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ABSTRACT 
Electricity generation is a major contributing factor for greenhouse gas emissions. Energy 

storage systems available today have a combined capacity to store less than 1% of the 

electricity being consumed worldwide. Redox Flow Batteries (RFBs) are promising candidates 

for green and efficient energy storage systems. RFBs are being used in renewable energy 

systems, but their widespread adoption is limited due to high production costs and toxicity 

associated with the transition-metal-based redox-active species. Therefore, cheaper and 

greener alternative organic redox-active species are being investigated. Recent reports have 

shown organic molecules based on phenazine are promising candidates for redox-active species 

in RFBs. However, the large number of available organic compounds makes the conventional 

experimental and DFT methods impractical to screen thousands of molecules in a reasonable 

amount of time. In contrast, machine-learning models have low development time, short 

prediction time, and high accuracy; thus, are being heavily investigated for virtual screening 

applications. In this work, we developed machine-learning models to predict the redox 

potential of phenazine derivatives in DME solvent using a small dataset of 185 molecules. 2D, 

3D, and Molecular Fingerprint features were computed using readily available and easy-to-use 

python libraries, making our approach easily adaptable to similar work. Twenty linear and non-

linear machine-learning models were investigated in this work. These models achieved 

excellent performance on the unseen data (i.e., R2 > 0.98, MSE < 0.008 V2 and MAE < 0.07 

V). Model performance was assessed in a consistent manner using the training and evaluation 

pipeline developed in this work. We showed that 2D molecular features are most informative 

and achieve the best prediction accuracy among four feature sets. We also showed that often 

less preferred but relatively faster linear models could perform better than non-linear models 

when the feature set contains different types of features (i.e., 2D, 3D, and Molecular 

Fingerprints). Further investigations revealed that it is possible to reduce the training and 

inference time without sacrificing prediction accuracy by using a small subset of features. 

Moreover, models were able to predict the previously reported promising redox-active 

compounds with high accuracy. Also, significantly low prediction errors were observed for the 

functional groups. Although some functional groups had only one compound in the training 

set, best-performing models could achieve errors (MAPE) less than 10%. The major source of 

error was a lack of data near-zero and in the positive region. Therefore, this work shows that it 

is possible to develop accurate machine-learning models that could potentially screen millions 

of compounds in a short amount of time with a small training set and limited number of easy 

to compute features. Thus, results obtained in this report would help in the adoption of green 

energy by accelerating the field of materials discovery for energy storage applications. 
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INTRODUCTION 
Today, ~85% of the World’s Energy demand is being fulfilled by Fossil fuels [1], [2]. The 

limited supply of fossil fuels and the ever-increasing population has raised concerns that we 

might run out of fossil fuels sooner than expected [1], [3]. Furthermore, electricity production 

from fossil fuels is one of the major factors responsible for greenhouse gas emissions [4]. In 

this age, humanity faces two significant challenges of balancing increased energy demand 

while reducing the environmental impact associated with energy production. In past decades, 

investments and research efforts in green technology have been increased to overcome these 

challenges [5]. Significant progress has already been made to access renewable energy sources 

[6], [7]. Renewable energy sources being intermittent require efficient energy storage [4]. 

Improvements in the energy storage technology would not only help in the adoption of 

renewable energy but also help in making efficient use of non-renewable energy sources. 

Historically, it has been more expensive to store energy than to expand energy generation for 

handling increased demand [8]. Thus, grid systems employed today are likely to fail when 

additional energy could not be generated during peak demand. Massive Texas Blackout in 

February, 2021 is an example of such failure [9]. It suggests that efficient energy storage 

technology is urgently required. Unfortunately, only 1% of the energy consumed worldwide 

could be stored with the energy storage technology accessible today [10]. Furthermore, the 

contribution of electrochemical batteries to energy storage capacity is less than 2%, even 

though most of the devices we use every day include batteries [8], [10]. Li-ion batteries are 

widely used today due to their high energy density, high specific energy, long cycle life, fast 

charge-discharge cycle [4], [8], [11]. Unfortunately, Li-ion batteries suffer from high 

production costs, safety, and environmental impact [2], [12]. Redox Flow Batteries (RBFs) 

have the potential to overcome drawbacks of Li-ion batteries owing to their high storage 

capacity, independent control over storage capacity and power, fast responsiveness, ease of 

scaling, room temperature operation, cost-effectiveness, high round trip efficiency, safety, and 

negligible environmental impact  [13]–[15]. RBFs are increasingly being used as the energy 

storage devices in renewable energy systems, thereby helping in the adoption of green energy 

[15], [16]. A schematic diagram of the typical redox flow battery is shown in Figure 1. Redox 

Flow Battery (RFB) consists of two storage tanks containing cathode and anode redox-active 

species dissolved in an electrolyte solution. Electrolyte solution in the positive and negative 

compartment is termed catholyte and anolyte, respectively. These storage tanks are connected 

to an electrochemical cell (or current collector) via pumps. The electrochemical cell consists 

of porous electrodes separated by an ion-selective membrane. During operation, electrolytes 

containing redox-active species are pumped to the electrochemical cell, where redox-active 

species undergo either oxidation or reduction depending on the charge/discharge cycle. Then, 

electrolytes are circulated back to their storage tanks [13], [17]. So far, transition metal-based 

redox flow batteries (e.g., vanadium, iron, and chromium) have found some commercial 

success. However, their widespread adoption has been limited mainly due to high production 

cost, toxicity, and cell component corrosion associated with the use of transition metal salts 

