maternal abundance ratio (RCM) as: 348 



𝑅!" =
𝐴#
𝐴$

 349 

where, Ac is the abundance of a chemical feature in cord blood and Am is the abundance of a chemical in 350 

maternal blood. RCM has been previously described in environmental chemistry studies36–38 as: 	351 

𝑅!" =	
𝐶!
𝐶"

 352 

where, CC is the concentration of a given chemical in cord blood and CM is the concentration in maternal blood. 353 

Since concentrations are not available for all chemical features, we replaced concentration with abundance as 354 

follows: 355 

𝑅!" =	
𝐶!
𝐶"

=	
𝐴#
𝑅𝑅𝐹
𝐴$
𝑅𝑅𝐹

=	
𝐴#
𝐴$

 356 

where, RRF is the relative response factor used to calculate concentrations assuming a linear calibration curve. 357 

  It is important to note that RCM does not describe an equilibrium partition ratio, such as the octanol-water 358 

equilibrium partition ratio (KOW), but rather a concentration ratio representing the current state of a dynamic 359 

system. Considering that the placenta is a dynamic system, where chemicals are transported through passive 360 

diffusion and active transport to and from the system, it is unlikely that any chemicals will be at thermodynamic 361 

equilibrium. The partitioning of chemicals between cord and maternal blood has also been described as a 362 

concentration ratio in previous studies.36–38 363 

Previous studies have shown that the partitioning behavior of chemicals between maternal and cord blood 364 

is related to the chemicals’ physicochemical properties39,40 and to certain physiological parameters that can affect 365 

the placenta, such placental aging41 and gestational diabetes42. In an attempt to understand the parameters 366 

determining RCM we used a linear regression model to assess its relationship to physicochemical properties and 367 

physiological parameters. The physicochemical properties we used are known as the Abraham descriptors43–45 and 368 

commonly used in quantitative structure-activity relationships (QSARs). These descriptors were: i) E, which 369 

describes a chemical’s ability to engage in London dispersion forces and dipole-induced dipole interaction; ii) S, 370 

which describes a chemical’s ability to engage in dipole-induced dipole and dipole-dipole interactions, iii) A, 371 



which describes hydrogen bond acidity; iv) B, which describes hydrogen bond basicity; v) V, which is the 372 

McGowan molecular volume; and vi) L, which is the hexadecane/air partition ratio. The Abraham descriptors 373 

were obtained from the UFZ-LSER database of the Helmholtz Centre for Environmental Research-UFZ46 374 

(Zentrum für Umweltforschung). In addition to the Abraham descriptors, we also collected the KOW of the 375 

chemicals in the dataset and examined its relationship to RCM. These calculations were only applied to chemical 376 

features whose structures that were annotated with level 1-3 annotations. 377 

 The physiological parameters we used were the body-mass index (BMI), maternal age at delivery, 378 

gestational age, birth weight and gestational diabetes (Table S2). Since RCM is a chemical-specific parameter and 379 

not a participant-specific parameter, in order to access its relationship to physiological parameters we calculated 380 

RCM for every chemical and every maternal-cord pair and then we calculated the average value per participant, as 381 

a hypothetical RCM representing the average RCM of all chemicals in each participant. 382 

2.8.5 Associations between endogenous and exogenous compounds 383 

 After calculating the number of exogenous and endogenous chemicals, as described previously in the 384 

section for database searching, we examined the associations between endogenous and exogenous compounds 385 

using the approach of molecular interaction networks. It is important to note that although these types of networks 386 

are commonly known as “molecular interaction networks”47–50, the term “interaction” can be interpreted as in that 387 

the chemical compounds are having an effect on one another or in the epidemiological sense that two parameters 388 

are having an effect on one outcome. However, in this context, “interaction” refers to the associations between 389 

chemical features. In NTA applications, the precise relationships are still speculative and the “interactions” shown 390 

by these networks are proposed associations that need to be further explored and validated with experimentation. 391 

