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1 Abstract
Silica-based materials including zeolites are commonly used for wide ranging
applications including separations and catalysis. Substrate transport rates in
these materials often significantly influence the efficiency of such applications.
Two factors that contribute to transport rates include 1) the porosity of the sil-
icate matrix and 2) non-bonding interactions between the diffusing species and
the silicate surface. Here, we utilize computer simulation to resolve the relative
contribution of these factors to effective methane transport rates in a silicate
channel. Specifically, we develop a ‘homogenized’ model of methane transport
valid at micron and longer length scales that incorporates atomistic-scale kinetic
information. The atomistic-scale data are obtained from extensive molecular dy-
namics simulations that yield local diffusion coefficients and potentials of mean
force. With this model, we demonstrate how nuances in silicate hydration and
silica/methane interactions impact ’macroscale’ methane diffusion rates in bulk
silicate materials. This hybrid homogenization/molecular dynamics approach
will be of general use for describing small molecule transport in materials with
detailed molecular interactions.

2 Introduction
Porous media are encountered in many applications in a variety of fields of sci-
ence and engineering, including chemical reactors, groundwater analysis, petroleum
extraction, and even some types of artificial organs [1, 2]. In particular, these
applications often depend on the rate of transport of a given reactant, con-
taminant, or other chemical species trough the fluid-filled pores of the material.
Such transport properties are often influenced by physical processes at a range of
different scales of analysis, beginning with inter-molecular interactions among
the solute, solvent, and solid matrix of the system. These interactions can
be studied with atomistic analyses such as molecular dynamics (MD) simula-
tions. Phenomena that become relevant at larger scales include the porosity
of the medium and the tortuosity of the paths by which the solute can diffuse
[2]. At the macroscopic scale, the transport of a solute through a saturated
porous medium is well-described by Partial Differential Equations (PDEs) such
as the Fickian diffusion equation, treating the porous medium as a continuum.
At intermediate scales, the PDE must include the combined effect of diffusion
and the net forces resulting on the solute from the smaller-scale interactions.
These net forces can be included through a spatially-varying scalar potential, in
which case the diffusion equation becomes the Smoluchowski diffusion equation
as described in Sect. 6.2.1.

Here, we investigate the possible connections between the models at these
different scales of analysis. We propose a multi-scale model incorporating the
chemical and physical processes that dominate different portions of the hier-
archy of scales. First, we obtain local transport properties and Potential of
Mean Forces (PMFs) from atomistic simulations as described in Sect. 5.2. The
mathematical procedure of homogenization [3, 4] is then used to aggregate the
spatial variation of these quantities into an effective transport property for a
larger analysis scale. We demonstrate these techniques on an example system
consisting of methane as the solute, water as the solvent, and a nanoporous sil-
icate medium. The silicate geometry is shown in Figure 1. A periodic material
with this geometry would contain multiple parallel channels.

Our expectations for this system are that spatial variations in the water
density at the atomistic scale will govern the local diffusion coefficient and PMF
variations, which in turn will affect the effective diffusion coefficient appropriate
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for larger scales. We explored variations of the system including alterations of
the porosity and changes to the surface chemistry of the silicate.

Prior studies have investigated hydrocarbon transport in silica-based frame-
works. Hansen et al. [5] considered the alkylation of benzene within a zeolite
catalyst. The reaction and diffusion were considered in the gas phase. Conse-
quently, the Maxwell-Stefan diffusion equations were used rather than Fickian or
Smoluchowski diffusion. Information from MD and kinetic Monte Carlo simula-
tions was used to provide inputs to the continuum diffusion model. No PMF was
considered. The continuum diffusion model was evaluated analytically rather
than numerically. One key focus of the study was to predict reaction rates
agreeing with experiment, which is not attempted herein.