[18], [19]. Therefore, redox flow batteries containing organic redox-active species are being 

heavily investigated due to their low production cost, access to a massive space of electroactive 

compounds, and low environmental impact [19], [20]. Many organic compounds such as 

quinones, viologens, flavins, thiazines, imides, and their derivatives have been investigated for 

redox-active species in both aqueous and non-aqueous RFBs  [18], [21], [22]. However, non-

aqueous RFBs offer large operating voltage [21]. Recently, Phenazine derivatives have shown 



to be promising candidates for high-voltage, high-density redox-active species in non-aqueous 

RFBs. Therefore, phenazine derivatives are currently being investigated for novel redox-active 

species [18], [23].  

These investigations remain primarily experimental. Unfortunately, the vast chemical space 

offered by organic compounds cannot be explored using experimental procedures. Quantum 

mechanical DFT computations have been used heavily in chemistry research due to high 

accuracy but are very slow and cannot screen millions of molecules in a reasonable amount of 

time. Therefore, a fast and reliable method to screen millions of compounds without 

compromising accuracy is required. In this regard, Machine-learning algorithms have shown 

excellent predictive accuracies along with short prediction time [24]–[28]. Therefore, Machine 

learning models have been used extensively to screen millions of molecules in materials 

science and drug discovery [29]–[33]. Machine learning models generally require a large 

amount of data for accurate prediction. When the quantity of data is limited, feature engineering 

is employed to generate the most informative features. These features are expected to capture 

the appropriate molecular information required to predict the target variable. Feature 

engineering requires domain knowledge, relying on having access to the experts [34]–[36]. In 

small datasets, DFT-based or experimentally determined features have been used due to their 

high accuracy. However, some reports also explore simple features based on molecular 

structure [37]–[42]. 

The goal of this study was to develop machine-learning models that predict redox potential in 

a short amount of time while maintaining high accuracy. Therefore, we did not compute any 

features from DFT calculations or experimental studies. Features used in this study were 

computed from molecular structures using readily available, easy-to-use python libraries such 

as RDKit [43] and DeepChem [44]. These libraries have been used in other studies as well 

[45]–[48]. Previous studies to predict redox potential using machine-learning investigate only 

a small number of non-linear models [49]–[53]. Furthermore, none of the previous studies use 

easily computable features from RDKit and DeepChem libraries. This study investigates 

twenty different linear and non-linear machine-learning models to predict the redox potential 

of phenazine derivatives in DME (Dimethoxyethane) solvent. Linear models are generally 

faster to train but may not capture complex relations between features and target variables, 

whereas non-linear models can capture these complex relationships but may need a 

considerable amount of training time. Total 3510 features containing 2D, 3D and Molecular 

Fingerprints were generated using RDKit, and DeepChem. Models were trained on four feature 

sets described in Table 1 to obtain high prediction accuracy. Moreover, to understand which 

feature set had the best prediction accuracy, a detailed analysis of model performance was 

carried out using the pipeline developed in this work (see methods section). The pipeline was 

developed to make training and evaluation easy, consistent, and automatic for all models. 

Pipeline combines different model training and evaluation steps into a single, convenient sub-

routine. Then, the feature importance analysis was performed to identify the most important 

features in each feature set. Next, model performance was analyzed on small subsets of the 

most important features to reduce training and inference time for large datasets. Then, the 

promising redox-active candidates were identified using the predictions from best-performing 

models. Also, the prediction accuracy across different functional groups was analyzed. Finally, 

the sources of errors were identified. We believe that methods used in this work are easily 



adaptable, and the results obtained in this study would help accelerate the discovery of novel 

redox-active species for energy storage applications.      

 

  

 

Figure 1. Schematic diagram of a typical Redox Flow Battery 

 



DATA CURATION 
Data used in this study was obtained from ref. [18]. The redox potentials of 189 phenazine 

derivatives in DME were provided. These potentials were computed using DFT.  Phenazine 

derivatives contain twenty unique electron-withdrawing and donating functional groups (–

N(CH3)2, –NH2, –OH, –OCH3, –P(CH3)2, –SCH3, –SH, –CH3, –C6H5, –CH=CH2, –F, –Cl, 

–CHO, –COCH3, –CONH2, –COOCH3, –COOH, –CF3, –CN and –NO2). Optimized 3D 

structures of derivatives in neural and in anionic states were also provided. Only neutral 

structures were used for the feature computation. However, not all compounds were provided 

with their neutral structure. Therefore, compounds missing neutral structures were removed. 

Thus, we ended up with 185 compounds in the final dataset. Next, 3510 different types of 

features were generated using RDKit and DeepChem libraries as described in the methods 

section. Finally, the whole dataset was shuffled and split randomly into a train-set and a test-

set in a 7:3 ratio. This resulted in 129 samples in the train-set and 56 samples in the test-set.       

METHODS 
Feature Generation 

For each compound, three types of features were generated: (i) 2D, (ii) 3D, and (iii) Molecular 

Fingerprints. A list of all features used in this study is given in Table S1. Ten 2D features were 

generated from the raw data (features with the word ‘basic’ in suffix). The rest of the 2D 

features were computed using RDKit [43]. All 3D features were computed using RDKit. 