One important advantage of these networks is that they allow for visualization of multiple endogenous and 392 

exogenous features at once together with their inter- and intra- associations.  393 

As a first step for our exercise, we applied a matrix correlation and calculated the correlation coefficients 394 

and p-values between all endogenous and all exogenous chemical features after adjusting the p-values for multiple 395 

hypothesis testing using the Benjamini-Hochberg approach and a false discovery rate of 5%. We applied the 396 

approach of molecular interaction networks to visualize the associations and examine the relationships between 397 



endogenous and exogenous compounds for the significant correlations between endogenous and exogenous 398 

chemical features separately for maternal and cord samples. To build the network, we used Cytoscape51 with 399 

Metscape52 as a plug-in. Cytoscape51 is an established tool in the field of bioinformatics and -omics research for 400 

the visualization of networks and assisting in the discovery of underlying biological mechanisms. Due to the large 401 

number of relationships and the complexity of the network, we focused our comparison on the chemical features 402 

that had an annotation score > 0.3, or confirmed with MS/MS or analytical standards, and had a Pearson |r| > 0.4. 403 

2.9 Statistical analyses 404 

For all the correlations mentioned in the sections above we used Pearson r and we adjusted the calculated 405 

p-values for multiple hypothesis testing using the Benjamini-Hochberg approach with a false discovery rate of 406 

5%. When comparing two groups for statistically significant differences, such as in unsupervised clustering, we 407 

used a two-sided Mann-Whitney-Wilcoxon test with Bonferroni correction.  408 

3. Results 409 

3.1 Chemical analysis with LC-QTOF/MS 410 

 The recursive feature extraction and formula matching for the 295 pairs of maternal and cord blood 411 

samples (n total = 590 samples) resulted in 824 features in ESI- and 731 features in ESI+ for shipment 1, and 707 412 

features in ESI- and 576 features in ESI+ for shipment 2. After combining the datasets for the two shipments, the 413 

resulting dataset for ESI- summed up to 412 features and the dataset for ESI+ to 298 features (n total = 710 414 

features) after filtering out the features that showed an RT difference of > 0.5 min or a mass difference of > 15 415 

ppm. Combining the data from ESI- and ESI+, resulted in 712 features. This number is higher by 2 features 416 

compared to the total number of ESI- and ESI+ because 1 isomer from ESI- had more than 1 possible matches 417 

from ESI+ based on the criteria that we set for merging the two datasets (RT difference of 0.5 min and mass 418 

accuracy of 15 ppm). Ten features were identified as duplicates between ESI- and ESI+ and were removed from 419 

the dataset. Seventeen features were identified as adducts and were also removed from the dataset. The complete 420 

datasets before (n = 712) and after clean-up (n = 685) are presented in Supporting Spreadsheet 1 (sheets: dataset 421 

1.0 and dataset 2.0). We confirmed 19 unique compounds with analytical standards, we tentatively identified 73 422 



compounds with MS/MS spectra and annotated 98 compounds using our annotation algorithm (Supporting 423 

Spreadsheets 1: level 1-2 and level 3-4). 424 

3.2 Database searching for feature annotation 425 

 We annotated 142 features as endogenous compounds and the remaining 543 features as exogenous 426 

compounds. Among the chemical compounds with the highest annotation scores, we found 5 PFAS: 427 

perfluorohexanesulfonic acid (PFHxS), perfluorooctanesulfonic acid (PFOS), perfluorodecanoic acid (PFDA), 428 

perfluoroundecanoic acid (PFUnDA) and perfluorononanoic acid (PFNA); and 2 cyclic volatile methylsiloxanes:  429 

octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) (annotations with the individual 430 

scores in Supporting Spreadsheet 1: level 3-4). PFDA, PFNA, PFHxS and PFOS were also confirmed with 431 

analytical standards (Supporting Spreadsheet 1: level 1-2). When we evaluated the performance of the algorithm 432 

used for the level 3 annotations, we observed that for compounds with annotation scores from 1-0.3, the algorithm 433 

predicted correctly 16 out of the 22 formulas that were common between level 3 and level 1 and 2 annotations, 434 

corresponding to an accuracy of 73% (Supporting Spreadsheet 1: algorithm validation). For compounds with an 435 

annotation score of 0.3-0.1, the accuracy of the algorithm was 50% and for compounds with annotation score <0.1 436 

the accuracy dropped to 8%. As anticipated, higher annotation scores were more likely to give a correct 437 

prediction. We, therefore, considered as level 3 annotations only the compounds that had an annotation score > 438 