Another similar analysis was conducted by Bui et al. [6], where a channel
of one nanometer in width was studied in various materials, including silica.
The study computed the diffusion coefficient within the channel using the Mean
Squared Displacement (MSD) of unrestrained methane. This results in a coef-
ficient value that does not distinguish spatial variations within the channel. No
multi-scaling method was applied to the result. In addition to using a meta-
dynamics approach to evaluate the free energy variations within the channel,
umbrella sampling was also applied. Finally, the silica structure of the Bui
et al. [6] study does not appear to include silanol terminations at the surface.
The silanol groups present on the silicate surfaces studied herein would be ex-
pected to increase the affinity for water molecules, leading to different results for
the water density within the channel, and consequently affecting the PMF and
diffusion coefficients. Similar to the results presented below, the study found
anisotropy in the diffusion coefficient, with differing coefficients for directions
perpendicular to the silica face than parallel to it.
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Figure 1: Silicon dioxide (SiO2) matrix with ‘slit’ of variable height (1.2-
2.0 nm) a) Sketch showing key dimensions, coordinate axes, and simulation
boundaries. b) Rendering of the 1.2 nm channel along the X-axis in the fully
protonated condition. c) Oblique rendering of the 2.0 nm channel with 27%
deprotonation after solvation and equilibration. Sodium (Na) ions are shown
as purple spheres. d) Same view as (c) without water molecules. The methane
molecule is visible in white, near mid-channel. The silicate structures provided
in Emami et al. [7, 8] were used to construct this geometry in the MD simula-
tions.
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3 Results
3.1 Validation of diffusion coefficient extraction procedure

in bulk conditions
MD simulations were conducted to validate the approach presented in Section
5.2 for obtaining the local diffusion coefficient. These validation simulations
include a single methane molecule in bulk water, to facilitate comparison with
experimental results presented in Witherspoon and Saraf [9].

The validation simulation was conducted with two different force fields: the
force field described in Section 6.1.1 derived from Emami et al. [7], and the
GROMOS 53A6 force field [10] used by Daldrop, Kowalik, and Netz [11] in
their validation. Each simulation was 16 ns in duration, and was conducted at
a temperature of 298 K. Both force fields gave MSD results that approximated
the expected result of kBT/K, and the two simulation values were in agreement
with one another.

An example positional Autocorrelation Function (ACF) curve from each sim-
ulation is shown in Figure 2. The diffusion coefficient for methane in bulk water
was then calculated in both simulations from the ACF and MSD for each coordi-
nate. The results are shown in Table 1. The GROMOS 53A6 force field matches
the experimental results quite well, as reported by Daldrop, Kowalik, and Netz
[11]. In contrast, the selected force field overestimates the diffusion coefficient
by roughly 60%, because it gives a slightly lower curve for the ACF as shown in
Figure 2. However, the selected force field is preferred for the silicate MD sim-
ulations in order to properly represent the silicate structure. Accordingly, local
diffusion coefficient values computed using the selected force field should be nor-
malized by the bulk value presented here for correct interpretation. Specifically,
the local diffusion coefficient values are divided by 3.0× 10−5cm2/sec to report
the ratio of local diffusion to bulk diffusion.

Figure 2: Comparison of position Autocorrelation Functions using two differ-
ent force fields. The ACF values are normalized to their respective coordinate
MSD values. The selected force field is described in Section 6.1.1. Both curves
are for the z-direction. The results from the GROMOS 53A6 force field provide
a diffusion coefficient that matches the result from physical measurement.
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Table 1: Diffusion coefficient results from simulations of methane in bulk water.

Direction
Experimental
Result [9]

(1× 10−5cm2/sec)

Selected
Force Field

(1× 10−5cm2/sec)

GROMOS 53A6
Force Field

(1× 10−5cm2/sec)
x 1.88 3.13 1.91
y 1.88 2.96 1.73
z 1.88 3.06 1.85

Mean Value 1.88 3.05 1.83
Sample Standard

Deviation n/a 0.09 0.09

Coefficient
of Variation n/a 3% 5%

As a further validation of the local diffusion coefficient, an alternative method
was also used for the simulation of methane in bulk water. In these simulations,
the methane was not restrained. As indicated in [12], a diffusing particle with-
out restraint is expected to have a MSD that increases linearly with time. The
derivative of the MSD with respect to time is 6D. Accordingly, for the simula-
tions of unrestrained methane in bulk water, the MSD was plotted against time
and fit to a linear increase, with the diffusion coefficient calculated from this
fit. Results from three trials (trial A, trial B, and trial C), are shown in Figure
3. The resulting diffusion coefficients are shown in Table 2. Notably, the MSD
approach for unrestrained methane exhibited greater variation in the diffusion
coefficient than the ACF approach for restrained methane.
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Figure 3: Calculation of diffusion coefficient from MSD, for three different
trials. Each simulation had a duration of 16 ns.
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Table 2: Diffusion coefficient results from unrestrained methane simulations in
bulk water.