Molecular Fingerprints were computed using RDKit and DeepChem [44] libraries. These 

features were grouped into four sets, as shown in Table 1. Molecular Fingerprints and some of 

the 3D features are 1D vectors. In this study, we consider each component of the vectorial 

feature as a separate feature. Therefore, a small number of 3D and Molecular Fingerprint 

features results in a large number of features.  

 

Pre-processing 

Features having NaN (Not a Number) value for any compound were removed. Also, features 

having identical values for all compounds were removed as they do not contain any useful 

information. All 2D and 3D features computed from the RDKit library were scaled using the 

‘StandardScaler’ class of scikit-learn library [54], which removes mean and scales each feature 

to unit variance. 

 

 

Table 1. Feature sets 

Sr. 

No 

Feature 

Set 
Description 

Number of 

Features 

1 2d+3d+fp 

Contains 2D and 3D features generated using raw 

data and RDKit. Also contains Molecular 

Fingerprints generated using RDKit and deepchem 

3510 

2 2d 
Contains only 2D features generated using raw data 

and RDKit 
151 

3 3d Contains only 3D features generated using RDKit 869 

4 fp 
 Contains Molecular Fingerprints generated using 

deepchem and RDKit 
2490 

 



 

 

Machine-learning Models 

Twenty linear and non-linear machine-learning models were investigated in this study. 

Machine-learning models were implemented with the scikit-learn python library [54]. A list of 

all models is given in Table 2. 

 

Hyper-Parameter Tuning 

Hyper-Parameter tuning was performed for all models using the ‘GridSearchCV’ class of the 

scikit-learn library. ‘GridSearchCV’ performs a systematic search over the grid of parameters 

to identify the best set of parameters using cross-validation. 10-fold cross-validation with mean 

squared error (MSE) was used in this study. 

Evaluation Metrics  

Following metrics were used to evaluate the model performance. In the formulas below, 𝑁 

denotes the number of samples, 𝑦�̂� denotes the predicted value of 𝑖-th sample and the 𝑦𝑖 denotes 

the corresponding true value. 

 

Table 2. Model list 

Sr. 

No. 
Model Name Alias Model Type 

1 Linear Regression linear_reg Linear 

2 Ridge Regression ridge Linear 

3 Lasso lasso Linear 

4 Elastic-Net elastic_net Linear 

5 LARS Lasso lasso_lars Linear 

6 Orthogonal Matching Pursuit omp Linear 

7 Bayesian Ridge Regression bayesian_ridge Linear 

8 Automatic Relevance 

Determination Regression 

ARDR Linear 

9 Passive Aggressive PA Linear 

10 Huber Regression huber Linear 

11 Kernel ridge Regression kernel_ridge Non-Linear 

12 Support Vector Machines SVR Non-Linear 

13 Gaussian Processes Regression gaussian_process Non-Linear 

14 Decision Trees decision_tree Non-Linear 

15 Bagging meta-estimator bagging Non-Linear 

16 Random Forest random_forest Non-Linear 

17 AdaBoost ada_boost Non-Linear 

18 Gradient Boosting regression gradient_boosting_reg Non-Linear 

19 Artificial Neural Network neural_network Non-Linear 

20 Nearest Neighbors Regression knn_reg Non-Linear 

 



 

 

1. Coefficient of Determination (R2):   

𝑅2 = 1 − 
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑁
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑁
𝑖=1

 

𝑤ℎ𝑒𝑟𝑒, �̅� =
∑ 𝑦𝑖

𝑁
𝑖=1

𝑁
 

2. Mean Squared Error (MSE): 

𝑀𝑆𝐸 =  
∑ (𝑦𝑖 − �̂�)2𝑁

𝑖=1

𝑁
 

3. Mean Absolute Error (MAE): 

𝑀𝐴𝐸 =  
∑ |𝑦𝑖 −  𝑦�̂�|

𝑁
𝑖=1

𝑁
 

4. Mean Absolute Percentage Error (MAPE): 

𝑀𝐴𝑃𝐸 = 100 ∗ 
∑

|𝑦𝑖 −  𝑦�̂�|
⌈𝑦𝑖⌉

𝑁
𝑖=1

𝑁
 

MSE was used as an internal evaluation metric in all cross-validation procedures. Other metrics 

were used to get more interpretable results. The use of terms ‘Accuracy’ and ‘Performance’ in 

this report is contextual and refers to one or more metrics defined above. 

MSE and MAE Threshold 

To understand whether the model was learning or not, we determined the approximate upper 

bound on MSE and MAE for the train and test set. It is expected that MSE and MAE would 

stay below this threshold if learning were successful. It was observed that when training fails 

model predicts constant value (i.e., mean of the training data). The threshold value for MSE 

and MAE was determined using the mean value of training data. Threshold values are shown 

in Table 3.  

 

k-Fold Cross-Validation  

In a typical k-fold cross-validation procedure, the train-set is split into k sets of approximately 

equal size. Then, the model is trained on k-1 sets, leaving one set as a test-set. Then, the 

performance of the trained model is evaluated on the left-out test-set. This procedure is repeated 

for every fold, and average performance is reported. As every data-point in the training set is 

evaluated as if it belongs to the test-set, the performance obtained from cross-validation is 

considered a reasonable estimate of out-of-sample performance. k-fold cross-validation gives 

Table 3. Threshold values  

Sr. No. Metric Training-Set Threshold Test-Set Threshold 

1 MSE 0.47 0.44 

2 MAE 0.6 0.56 

 



robust out-of-sample performance for the model. It is a crucial evaluation technique, especially 

when the dataset size is very small and it becomes impractical to partition data into three sets 

(i.e., train, validation, test). 10-fold cross-validation was used in this study. 