0.3.  439 

3.3 MS data clean-up and data processing 440 

 In the original dataset before batch correction, we observed two distinct clusters that corresponded to the 441 

two shipments (Fig. S2 A-F). Following a matrix correlation, we observed strong correlations between the first 3 442 

PCs and the parameters corresponding to batch number, shipment, and sample type (maternal vs cord) (Fig. S2 I). 443 

In addition, we observed significant differences in the PCs between shipment 1 and shipment 2 (Fig. S2G), and 444 

significant differences in the PCs between maternal and cord samples (Fig. S2H). Batch correction with ComBat 445 

removed the largest part of the effects related to batch and shipment (Fig. 2D), while maintaining the differences 446 

between maternal and cord (Fig. 2E). The updated plots after batch correction (Fig. 2) also showed that there were 447 



two main clusters of samples (Fig. 2C and 2F) that corresponded to the maternal and cord sample groups (Fig. 448 

2E). 449 

 450 

 451 

 452 

Figure 2: Results of the data analysis after batch correction with ComBat for the two shipments and the batches 453 

within each shipment. The samples were first corrected for the batches within shipment and then for the two 454 

shipments. (A): PCA features and the variance explained (%); (B) PC1 and PC2 as a scatterplot; (C) 455 

approximation of the optimal number of clusters in the dataset; (D) PC1 and PC2 color-coded by shipment; (E) 456 

PC1 and PC2 color-coded by sample type – maternal vs cord blood; (F) agnostically derived clusters using a k-457 

means algorithm; (G) boxplot for PC1 by shipment (the error bars show the 10th and 90th percentiles, the boxes 458 

show the 25th and 75th percentiles and the middle line shows the median); (H) Pearson r values and p-values (I) for 459 

matrix correlation for PC1-3, batch, shipment, sample type maternal vs cord and full term vs preterm birth.  460 

 461 



 462 

 463 

 464 

3.4 MS data analysis 465 

3.4.1 Differences between maternal and cord 466 

The maternal and cord samples showed similar profiles of detection frequency with the largest cluster of 467 

chemical features appearing at 80-100% frequency (Fig. 3B-C). We observed an overall good agreement (r = 468 

0.93) between the mean log abundances of the chemical features in the maternal samples and the chemical 469 

features in the cord samples with some chemical features deviating from the regression line (Fig. 3A). In addition, 470 

in both maternal and cord samples the number of exogenous compounds was about 3 times higher than that of 471 

endogenous (Fig. 3D-E). This is expected considering that the vast majority of the chemicals in our database are 472 

exogenous. 473 

We observed significant differences in PC1 between maternal and cord samples both before (Fig. S2E and 474 

S2H) and after batch correction (Fig. 2E and 2H). Removing the batch effect accentuated the differences between 475 

maternal and cord samples (Fig. 2E and 2H). 476 

 477 

 478 

 479 

 480 
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 483 

Figure 3: Correlation between maternal and cord abundances (A) (in log scale) and detection frequency 484 

calculations with kernel density curves for chemicals in maternal (B) and cord (C) blood samples (N=295 485 

chord/maternal). The figure also displays the detection frequency for maternal (D) and cord (E) color-coded as 486 

endogenous and exogenous compounds. 487 

 488 

 489 

Out of 685 chemical features detected in MS analysis after filtering (as described in the methods above), 490 