Trial
Result from

MSD
(1× 10−5cm2/sec)

Trial A 2.39
Trial B 1.21
Trial C 4.51

Mean of Trials 2.70
Sample Standard Deviation 1.67
Coefficient of Variation 62%

Figure 4 summarizes the validation results by averaging over the directional
components. As noted above, the experimental results of Witherspoon and Saraf
[9] agreed with the ACF calculation using the GROMOS 53A6 force field. The
ACF and MSD approaches using the selected force field gave notably higher
diffusion coefficient values, but were in general agreement with one another.
Accordingly, the selected force field is assumed to give diffusion coefficients
that are proportional, but not identical, to the expected results of experiment.
This proportionality is applied to the results by normalizing to the bulk water
diffusion result as described above.

Figure 4: Comparison of diffusion coefficient for methane in bulk water from
different methods.
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3.2 Molecular Dynamics Simulations
3.2.1 Results for 1.6 nm channel
MD simulations were conducted for the silicate geometry shown in Fig. 1, for
a channel width of 1.6 nm. Water density calculations were performed using
water trajectories from simulations containing only the silicate and water, in
the absence of the methane solvent. The water density within the simulation
volume is shown in Fig. 5 for a single plane. A region of the channel containing
areas of both high and low water density was selected for further MD simulations
to map the spatial variations of both the local diffusion coefficient and the PMF.

Local diffusion coefficients were calculated as described in Sections 5.2 and
6.1.2. Fig. 6 shows the position ACF results for three different locations within
the 1.6 nm channel. The curve for the bulk simulation presented in Section 3.1
(see Figure 2) is also included for comparison. The ACF curve for the bulk
condition is from a 16 ns simulation, while the channel simulations were 2 ns
long. This results in a smoother curve for the bulk condition in the figure.
Otherwise, the curve that most nearly matches the bulk simulation result is
from a point near the middle of the channel. Fig. 6 also shows the local diffusion
coefficient results plotted against position within the channel. The local diffusion
coefficient appears to approach the bulk value near the middle of the channel,
and drop to roughly half this value at positions closer to the channel surfaces.
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Figure 5: Water density over one plane in the MD simulation for the system
shown in Fig. 5, with a 1.6 nm channel width between the two silicates. The
dark areas of near-zero water density are the region occupied by the silicates.
Large variations in the water density are observed near the silicate surfaces. The
remainder of the model has a water density typical of bulk conditions. The green
rectangle highlights the portion of the model selected for detailed measurement
of the local diffusion coefficient and PMF. The water density was calculated at
half-Å spatial resolution, from 128 ns of simulation data.
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Fig. 7 illustrates the spatial variation of the PMF, local diffusion coefficient,
and water density within the 1.6 nm channel. The values are averaged in the
y-direction, to demonstrate the general trend in values across the channel. The
local diffusion coefficient seems to be suppressed near the channel walls, and
approaches, but does not match, the bulk diffusion behavior near the center of
the channel. This variation in the local diffusion coefficient is symmetric about
the channel. In contrast, the PMF appears to be asymmetric within the channel,
though still suppressed near the surfaces. This asymmetry may be the result of
the asymmetry of the silicate faces themselves; the faces are not mirror images
of one another. Also, the nearest silanol groups at each face are centered at
different distances from the plane of consideration. Some of the asymmetry in
the PMF may also be due to noise that could be reduced by longer simulations
at each point of measurement. The water density seems to oscillate near the
channel walls, likely due to solvation layers around the silicate, but the strength
of this oscillation reduces quickly with distance from the surface. These patterns
suggest that the local water density, and gradients or other functions thereof,
may indeed be a critical driver of variations in the PMF and local diffusion
coefficient.