Feature Importance Score 

Feature importance scores were computed using the optimized Random Forest, AdaBoost, and 

Gradient Boosting Regression trained on all features from the corresponding feature set. 

Pipeline 

To assess the model performance, we developed a pipeline that combines all training and 

evaluation components into a single procedure. Given the train and test sets as inputs, the 

pipeline first performs hyperparameter-tuning for all models, then evaluates the performance 

of optimized models on CV, train, and test sets, and finally combines necessary results from 

each step in a single dataframe. Pipeline makes the training and evaluation easy, consistent and 

automatic for all models across different scenarios. A pictorial representation of the pipeline is 

shown in Figure 2. Different steps in the pipeline are described below: 

1. Input: First, training and test data are provided as inputs 

2. Hyper-Parameter Tuning: In this step, optimized parameters of all twenty models 

are determined using the train-set as described in this section before. 

3. 10-Fold Cross-Validation: In this step, the cross-validation performance of 

optimized models is evaluated using 10-fold cross-validation on the train-set. Three 

metrics (i.e., R2, MSE, and MAE) are recorded during the cross-validation for all 

models. 

4. Train and Test set Performance: In this step, the performance of all optimized 

models is evaluated on the train and test set. Three metrics (i.e., R2, MSE, and MAE) 

are recorded during the evaluation for all models. 

5. Output: In this step, outputs from steps 2-4 are combined into one dataframe 

containing the best set of parameters, 10-fold cross-validation performance, train 

and test set performance of all models. 

  

Input: Train-Set 
and Test-Set

Hyper-Parameter 
Tuning

10-Fold Cross-
Validation

Train and Test Set 
Performance

Output: Optimized 
Models, Evaluation 

Metrics etc.

Figure 2. Pictorial representation of model training and evaluation pipeline 



RESULTS AND DISCUSSION 

 

Analysis of Best-Performing Machine-learning Models 

For accurate prediction of the redox potential of phenazine derivatives, we employed twenty 

different linear and non-linear machine-learning models, which are listed in Table 2. The whole 

dataset was shuffled and split randomly into train and test sets in a 7:3 ratio. The size of the 

train and test set was 129 and 56, respectively. Even though models were trained on a relatively 

small dataset, they achieved excellent performance on the unseen data (i.e., test-set). Figure 3 

shows the redox potential predicted by models on the y-axis and the corresponding true value 

of redox potential on the x-axis. The majority of models achieved R2 value of 0.99 on the test-

set (R2 values in the plots were rounded to two decimal places for clarity). Table 4 shows the 

twenty best-performing models obtained in this study along with their R2, MSE, and MAE 

values on cross-validation (CV), train-set, and test-set. All top twenty models not only had an 

outstanding performance on train-set but also on test-set (i.e., R2 > 0.98, MSE < 0.008 V2 and 

MAE < 0.07 V).  

 

Figure 3. Machine-learning prediction of redox potential vs. True redox potential of the three best-performing models in 

four feature sets. The title above the plot indicates the model name, its rank, and corresponding feature set in brackets. 
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Assessing Model Performance on Four Feature Sets 

The performance of machine-learning models depends on the type and the quality of features 

used for training. Therefore, it is important to identify the best set of features that achieve high 

prediction accuracy. Hence, we assessed the model performance on four sets of features shown 

in Table 1. The goal here was to understand how different types of molecular features affect 

model performance. The list of all features is given in Table S1. Model performance on each 

feature set was assessed using the pipeline described in the methods section. Twenty best-

performing models in Table 4 were obtained after assessing model performance on all four 

feature sets. The ‘Feature Set’ column in Table 4 shows the corresponding feature set used for 

the training. Gaussian Processes Regression trained on 2D features achieved the highest 

prediction accuracy in this study. The negative value of R2 (CV) for the Orthogonal Matching 

Pursuit (omp) model in Table 4 shows that it may not generalize well to the unseen data. A 

similar trend was observed for a few other linear models (Figure 4). Nine models, including 

the top seven models in Table 4, were trained on the ‘2d’ feature set. The rest of the models in 

Table 4 were trained on the ‘2d+3d+fp’ feature set. We did not observe any model trained on 

either ‘3d’ or ‘fp’ in Table 4. The best-performing model in each feature set, along with their 

test-set performance (i.e., R2, MSE, and MAE), is shown in Table 5. Additionally, ten best-

performing models in each feature set, along with their CV, train-set, and test-set performance 

(i.e., R2, MSE, and MAE), are shown in Tables S2-S5. Similarly, the best-performing feature 

set for each model, along with their CV, train-set, and test-set performance, is shown in Table 

S6. Observations from Table 4, Table 5 and Tables S2-S6 show that the prediction accuracy 

with respect to feature set follows this order: 2d > 2d+3d+fp > 3d > fp. Therefore, we conclude 

that 2D features are more informative than 3D and Molecular Fingerprint features to predict 

the redox potential of phenazine derivates in DME. Tables S2-S5 also show linear models (e.g., 

ARDR, lasso, omp, ridge, bayesian_ridge) perform better than non-linear models on 

‘2d+3d+fp’ and ‘2d’ feature sets, whereas non-linear models (e.g., gradient_boosting_reg, 

gaussian_process, random_forest, neural_network) perform better than linear models on ‘2d’, 

‘3d’ and ‘fp’ feature sets. This observation suggests that linear models should be preferred 

when the feature set consists of different features (i.e., 2D, 3D, and Molecular Fingerprints). 