450 showed a significant difference between maternal and cord samples (Fig. 4). We observed clear clustering 491 

between maternal and cord blood samples indicating a sufficient difference in the chemical composition between 492 

maternal and cord samples for them to be classified as two distinct clusters (p-value for PC1 between maternal 493 

and cord <= 0.0001; Fig. 4B).  494 

 495 



 496 

Figure 4: Clustering heatmap for maternal and cord blood samples and the chemical features that showed a 497 

significant trend to be higher in maternal or cord after multiple hypothesis correction (Benjamini-Hochberg test, 498 

5% false discovery rate). Out of 685 chemical features in total, 450 showed a significant difference. The samples 499 

are color-coded by sample type (maternal vs cord). The features are color-coded by chemical type (endogenous vs 500 

exogenous). The error bars in the box-plot show the 10th and 90th percentiles, the boxes show the 25th and 75th 501 

percentiles and the middle line shows the median. 502 

 503 

 Our similarity network analysis using a correlation network showed that paired maternal and cord 504 

samples had a higher number of significant correlations (N = 170; Fig. S3 A) compared to unpaired maternal and 505 

cord samples (N = 84; Fig. S3 B) and compared to maternal only (N=41; Fig. S3 C) and cord only (N=41; Fig. S3 506 



D). No significant differences were observed in the average | r | values between the four groups. Our similarity 507 

network analysis using a permutation approach showed a very similar trend (Fig. S4). The average of 100 508 

iterations showed that paired maternal and cord samples (M1-C1) shared more similar chemical features 509 

compared to maternal – maternal pairs (M1-M2) and unmatched maternal – cord samples (M2-C1) (Fig. S4).  510 

 We observed that the majority of RCM values are concentrated around 1 indicating an even partitioning 511 

between maternal and cord blood (Fig. S5 A and S5 B). RCM showed a weak but significant positive correlation 512 

with RT (S5 D). No significant correlation was found for RCM and molecular mass (S5 C). We also observed a 513 

significant positive association between RCM and E (Fig. S6 A), a significant negative association between RCM 514 

and KOW (Fig S6 G), and a significant positive association between KOW and RT (Fig. S6 H). We observed a 515 

borderline significant association between RCM and gestational age (p-value = 0.07) (Fig. S7) and the median of 516 

the overall RCM values were slightly higher in preterm birth samples compared to full term and late term. A 517 

slightly elevated median value was also observed for the gestational diabetes samples, although there was no 518 

statistically significant difference between cases and controls (Fig. S7). 519 

3.4.2 Correlations between endogenous and exogenous compounds 520 

 We observed 21,522 significant relationships between features that were annotated as endogenous and 521 

features that were annotated as exogenous in maternal samples and 19,846 in cord samples after multiple 522 

hypothesis correction (n total relationships = 77,106 in maternal and n = 77,106 in cord samples, Fig. S8). From 523 

the significant relationships, 103 relationships in maternal and 128 relationships in cord samples had an absolute 524 

Pearson r > 0.5, 5 relationships in maternal and 4 relationships in cord samples had an absolute Pearson r > 0.7 525 

and 1 relationship in maternal and 1 relationship in cord samples had an absolute Pearson r > 0.8 (dataset with the 526 

calculated r and p-values in the Supporting Spreadsheet 2). 527 

 528 
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 547 

Figure 5: Molecular interaction networks for endogenous (red) and exogenous (gray) chemical features in the 548 

maternal blood samples (N = 295). The network shows the features which had an annotation score of > 0.3 or 549 

were identified with MS/MS or with analytical standards. The network shows the correlations with an absolute r > 550 

0.4. The red lines indicate positive correlations and the blue lines indicate negative correlations. The thickness of 551 

each line indicates the strength of the correlation (|r| = 0.4 – 1). The different colors in the names of the chemicals 552 

correspond to the annotation levels of Schymanski et al.19 showing confidence in annotation. Level 1 are 553 

compounds that have been confirmed with analytical standards, level 2 are compounds that have been tentatively 554 

identified with MS/MS spectra matching and level 3 are compounds for which we have a definitive formula and 555 

some diagnostic evidence based on our annotation algorithm described in materials and methods.    556 