Figure 6: Examples of local diffusion coefficient in the 1.6 nm channel.
Left: Position autocorrelation function of methane for three different positions
in the channel. Right: Local diffusion coefficient variation within the channel,
showing the values along a line across the channel (z-direction), and also the
averages over lines parallel to the channel face (y-direction). The locations that
have ACF curves on the left panel are marked by circles on the right panel. The
coordinate system is as shown in Figure 1.
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Fig. 8 shows contour plots of the water density, local diffusion coefficient, and
potential of mean force from the MD simulations for the 1.6 nm channel width,
illustrating the variations of all three quantities over two spatial dimensions of
the channel. The water density data is the same as shown in Fig. 5, but over a
smaller region of the plane, centered near the area where measurements of the
PMF and local diffusion coefficient were obtained. The water density is near its
bulk value over most of the channel, but has some localized areas of high water
density at nearly consistent spacing along the channel surfaces. This is most
likely due to the presence of hydrophilic silanol groups present on the surface
in repeating patterns. The local diffusion coefficient results show the same
pattern as the results in Figure 6 and 7: the value is highest near the middle of
the channel, where the value is roughly the bulk diffusion coefficient, and then
suppressed closer to the channel surfaces. The local diffusion coefficient seems
to vary more with distance from the channel wall than with position along the
channel. The PMF results are generally highest at the channel walls, and lower
in the middle of the channel, although localized depressions in the PMF seem
to appear at the channel surface in a generally periodic arrangement. Again,
these depressions may be due to the periodic, but asymmetric, pattern of silanol
groups on the silicate channel faces.

Figure 7: Spatial variation of averaged PMF, local diffusion coefficient, and
water density in the 1.6 nm channel. The values are averaged over 0.6 nm
in the y-direction, for a single value of x, showing the spatial variation in the
z-direction (perpendicular to the channel faces). Dashed lines show the values
under bulk conditions.
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Figure 8: Water density, local diffusion coefficient, and potential of mean
force for the 1.6 nm channel width, fully protonated. The imposed rectangle
shows the bounds of the data selected for the Finite Element model within the
plane. The water density calculation is from 128 ns of simulation data, at
half-Å spatial resolution.
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3.2.2 Results for channels of varying porosity

To assess the influence of porosity on transport behavior within the silicate
channel, MD simulations were conducted for channel widths of 1.2, 1.6, and 2.0
nm. Results for water density, PMF, and local diffusion coefficient for these
channel widths are shown in Figure 9. The water density follows a similar
pattern for all three channel widths: the density is very nearly the value under
bulk conditions over most of the channel width, but increases at select locations
near the silicate surface. The oscillations of the water density are somewhat
indicative of solvation shells around the silicate. The PMF results generally
follow a pattern of approximating the bulk value near the middle of the channel,
though localized areas of low PMF adjacent to the silicate surface are sometimes
present. The local diffusion coefficients also follow a similar pattern in all three
channel widths: the coefficient is highest near the middle of the channel, and
drops to a lower value at locations closer to the silicate faces. However, the local
diffusion coefficients near the middle of the channel are closer to the bulk value
for the larger channel widths. These results indicate that reduced porosity values
can influence the transport behavior not only by reducing the volume available
for transport, but also through alterations of the solute-solvent interactions at
smaller scales.
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Figure 9: Water density, PMF, and local diffusion coefficient results for
channel widths of 1.2, 1.6, and 2.0 nm. These results are averaged over the
y direction to show variation across the channel. All channels shown are fully
protonated. Top left: water density. The water density appears to oscillate with
distance from the silicate face, with the amplitude of the oscillations decreasing
with distance. Top right: PMF, with zero as the bulk potential value. Lower left:
local diffusion coefficient, normalized to the bulk value. Lower right: maximum
values of the normalized local diffusion coefficients for each channel width, and
an effective channel width computed from the local diffusion coefficient values.
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3.2.3 Results for channels with varying surface protonation levels