Non-linear models should be preferred when the feature set contains either 3D or Molecular 

Fingerprint features. Any model could be used for 2D features. Linear models are generally 

faster than non-linear models due to their simple structure but are not prefered due to low 

accuracy. The results obtained here show that linear models could give accurate predictions 

than non-liearn models on certain combination of feature set. Utilizing linear models in thses 

scenarios could significantly reduce the training and inference time. 

 

 

Table 5. Best-performing models in four feature sets. Models were trained on all features from the corresponding 

feature set. 

Sr. 

No. 
Featue Set Model Name 

R2 (Test-

set) 

MSE (Test-

set) / V2 

MAE (Test-

set) / V 

1 2d+3d+fp ARDR 0.9873 0.0056 0.0473 

2 2d gaussian_process 0.9921 0.0035 0.0428 

3 3d gradient_boosting_reg 0.9788 0.0093 0.0573 

4 fp random_forest 0.9583 0.0183 0.1012 

 



Cross-Validation and Out-of-Sample Performance 

10-fold cross-validation (CV) performance (i.e., R2, MSE, and MAE) obtained from the 

pipeline is shown in Figure 4 for all twenty models. Cross-validation gives a reasonable 

estimate of out-of-sample performance (i.e., performance on unseen data). ‘2d+3d+fp’, ‘2d’ 

and ‘3d’ feature sets had the acceptable CV performance (i.e., MSE and MAE below their 

threshold value) on most models except on four linear models. The computation of threshold 

values for MSE and MAE is described in the methods section. These four linear models (i.e., 

linear_reg, omp, PA, huber) had negative R2 value, high MSE, and high MAE (i.e., close to 

threshold) for at least one feature set. ‘fp’ feature set had the worst CV performance on all 

models. Three linear models (i.e., omp, PA, huber) had poor CV performance on the ‘3d’ 

feature set. Performance on test-set (i.e., R2, MSE, and MAE) obtained from the pipeline is 

shown in Figure 5 for all twenty models. As models never see a test-set, test-set gives an even 

better estimate of out-of-sample performance than cross-validation. All feature sets had an 

acceptable test-set performance on all models except Linear Regression. Linear Regression had 

a poor test-set performance on ‘2d’ and ‘fp’ feature sets.  Furthermore, the averaged train and 

test performance (i.e., R2, MSE, and MAE values were averaged over all models) for each 

feature set is shown in Table 6. Values of Linear Regression were not considered in the average 

due to very high errors. In Table 6, ‘2d+3d+fp’ and ‘fp’ feature sets had better train-set 

performance and poor test-set performance than the ‘2d’ feature set. This indicates that 2D 

features are better at generalizing to unseen data than 3D and Molecular Fingerprint features. 

Trend analysis of Figure 4, Figure 5, and Table 6 revealed previously observed order of feature 

set performance, 2d > 2d+3d+fp > 3d > fp. Plots similar to Figure 4 for the train-set are shown 

in Figure S1. 

 

Table 6. Averaged train and test set performance of four models. Performance was aveaged over all models except 

Linear Regression. Models were trained on all features from the corresponding feature set. 

Sr. No. 
Feature 

Set 

R2 

(Train-

set) 

MSE 

(Train-

set) / V2 

MAE 

(Train-

set) / V 

R2 

(Test-

set) 

MSE 

(Test-

set) / V2 

MAE 

(Test-

set) / V 

1 

2d+3d+f

p 0.9926 0.0035 0.0301 0.9718 0.0124 0.0733 

2 2d 0.9876 0.0058 0.0426 0.9729 0.0119 0.0734 

3 3d 0.9917 0.0039 0.0335 0.9535 0.0204 0.0899 

4 fp 0.9718 0.0132 0.0506 0.9028 0.0427 0.1511 

 



  

 

Figure 4. 10-Fold Cross-Validation performance of twenty models. Models were trained on all features from the 

corresponding feature set. 

 

 



    

 

 

Figure 5. Test-set performance of twenty models. Models were trained on all features from the corresponding feature 

set. 

 

 



Feature Importance Analysis 

Here, we performed feature importance analysis for each feature set to identify the most 

important features. We used Random Forest, AdaBoost, and Gradient Boosting Regression to 

calculate feature importance score. Figure 6, Figure 7, Figure 8, and Figure 9 show feature 

importance histograms for ‘2d’, ‘3d’, ‘fp’ and ‘2d+3d+fp’ feature sets, respectively. Only 

twenty features with the highest scores are shown in the histograms. The most important 

features in the‘2d’ feature set are SlogP_VSA4, fr_NH0, VSA_Estate3, and VSA_Estate4. 