 557 
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 571 

Figure 6: Molecular interaction networks for endogenous (red) and exogenous (gray) chemical features in the cord 572 

blood samples (N = 295). The network shows the features which had an annotation score of > 0.3 or were 573 

identified with MS/MS or with analytical standards. The network shows the correlations with an absolute r > 0.4. 574 

The red lines indicate positive correlations and the blue lines indicate negative correlations. The thickness of each 575 

line indicates the strength of the correlation (|r| = 0.4 – 1). The different colors in the names of the chemicals 576 

correspond to the annotation levels of Schymanski et al.19 showing confidence in annotation. Level 1 are 577 

compounds that have been confirmed with analytical standards, level 2 are compounds that have been tentatively 578 

identified with MS/MS spectra matching and level 3 are compounds for which we have a definitive formula and 579 

some diagnostic evidence based on our annotation algorithm described in materials and methods. 580 

 581 

The maternal and cord networks (Fig. S9 and S10) showed great overlap with most chemical compounds 582 

appearing in both networks and exhibiting similar relationships. Due to the complexity of the generated networks 583 

(Fig. S9 and S10), we extracted some example subnetworks (Fig. 5 and 6) that illustrated correlations between 584 



endogenous and exogenous compounds. The strongest association we observed between an endogenous and an 585 

exogenous compound in both the maternal and cord networks was between ubiquinone q10 and Asarone (r = 0.82 586 

in maternal network and r = 0.80 in cord network). We also observed two cyclic volatile methylsiloxanes (cVMS) 587 

(octamethylcyclotetrasiloxane; D4 and decamethylcyclotetrasiloxane; D5) that correlated strongly with each other 588 

(r = 0.77 in maternal network and r = 0.81 in cord network). In addition, in the maternal samples, D5 correlated 589 

with benzaldehyde (r = 0.41), while in the cord samples, D4 and D5 correlated with silane 590 

trimethyl(octadecyloxy)-, (r = 0.41 and 0.41) which in turn correlated with progesterone (r = 0.55) and ubiquinone 591 

(r = 0.45). Finally, three perfluoroalkyl acids PFAAs: perfluorononanoic acid (PFNA), perfluorodecanoic acid 592 

(PFDA) and perfluoroundecanoic acid (PFUnDA) correlated strongly with each other (r values in maternal: 0.66-593 

0.74, r values in cord: 0.64-0.72) while 2 perfluorinated sulfonic acids (PFSA; perfluorohexanesulfonic acid, 594 

perfluorooctanesulfonic acid) formed their own group. Both groups of chemicals are poly/perfluoroalkyl 595 

substances (PFAS), a group of chemicals that has recently come under scrutiny due to their persistence, 596 

bioaccumulation potential and toxicity. The group of PFAA, in both networks, showed to correlate with certain 597 

fatty acids, such as stearic acid and 4-oxopentanoic acid (r = 0.4-0.5) (Fig. 5 and 6).  598 

4. Discussion 599 

 Our chemical analysis of the maternal and blood samples with HRMS and a non-target analysis workflow 600 

provided important insights in the prenatal exposome, exposures to environmental pollutants, and their potential 601 

role in the development of human disease. To our knowledge, this is the largest dataset of the exposome of 602 

maternal and fetal exposures. We confirmed 19 with analytical standards (level 1), tentatively identified 73 603 

compounds with MS/MS spectra matching (level 2) and annotated 98 features with our annotation algorithm 604 

(level 3) described in the materials and methods (Supporting Spreadsheet 1: level 1-2 and level 3-4). 605 