To assess the influence of the silicate surface chemistry on transport behavior
within the channel, MD simulations were conducted for surface a range of surface
protonation levels. Specifically, simulations were conducted with 100%, 73%,
and 50% of the silanol groups on the silicate surface protonated. In the de-
protonated silanol groups, the hydrogen atom was replaced with a sodium ion
that is free to diffuse away from the oxygen ion. These simulations used a
channel width of 2.0 nm. Results for water density, PMF, and local diffusion
coefficient for these channel widths are shown in Figure 10. The results for
water density, PMF, and the local diffusion coefficient are very similar for the
three different protonation levels. However, there are subtle differences in the
local diffusion coefficient: decreasing levels of protonation seem to be associated
with a slight reduction in the local diffusion coefficient values. It is possible that
this effect would be more pronounced at smaller channel widths than 2.0 nm.

Figure 10: Water density, PMF, and local diffusion coefficient results for
surface protonation levels of 100%, 73%, and 50%. These results are averaged
over the y direction to show variation across the channel. All channels shown are
2.0 nm in width. Top left: water density. Top right: PMF, with zero as the bulk
potential value. Lower left: local diffusion coefficient, normalized to the bulk
value. Lower right: maximum values of the normalized local diffusion coefficients
for each deprotonation level, and an effective channel width computed from the
local diffusion coefficient values.
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3.3 Homogenization Simulations
Numerical simulations of the channel were conducted using homogenization the-
ory as described in Section 6.2.2. The results of these simulations are shown in
Figure 11. Variations in both the channel width and the surface protonation
level, identical to those in the MD simulations, were included in the homoge-
nization calculations. For the condition where the local diffusion coefficient was
taken to be spatially invariant in the channel, and identical to the bulk diffusion
coefficient, the effective diffusion coefficient can be calculated directly from the
porosity (free volume fraction) of the silicate. The results from the homogeniza-
tion simulations matched this theoretical calculation. As the porosity increases
with increasing channel width, these results form an upward-sloping line in the
left panel of Figure 11. This result set is not affected by changes in the surface
protonation of the channel surfaces, as neither the local diffusion coefficient nor
the PMF are included. Consequently, the corresponding line in the right panel
of Figure 11 is horizontal.

The MD results showed suppression of the local diffusion coefficient below
its bulk value near the channel walls. Accordingly, the results in Figure 11
using the spatially varying diffusion coefficient from the MD simulations show
a suppressed effective diffusion coefficient compared to the case where the local
diffusion coefficient is equal to the bulk value at all locations. This is true for
the homogenization simulations both with and without a PMF applied. Also
the local diffusion coefficients seem to vary not only with the channel width,
but also with the surface protonation level, to a lesser extent.

To validate the use of homogenization theory for the case of a spatially
varying potential, a quadratic potential was tested for conditions without spatial
variation in the local diffusion coefficient. This quadratic potential was selected
such that is minimum and maximum values within the channel were in the same
range as the maxima and minima of the PMF results from the MD simulations.
This required the potential to rise more quickly in smaller channels than in
wider ones, just as in the PMF data from the MD simulations. As shown in
Figure 11, the homogenization results matched the theoretical calculation for
this quadratic potential.

The PMF data from the MD simulations includes both regions of higher
and lower value than the bulk condition. These areas then become less and
more attractive to the diffusing methane, respectively. Overall, the effect of the
attractive regions of the potential can actually accelerate diffusion through the
channel. The homogenization results in Figure 11 show such an acceleration of
diffusion for all of the fully protonated condtions, but a further depression of
the diffusion coefficient for de-protonated cases.
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Figure 11: Effective diffusion coefficient predictions from homogenization
simulations of the silicate channel. The results are plotted as an effective diffu-
sion coefficient normalized to the bulk diffusion coefficient. Left panel: Results
for channels of varying porosity, with all surfaces fully protonated. Right panel:
Results for channels of 2.0 nm width, with different levels of surface protona-
tion. Results from homogenization simulations are shown with continuous lines,
while analytically-derived results are plotted as points. Red lines are used for
cases where the local diffusion coefficient is spatially invariant and equal to the
bulk diffusion coefficient. Blue lines are used for cases where the local diffusion
coefficient was taken from the MD results. The green line represents homoge-
nization simulations conducted with a quadratic potential as described in the
text, for comparison with an analytical solution for that case. Dashed lines are
used for cases without a PMF. Solid lines are used for cases where the PMF was
taken from the MD results.
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4 Conclusions
The transport behavior of aqueous methane through porous catalysts may play
a crucial role in the future design of gas-to-liquid methane conversion processes.
With respect to the Langevin dynamics governing such transport behavior, this
work has demonstrated that the forces involved in diffusion can be resolved us-
ing MD simulations, by measuring the diffusion coefficient and the PMF. The
techniques employed herein can be applied even when both of these parameters
have spatial variations. Using homogenization simulations, these spatial vari-
ables can then be used to obtain the effective transport property for a continuum
approximation of the porous medium.