SlogP_VSA4 includes the LogP [55] and Van der Waals surface area contributions from all 

atoms in the molecule. fr_NH0 is the number of Tertiary amines. VSA_Estate3 and 

VSA_Estate4 are calculated using EState indices [56] and Van der Waals surface area 

contributions of all atoms in the molecule. Many graph-based features like Kappa2, BertzCT, 

Chi1, Chi2n, HallKierAlpha [57] and some chemically intuitive features like fr_ArN (i.e., 

number of N functional groups attached to aromatic ring), MinPartialChargge, 

MaxAbsPartialCharge are also observed in the top twenty features. In the case of ‘3d’ feature 

set, RDF_120, RDF_90, RDF_125 WHIM_90, WHIM_86 are among the top 3D features (RDF, 

WHIM are 1D vectors) [58]. The number at the end of the feature name denotes its position in 

the corresponding feature vector. Some components of MORSE and GETAWAY feature vectors 

[58] are also observed in the top twenty features. Only two components of Autocorr3D were 

observed in one of the histograms (i.e., AdaBoost histogram) suggesting Autocorr3D [58] is a 

relatively less important 3D feature. None of the scalar 3D features were observed in feature 

importance histograms, suggesting scalar 3D features are less important than vector 3D 

features. We had only three types of fingerprints in the ‘fp’ feature set (i.e., RDKit, ECFP4, 

MACCS keys). RDKit Fingerprints are daylight-like fingerprints computed from hashing 

molecular subgraphs [59]. ECFP4 [60] or Extended Connectivity Circular Fingerprints are 

computed from bag-of-word representation of local molecular neighbourhood. Four in ECFP4 

denotes the radius of local neighbourhood. MACCS keys are computed using SMARTS-based 

implementation of the 166 public MACCS keys [61]. Components only from RDKit and 

ECFP4 were among the top features whereas only one component from MACCS keys was 

observed in one of the histograms (i.e., Gradient Boosting Regression histogram). This 

indicates MACCS key fingerprint does not contain enough molecular information to predict 

redox potential. Figure 9 shows the feature importance histograms for the ‘2d+3d+fp’ feature 

set. This feature set contains all the features from ‘2d’, ‘3d’, and ‘fp’ feature sets. The most 

important features in this feature set were also the most important features in their respective 

set. Top features are mainly from ‘3d’ and ‘2d’ feature sets, and only one component from the 

ECFP4 feature vector was observed in the lower end of the Gradient Boosting Regression 

histogram. This again shows Molecular Fingerprints are the least informative among all 

features. Feature importance histogram of ‘2d+3d+fp’ feature set contains a few ‘2d’ features 

and predominantly ‘3d’ features. This can be attributed to how fast importance scores diminish 

from most important features to the least important features. Feature importance scores in the 

‘2d’ feature set (Figure 6) diminish faster than the ‘3d’ feature set (Figure 7). This also indicates 

that very few 2D features are required to predict redox potential compared to 3D features. 



 

Figure 7. Feature importance histograms of ‘3d’ feature set. Models were trained on all features from the corresponding 

feature set. 

 

 

 

Figure 6. Feature importance histograms of ‘2d’ feature set. Models were trained on all features from the corresponding 

feature set. 

 

 

 

 



 

 

Figure 8. Feature importance histograms of ‘fp’ feature set. Models were trained on all features from the corresponding 

feature set. 

 

 

 

Figure 9. Feature importance histograms of ‘2d+3d+fp’ feature set. Models were trained on all features from the 

corresponding feature set. 

 

 



 

Effect of Feature Size on Model Performance 

Previous feature importance study suggests that not all features may be necessary to achieve 

high predictive performance. To confirm this hypothesis, two best-performing models in each 

feature set were selected and re-trained on the subset of features. Features were sorted in 

 

Figure 10. Model performance vs. Number of features 

 



descending order based on the Random Forest scores. Models were re-trained staring with a 

single feature to the full set of features, and three metrics (i.e., R2, MSE, MAE) on test-set were 

recorded. The results for each feature set are shown in Figure 10. Inset plots show the same 

data for the first 50 features. Plots corresponding to the ‘2d’ feature set quickly saturate (after 

~ 5 features), suggesting only a small number of 2D features are required to predict redox 

potential accurately. Plots of the ‘3d’ feature set seem to saturate after twenty features, whereas 

plots corresponding to the ‘fp’ feature set saturate slowly and require more than twenty features 

to achieve similar performance. In the case of the ‘2d+3d+fp’ feature set, plots seem to saturate 

around 15-20 features and look approximatly similar to a linear combination of the plots from 

the ‘2d’, ‘3d’, and ‘fp’ feature sets. These plots clearly show that not all features are required 

to attain a high level of prediction accuracy.  

Assessing Model Performance on Limited Number of Features 

To gain insight into the quality of predictions when models are trained on the limited number 

of features, all models were re-trained on the subset of features using the pipeline (see methods 

section). Features were chosen from the array of features sorted based on the Random Forest 

score. The number of features was varied from five to twenty in a step of five. Figure 11 shows 

the test-set performance of models when trained on a small number of features from the 

‘2d+3d+fp’ feature set. Performance of the full set of features is also shown for reference. We 

observed that model performance generally increases with the number of features. A few 

exceptions were also observed. Some models (e.g., PA, huber, neural network, and knn_reg) 

had better performance on the top twenty features than a full set of features. Moreover, 

decision_tree performed better on the top fifteen features than a full set of features. Similar 

trends were observed for other feature sets, too (Figures S2-S4). However, in the ‘fp’ feature 

set, SVR and knn_reg showed better performance on the top twenty features than a full set of 

features. We also analyzed which feature set was able to achieve the highest accuracy when 

models were trained on a small number of features. Figure 12 shows the test-set performance 

of all models when trained on only the top five features from each feature set. ‘2d’ feature set 

achieved R2 value as high as 0.9869 with only five features with the ‘bagging’ model. 