 Our data analysis showed that when analyzing large sample sets with non-targeted analysis, batch effects 606 

are substantial and they need to be adequately addressed before drawing any conclusions on the chemical, 607 

biological, and epidemiological importance of that collected data. ComBat33,34 was able to remove batch effects 608 

for HRMS data for exposomics and metabolomics analyses.  609 



 Maternal and cord samples showed similarities in chemical feature enrichment (Fig. 3), but also important 610 

differences (Fig. 4) that allowed for these two groups to be classified as two distinct clusters (Fig. 4). Our 611 

similarity network analyses also showed that matched maternal and cord samples are more similar in terms of 612 

chemical feature enrichment compared to other maternal samples. These observations have important implications 613 

when studying the partitioning of chemical compounds between maternal and cord samples and when studying 614 

which chemicals show a stronger potential to cross the placenta and accumulate in the fetus. Previous studies have 615 

reported on the partitioning between maternal and cord blood,53–56 however, the mechanism by which certain 616 

chemicals cross the placenta more readily than others requires further investigation. One interesting example of 617 

chemicals from our dataset that showed preferential partitioning for the maternal side were the five PFAS we 618 

detected. The log RCM of the five PFAS ranged from -0.037 to -0.22 (Supporting Spreadsheet 1 and Fig S5 B; left 619 

tail of the distribution) indicating that the transfer of these chemicals to the fetus is to some degree inhibited by 620 

the placenta. This finding is in good agreement with previous biomonitoring studies where they examined the 621 

transplacental transfer of PFAS.57,58 Due to their strong affinity for proteins, PFAS, bind to the proteins in the 622 

placenta and they are to some extend inhibited from reaching the fetus.57,58 623 

 We observed a significant positive association between RCM and E, and a significant negative association 624 

between RCM and KOW indicating that RCM is influenced by these two physicochemical properties. As E represents 625 

the ability of a chemical to engage in London dispersion forces and dipole-induced dipole interactions, its positive 626 

association with RCM suggests that organic chemicals where large parts of the molecule are composed of C and H 627 

without highly electronegative atoms (e.g., Cl) are more likely to partition preferably to cord blood. The negative 628 

association of RCM and KOW suggests that hydrophobic molecules are likely to partition to maternal blood. This 629 

observation is in agreement with previous studies showing a negative correlation between RCM and KOW.36 We 630 

observed a borderline significant relationship between RCM for gestational age (0.07)  (Fig. S6 C). Furthermore, 631 

when we grouped the RCM values by gestational age group, we observed a slightly higher median RCM for preterm 632 

birth samples compared to full term and late term (Fig. S6 E) indicating a higher overall transfer to the fetus in 633 

preterm birth. However, this also appears to depend on the chemicals and their physicochemical properties. In an 634 

earlier study on the transplacental transfer of PFAS Li et al.41 noted the reverse trend, namely, that transfer of 635 



PFAS was higher in full term compared to preterm birth samples. We observed a slightly elevated median for 636 

overall RCM values in samples from patients with gestational diabetes. This finding, although, statistically not 637 

significant, is in agreement with the study of Eryasa et al.42 that observed higher transplacental transfer in mothers 638 

with gestational diabetes. These observations are in agreement with the thermodynamic understanding in 639 

environmental chemistry that the behavior of chemicals is influenced by the chemicals’ physicochemical 640 

properties and by the properties of their environment.59 641 

We observed a weak but significant negative association between RCM and RT (Fig. S5 D). As RT is a 642 

function of the chemicals’ hydrophobicity (KOW), with more hydrophobic chemicals exhibiting longer RTs (Fig. 643 

S6 H), its relationship with the RCM indicates that more hydrophobic chemicals would show a preference to 644 

partition more to the maternal blood compared to cord blood. This finding suggests that RT could be used as a 645 

criterion for prioritizing chemical features for identification in maternal/cord blood studies and could potentially 646 

also be used in prioritization of chemicals for toxicity testing. Finally, considering that KOW can vary significantly 647 

between structural isomers/isobaric features, the strong association we observed between log KOW and RT (r=0.79, 648 

p=6.9e-33) gives an extra degree of confidence for our annotations of the level 1, 2 and 3 chemicals. If these 649 

annotations contained substantial errors one would expect to see greater variability in the data points for log KOW 650 

and RT. 651 

Our analysis of the associations between exogenous and endogenous exposures has provided a means to 652 

uncover chemicals potentially important to biological pathways. Such findings are particularly useful because 653 

they can be used to inform toxicological laboratory experiments to study the underlying molecular mechanisms. 654 