As noted in the results above, changes in the material porosity and the sur-
face chemistry of the pores can have effects on the local diffusion coefficient and
PMF within the pore. These changes ultimately impact the effective diffusion
coefficient as well, allowing for the tuning of transport properties by the proper
selection of material porosity and surface chemistry.

5 Theory
5.1 Hypothesis for the influence of solvent density on local

transport behavior
The motion of a single methane molecule surrounded by a solvent such as water
can be described by a Langevin equation in the limit of strong friction:

ξẋ = − ∂

∂x
V + f(t) (1)

where ξ is the friction coefficient representing solute/solvent interactions, V is
a mean force potential, and f(t) is a force varying randomly in time. A single
independent variable is shown here for clarity, but the analysis generalizes easily
to higher dimensions, as there is no coupling between orthogonal components of
the motion. When the solvent is confined to nano-scale pores within a medium
such as a silicate, the surface chemistry of the pores could cause local variations
in the number density of the solvent molecules. Our expectation is that these
local variations in the solvent density will alter the local transport properties
of the methane. We describe these effects by making the friction and potential
terms of the Langevin equation spatial variables.

Through the Einstein relation between ξ and the diffusion coefficient, D,
spatial variations in the friction coefficient will produce spatial variations in D
as well. This spatial variation was measured in the MD simulations using the
approach described in Section 5.2. The spatially varying PMF was measured
using standard procedures described in Section 6.1.2.

5.2 Determination of local diffusion of coefficient from
MD simulation

The diffusion coefficient relates the flux of a diffusion species to its concentration
gradient. In homogeneous media the average diffusion can be estimated based
on the MSD of individual molecules:

D =
1

6

∂〈r2〉
∂t

(2)

This approach is not applicable to non-homogeneous media, as the MSD would
be influenced by the local diffusion coefficient in all the areas visited by the
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diffusing molecule. Instead, the spatial variation of the transport coefficient
can be obtained from a Green-Kubo relation. In our model, MD simulations
(described in Sect. 6.1) were used to predict Eq. 14 parameters using an approach
described in Daldrop, Kowalik, and Netz [11], based on earlier work in Hummer
[13] and Woolf and Roux [14]. We also previously used this approach in Setny
et al. [15]. The self-diffusion coefficient for the solute methane here implicitly
reflects the solute/solvent (water) interactions. Namely, the motion of methane
is approximated as over-damped Brownian motion.

To obtain local values of the diffusion coefficient, the methane is restrained by
a harmonic potential 1

2Kx
2. The equation of motion for the methane molecule

is therefore the Langevin equation of Eq. 3.
ξẋ = −Kx+ f(t) (3)

The statistical properties of the random variation of f(t) are such that they
satisfy Eq. 4 [16–18].

〈f(t)〉 = 0
〈f(0)f(t)〉 = 2ξkBT

(4)

Under these conditions, it can be shown that the solution for x(t) will have the
properties shown in Eq. 5.

〈x2〉 = kBT
K

〈x(0)x(t)〉 = 〈x2〉e−t/τ
(5)

where τ = ξ/K. From these results, the integral of the position autocorrelation
function is given by Eq. 6.

τ =
1

〈x2〉

∫ ∞
0

〈x(0)x(t)〉dt (6)

This allows for determination of the friction coefficient ξ, and thus also the local
diffusion coefficient D, using the Einstein relation of Eq. 7.