Performance of ‘2d+3d+fp’ and ‘3d’ feature set was similar but sub-par to ‘2d’ feature set. The 

similarity in performance of ‘2d+3d+fp’ and ‘3d’ feature sets could be attributed to the 

similarity in their top five features (see Figure 7 and Figure 9). ‘fp’ feature set performed poorly 

with only five features. These results were consistent across all models. Similar results were 

also obtained for the models trained on the top ten, fifteen, and twenty features which are shown 

in Figures S5-S7. Furthermore, a significant descreasing in the training and inference time was 

observed while using limited number of features for the training. These results suggest that 

training and inference time could be reduced by using a small number of features while 

maintaining a good accuracy level.   

 



  

 

Figure 11. Test-set performance of twenty models trained on top-5, 10, 15, and 20 features from ‘2d+3d+fp’ feature 

set. Top most important features were selected based on the Random Forest score. Test-set performance of the models 

trained on all features from the ‘2d+3d+fp’ features (full set) is also shown for reference. 



  

 

Figure 12. Test-set performance of twenty models trained on five most important features from the corresponding 

feature set. Five most important features were selected based on the Random Forest score. 



Identifying Promising Redox-Active Candidates 

Compounds having a significant difference in their redox potential are considered to be 

potential redox-active species. In this study, trained machine learning models were able to 

predict previously reported redox-active candidates. In particular, promising cathode redox-

active compounds such as tetra-amino-phenazine (TAPZ), hexa-amino-phenazine (HAPZ), 

and octa-amino-phenazine (OAPZ) were predicted with high accuracy. The absolute difference 

between predicted (using the best-performing model) and actual redox potential of TAPZ, 

HAPZ, and OAPZ derivatives was less than 0.07 V (< 3%). Furthermore, our best-performing 

model was able to predict the redox potential of octa-nitro-phenazine (ONPZ) with an error 

less than 0.004 V (<2.4%) even though the dataset used in this study contains very few 

compounds with positive redox potential. ONPZ is considered a promising anode redox-active 

candidate for RBFs containing phenazine derivatives [18]. Additionally, most models could 

predict the correct relative order of compounds with respect to redox potential, clustering 

potential cathode redox-active candidates in the negative region, and potential anode redox-

active candidates in the region close to zero. From these results, we see that promising cathode 

redox-active species contain electron-donating groups (i.e., NH2), whereas promising anode 

redox-active species contain electron-withdrawing groups (i.e., CN, NO2).  These results are 

in good agreement with the previous report [18]. 

 

Analysis of Predictive Performance on Individual Function Groups 

Here, we evaluate the prediction accuracy of the best-performing models in each feature set 

with respect to different functional groups attached to the phenazine ring. Twenty different 

functional groups were present in the phenazine derivatives used in this study. Train-set and 

Test-set Predictions were obtained from the best performing model in each feature set (see 

Table 5). Figure 13 shows the Mean Absolute Percentage Error (MAPE) for each functional 

group (FG) present in the test-set. MAPE in Figure 13a is averaged over FG and four feature 

sets. Whereas, MAPE in Figure 13b is averaged over only FG. MAPE of the functional groups 

present in the train-set is shown in Figure S8. MAPE for the majority of the functional groups 

was well below 10%. Even though some functional groups appeared only once in the training 

set (see Figure 14), most of the models were able to predict their redox potential with minimal 

error. Functional group COCH3 was present only in the test-set that means models never saw 



this functional group during the training; still, the error in its prediction was less than 5%. This 

shows that models successfully learned the hidden patterns between features and redox 

potential from the training set, resulting in low generalization errors. 

 

Figure 13. Functional group (FG) vs. Mean Absolute Percentage Error (MAPE) of test-set. (a) MAPE is averaged over 

FG and feature sets. (b) MAPE is averaged over FG. Test-set predictions were obtained from the best-performing model 

in the corresponding feature set. 

 



 

Error Analysis 

Even though models had low generalization errors, some functional groups exhibited relatively 

high MAPE, e.g., CN, NO2, and COOCH3. High errors of CN and NO2 are attributed to a 

small number of compounds with the redox potential close to zero. Unfortunately, the data used 

in this study contains a very small number of compounds with redox potential close to zero. 

The whole dataset contains only 18 compounds (~9.7% of the total data) with redox potential 

greater than -0.5 V (Figure 15a). Therefore, models had less information to learn from in the 

region near zero redox potential. This is why test-set predictions near-zero redox potential had 

relatively high errors (Figure 16). On the other hand, having access to a large enough dataset 

in the region below -0.5 V, models were able to learn the hidden patterns. That resulted in low 

prediction errors for the compounds with redox potential below -0.5 V, even for the compounds 

with less than one sample in the train-set. Functional groups CN and NO2 contain some 

compounds with redox potential greater than -0.5 V (see Figure 13b) which are responsible for 

high prediction errors observed in Figure 13. We also observed a slight increase in the errors 

around -1.5 V in Figure 16, which could be attributed to the relatively low number of data 

points in the region near -1.5 V. This why COOCH3 (avg. redox potential -1.57 V) also showed 

slightly high prediction error. The red curve in Figure 16 shows the normalized distribution 

over redox potential (i.e., density) for the whole dataset.  