We observed thousands of significant relationships between exogenous and endogenous chemical features, 655 

hundreds of which showed an absolute r > 0.5. Many of these associations can be challenging to interpret in terms 656 

of molecular mechanisms. Thus, we focused our discussion on associations that were both strong in terms of 657 

correlation coefficient but also relatively easily interpretable. 658 

The strongest association we observed between an endogenous and an exogenous compound in both the 659 

maternal and the cord networks was that of ubiquinone q10 and Asarone. Ubiquinone q10 occurs naturally in the 660 

human body in an oxidized (ubiquinone) and a reduced form (ubiquinol).60 Ubiquinone acts as an electron and 661 



proton carrier in mitochondrial electron transport connected to ATP synthesis. Ubiquinol acts as an antioxidant 662 

inhibiting lipid peroxidation, protecting mitochondrial inner-membrane proteins and protecting DNA damage due 663 

to oxidation.60 Asarone is a chemical compound that occurs naturally in some plants, such as Acorus calamus and 664 

it is used as a pesticide and as an essential oil in perfumes and in alcoholic beverages.61 Asarone is a carcinogenic 665 

compound whose epoxide metabolite of is suspected of causing DNA damage.62 Based on the strong association 666 

we observed for these two compounds, we hypothesize that exposure to Asarone may trigger the upregulation of 667 

ubiquinone and ubiquinol. Despite its industrial applications, Asarone appeared to not be registered as a high 668 

production volume chemical and it was not included in the Chemical Data Reporting database (CDR) under the 669 

Toxic Substances Control Act (TSCA)63. This raises some concerns about the regulation of Asarone and similar 670 

toxic compounds that may have natural sources but are used in industrial applications. 671 

Another group of exogenous chemicals that showed an interesting and pattern were three PFAS (PFNA, 672 

PFDA and PFUnA) that positively correlated strongly (r = 0.4-0.5) with endogenous fatty acids (Fig 5 and 6) 673 

indicating a potential interference with fatty acid metabolism. PFAS have been shown to interfere with fatty acid 674 

metabolism in in vitro toxicological studies by binding to fatty acid binding proteins.64,65 Binding of PFAS to fatty 675 

acid binding proteins could reduce the available binding sites for endogenous fatty acids resulting in higher 676 

concentrations of fatty acids. This could explain the observed positive correlations between the three PFAS and 677 

endogenous fatty acids in our study. Similar associations between PFAS and fatty acids have been reported in 678 

previous metabolome/exposome studies66,67, however, not for the exact same panel of PFAS and fatty acid 679 

compounds and not through an NTA workflow. Currently there are about 10,000 PFAS registered on EPA’s 680 

Chemistry Dashboard, many of which do not have data on their toxicity potential in humans. Toxicological and 681 

epidemiological studies have shown that exposure to certain PFAS is associated with altered liver function68,69, 682 

increased risk for preterm birth, low birth weight70, and lower bone mineral density71. Our study corroborates the 683 

need for further experimental and modeling studies to assess the potential of the ever-increasing chemical library 684 

of PFAS and study how they interfere with human metabolism. High-throughput protein binding studies would 685 

help to elucidate some of these effects and help prioritize PFAS for biomonitoring and policy action. 686 



 Another group of chemicals that showed an interesting pattern were two cyclic volatile methylsiloxanes 687 