D =
kBT

ξ
=
〈x2〉
τ

(7)

In Eq. 7, the actual MSD value, 〈x2〉, is used in place of its theoretical value for
a harmonic potential, because the actual potential is the superposition of the
harmonic biasing potential and the PMF. The procedure is adopted here, under
the assumption that the gradient of the PMF will be small in comparison to the
value ofK for the restraining potential. Note that larger values ofK will confine
the methane to a smaller region around the center of the harmonic potential,
allowing spatial variations in the local diffusion coefficient to be measured with
greater spatial precision. However, large values of K can also invalidate the
assumption of over-damping. This can result in oscillatory behavior in the
position ACF, making integration more difficult [11]. Here, the value ofK for the
harmonic potential was selected with the aim of being small enough to maintain
over-damped behavior, while remaining larger than reasonable magnitudes for
the PMF gradient.

The center of the harmonic restraining potential can be shifted to obtain the
local diffusion coefficient at selected spatial locations.

For anisotropic conditions, this analysis can be repeated for each component
of the position autocorrelation function to obtain the diagonal matrix compo-
nents. The simple geometry of the silicate channel studied here makes it very
likely that the selected coordinate system is a principal coordinate system, where
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the off-diagonal terms of the matrix are zero. Future applications of this method
may involve porous materials with more complex pore geometry, where the off-
diagonal terms may be nonzero in some locations. A relatively minor extension
of the method for such circumstances would be to rotate the coordinate system
of the methane trajectories prior to calculation of the ACF, allowing the diago-
nal matrix terms to be computed in a different coordinate system. An estimate
of the off-diagonal terms could then be obtained from the known transformation
matrix between these two coordinate systems.

6 Methods
6.1 Molecular Dynamics
6.1.1 Parameterization and simulation
Molecular dynamics simulations were conducted in GROMACS. The OPLS-AA
SPC water model was used for the explicit solvent. The united atom approxi-
mation was selected for the methane molecule, on the basis of the results pre-
sented in Bhatia and Nicholson [19]. The nonbonded force field parameters for
methane were taken from Jorgensen, Madura, and Swenson [20], which used the
same functional form for the 12-6 Lennard-Jones potential as GROMACS, so that
only unit conversions of the parameters were required. While the combining
rule noted in Jorgensen, Madura, and Swenson [20] is the geometric average,
the arithmetic average is used herein. The force field parameters for silica were
taken from Emami et al. [7, 8], and converted to the units and functional form
used in GROMACS. Specifically, the functional form of the 12-6 Lennard-Jones
potential for nonbonded interactions in Emami et al. [7] is given by Equation
8, while the functional form used by GROMACS is shown in Equation 9. In both
equations, E is the interaction energy, and r is the separation distance between
the two atoms. The two functional forms can be used to represent the same in-
teraction potential by computing the GROMACS parameters from the parameters
provided by Emami et al. [7] using the relationships of Equation 10.

E = εamber

((σamber

r

)12
− 2

(σamber

r

)6)
(8)

E = 4εgromacs

((σgromacs

r

)12
−
(σgromacs

r

)6)
(9)

εgromacs = εamber
σgromacs = 2−1/6σamber

(10)

The nonbonded interaction parameters used in the simulations are listed in
Table 3.

To confirm the proper conversion of the nonbonded force field parameters,
the same method was used to convert the parameters from an AMBER input file
to the corresponding GROMACS input file parameters for an AMBER force field.
This comparison involves an additional step, because the AMBER force field pa-
rameters specify the van der Waals radius of each atom, and the depth of the
potential well, rather than specifying σamber and εamber directly. The additional
calculation is relatively simple, because the functional form of Equation 8 used
by AMBER has a well depth that is equal to εamber, with the point of minimum po-
tential energy located at r = σamber. At this minimum, the separation distance
r between two identical atoms would be twice the van der Waals radius. Thus,
σamber is simply twice the specified van der Waals radius, and εamber is equal to
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Species σ [nm] ε [kJ/mole] q [e] Reference

Si 0.37 0.39 +1.1 Emami et al. [21]
OSi 0.31 0.23 −0.55 Emami et al. [21]
OH 0.31 0.51 −0.68 Emami et al. [21]
H 0.096 0.063 +0.4 Emami et al. [21]

CH4 0.37 1.23 0.0 Jorgensen, Madura, and Swenson [22]

Table 3: Non-bonded interaction parameters used for molecular dynamics
simulations in GROMACS.

the depth of the potential well. Using this information, the gromacs parameters
for the AMBER96 and AMBER99 force fields were successfully reproduced.