 

Figure 14. Distribution of functional groups in train and test sets. 

 



 

  

 

Figure 15. Distribution of redox potential (a) of whole dataset. (b) of CN, NO2 functional groups in train-set   

 

 

 

Figure 16. MAPE vs. redox potential. Final MAPE on the y-axis was calculated by averaging the MAPE obtained from 

the best-performing model in each feature set.  

 

 



CONCLUSIONS 
In this study, we investigated twenty linear and non-linear machine-learning models to predict 

the redox potential of phenazine derivatives in DME. Both linear and non-linear models trained 

on a small dataset were able to achieve excellent prediction accuracy on test-set (i.e., R2 > 0.98, 

MSE < 0.008 V2, and MAE < 0.07 V). Features used in this study were intentionally chosen to 

be easily computable from open-source libraries that do not require DFT calculations or 

experimental measurements, making our approach readily adaptable for similar studies. Model 

performance was assessed on four feature sets containing different features (i.e., 2D, 3D, and 

Molecular Fingerprints) using a convenient pipeline developed in this work. This pipeline 

combines different training and evaluation components in a single sub-subroutine, making the 

whole process easy, consistent, and automatic for all models in different scenarios. Gaussian 

Processes Regression trained on 2D features achieved the highest prediction accuracy. Analysis 

of model performance on four feature sets revealed the order with respect to prediction 

accuracy: 2d > 2d+3d+fp > 3d > fp. Average performance analysis also showed that 2D 

features are better at generalizing to unseen data than 3D and Molecular Fingerprint features. 

Therefore, 2D features capture important molecular properties necessary for predicting the 

redox potential of phenazine derivatives in DME solvent. It was observed that linear models 

out-perform non-linear models on ‘2d+3d+fp’ and ‘2d’ feature sets, whereas non-linear models 

perform better than linear models on ‘2d’, ‘3d’ and ‘fp’ feature sets. Therefore, linear models 

should be preferred when the feature set contains different types of features, and non-linear 

models should be preferred when the feature set contains either 3D or Molecular Fingerprint 

features. Due to simple structure, linear models have fast training and inference time but suffer 

from low accuracy. Results obtained here show that lower training and inference times are 

possible to achieve with the linear models that out-perform non-linear models when data 

contains different types of features (i.e., 2D, 3D, and Molecular Fingerprints). Feature 

importance analysis showed features related to Van der Waals surface areas, e.g., SlogP_VSA4, 

fr_NH0, VSA_Estate3, and VSA_Estate4 were the most important 2D features. RDF_120, 

RDF_90, RDF_125, WHIM_90, and WHIM_86 were the most important 3D features. RDKit, 

ECFP4 were the most important Molecular Fingerprint features. Some features based on 

molecular structure and charges, e.g., fr_ArN, MinPartialChargge, and MaxAbsPartialCharge, 

were also observed during feature importance analysis. Feature importance analysis also 

suggested that very few 2D features are required to predict redox potential compared to 3D and 

Molecular Fingerprint features. This observation was confirmed by re-training models with the 

subset of features starting from a single feature to a full set of features. Model performance was 

generally observed to increase with the number of features, but some exceptions were also 

observed for which the small number of features performed better than a full set of features. 

Bagging meta-estimator trained on only the top five 2D most important features was able to 

achieve R2 value as high as 0.9869. Significant reduction in the training and inference time was 

observed while maintaining a good level of accuracy. Thus, results obtained in this study would 

help in reducing the training and inference time for similar future studies on large datasets. 

MAPE for most functional groups was well below 10%, even for the functional groups with 

one or zero compounds in the training set. This shows that models were able to successfully 

learn hidden patterns and generalize quite well to the unseen data. High test errors for three 

functional groups (CN, NO2, and COOCH3) were observed due to the small number of data 

points in the region around their average redox potential. With the machine-learning models 

developed in this study, it is possible to screen millions of new phenazine derivatives in a 



reasonable amount of time compared to experimental or DFT methods. Thus, new compounds 

from large chemical space could be quickly identified as potential redox-active species in 

RFBs. Furthermore, these models would reduce the number of compounds that need to be 

analyzed using DFT calculations in hybrid ML-DFT approaches. Thus, we have shown that 

machine-learning-based approaches can accelerate the discovery of novel materials for energy 

storage applications. 

FUTURE DIRECTIONS 
Data used in this study was restricted to only twenty functional groups. Furthermore, redox 

potentials were obtained in only DME solvent. This restricts the applicability of models to only 

one solvent. Future studies could expand the dataset to include more functional groups and 

redox potential determined in various solvents. The primary source of error in this study was 

the lack of data near zero and positive redox potential. Thus, a large dataset containing 

compounds with uniform distribution over positive and negative redox potential would 

significantly reduce generalization errors. This study uses only phenazine derivatives, limiting 

the applicability of models to phenazine derivatives only. Future studies could combine various 

compounds to develop a universal model to predict the redox potential of a variety of 

compounds. 
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