(cVMS), octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5). cVMS are organosilicon 688 

chemicals that are primarily used as carriers in personal care products, such as deodorants, and as intermediates in 689 

the production of silicone polymers. Their strong positive correlation indicates a common source of exposure, 690 

most likely due to use of personal care products. Their ubiquitous presence in personal care products makes it 691 

very likely that these chemicals are from such applications. However, also because of their ubiquitous presence in 692 

silicone polymers, there is a chance that these chemicals could be a result of contamination from inside the 693 

analytical instrument. There is also a possibility that these chemicals could be also coming from personal care 694 

products by people working in the lab, however, the physicochemical properties of D4 and D5, specifically their 695 

equilibrium partition ratio between octanol and air (KOA), indicates that partitioning from the air to an organic 696 

solvent is very unlikely. D4 has a log KOA of 4.97 and D5 has log KOA of 3.94,20 which indicate a strong 697 

preference for the molecules to exist in the gas phase compared to other chemicals, such as polychlorobiphenyl 698 

180 (PCB 180) which has a log KOA of 9.94 and a much stronger preference to partition to octanol. Finally, all the 699 

abundances in our data set were blank corrected which should minimize the potential of contamination. In the 700 

maternal samples, D5 correlated with benzaldehyde which is a compound that occurs naturally in plants and in the 701 

human body, and it is used as an additive in foods and personal care products.72 The correlation with D5 indicates 702 

a common source of exposure through personal care products. In the cord samples, D4 and D5 correlated with 703 

silane trimethyl(octadecyloxy)-, which in turn correlated with progesterone and ubiquinone. Silane 704 

trimethyl(octadecyloxy)- is an organosilicon compound used in personal care products73 and its correlation with 705 

D4 and D5 makes good sense given the applications of these chemicals. The correlation of silane 706 

trimethyl(octadecyloxy)- with progesterone and ubiquinone is somewhat concerning considering the wide use of 707 

that chemical in personal care products.  708 

 709 



5. Limitations and future considerations 710 

Our study illustrates the importance of broad screening using NTA in order to characterize the exposome 711 

and the mechanisms under which environmental exposures contribute to the development of human disease. 712 

While NTA is a powerful tool in compound discovery, it also has its limitations as it is still early in its 713 

development. One critical challenge with NTA is the small number of confirmed chemicals with analytical 714 

standards, which is usually in the 10s, compared to the total number of detected features, which is usually in the 715 

1000s.11,12,14,74. This obstacle restricts the ability of non-targeted analysis to assist in prioritizing chemicals for 716 

biomonitoring and human exposure studies. Developing new computational tools for structure elucidation and 717 

expanding in silico screening of databases for structures that correspond to detected formulas and prioritization of 718 

hazardous chemicals can potentially help enhance our ability to utilize the potential of NTA.  719 

A limitation of our study is that it uses only one analytical instrument, LC-QTOF/MS, which specializes 720 

in the analysis and identification of polar and involatile compounds. As a result, the chemical features that we 721 

detected are primarily from that physicochemical space. Complementing LC-QTOF/MS with gas chromatography 722 

/ mass spectrometry, especially high-resolution mass spectrometry and multidimensional techniques, could help 723 

expand the spectrum of possible chemical features by including non-polar and volatile/semi-volatile chemicals. 724 

 Finally, our study focuses on the differences between maternal and cord blood as a surrogate for 725 

understanding fetal exposure and adverse fetal health outcomes. However, adverse fetal health outcomes depend 726 

not only on the amount of the chemical the fetus is exposed to, but also on the toxicity of the chemical. There is 727 

thus a need to develop high-throughput toxicity screening models to screen for chemicals found in fetal blood. 728 

Using NTA data to inform toxicity testing can provide unique insights in toxicology and environmental health and 729 

assist in preventing of exposure to toxic chemicals. 730 

 In our future studies, we plan to conduct epidemiological analyses by further examining the correlations 731 

of exogenous compounds with endogenous metabolites and examine the influence of covariates on these 732 

associations. Furthermore, we plan to analyze additional samples from patients with adverse health outcomes to 733 



enrich our dataset and investigate the role of endogenous and exogenous exposures to the development of adverse 734 

health outcomes, such as gestational diabetes, preterm birth, birth weight, and preeclampsia, among others. 735 
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