Following solvation, energy minimization was performed for 50,000 steps,
and then velocities were randomly assigned according to a Maxwell distribution.
The system was equilibrated in the Number, Volume, Temperature thermody-
namic ensemble (NVT) ensemble for 0.1 nanoseconds, using the Nosé-Hoover
thermostat. This was followed by 0.1 nanoseconds of equilibration in the Num-
ber, Pressure, Temperature thermodynamic ensemble (NPT) ensemble, using
the Berendsen barostat and modified Berendsen thermostat. Production runs
followed, using the NVT ensemble with the Nosé-Hoover thermostat. The pro-
duction runs had a duration of 2 nanoseconds, except where noted otherwise.
In all analysis steps, electrostatic interactions were evaluated using the PME
method. The dynamic runs used a time-step of 2 femtoseconds, with hydrogen
bonds converted to constraints maintained by the LINCS algorithm.

The harmonic restraining potential applied to the methane molecule used
a K of 3.00× 102 kJmol−1 nm−2, for each direction. To prevent global trans-
lations, rotations, or deformations of the silicate bodies within the simulation
unit cell, each atom of the silicate material was placed in a harmonic restrain-
ing potential with K of 1.000× 103 kJmol−1 nm−2, for each direction. This
includes the hydrogen atoms on the surficial silanol groups, which have affected
the solvent-surface interactions.

6.1.2 Processing methods

Simulations of the solvated silicate channel without methane were used to calcu-
late the spatial variation of water density within the channel. Water density was
calculated from the water molecule trajectories using the MDAnalysispackage
[23, 24] (which uses numpy [25]). The production runs for the water density
calculations were 128 nanoseconds in duration.

Based on the water density results, portions of the channel were selected for
detailed measurement of the local diffusion coefficient and PMF for methane.
An x-plane was chosen, with dimensions in the z-direction fully extending across
the channel from one silicate face to the other. The selected area also extended
0.6 nanometers in the y-direction. A different region was selected for each
channel geometry and deprotonation level. The regions were chosen so as to
include areas of both high and low water density at the channel boundaries.

PMF values were computed using the two-dimensional version of WHAM [26]
(Version 2.0.10.1), which implements the Weighted Histogram Analysis Method
(WHAM) [27–29]. The y and z coordinates of the methane or sodium molecule
were used as the reaction coordinates in this approach.

The PMF values resulting from WHAM are relative values, with the min-
imum value in the data set originally chosen as zero. Instead, the analysis
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conducted here requires that a PMF value of zero represent the conditions of
bulk water. Assuming that all studied channels are sufficiently wide that bulk
behavior is recovered in the middle of the channel, this location can be used
as a reference value for the PMF. After generation by WHAM, the values were
shifted such that the average of the PMF values at the middle of the channel
would be zero. Also, numerical difficulties were encountered in the homogeniza-
tion simulations when using the PMF values directly from the MD simulations,
even after adjusting to the gauge condition. To allow the simulations to com-
plete successfully, the average value of the PMF was taken in the y-direction,
such that the PMF used in the homogenization simulations varied only in z,
which is the direction perpendicular to the silicate faces.

Local diffusion coefficients were calculated using the approach described in
Sect. 5.2. Position ACFs were calculated by GROMACS, which returns the ACF
function normalized by the MSD as illustrated in Equation 11.

normalized ACF(t) =
1

〈x2〉
〈x(0)x(t)〉 (11)

Observations of typical normalized ACF results showed that, in addition to
the exponential decay predicted by Equation 5, there was also an short-duration
Gaussian superimposed on the ACF for small values of time. Accordingly, the
functional form in Equation 12 was selected as being a generally representative
form, with fitting constants A, α, and σ. The analytical integral of this form is
shown in Equation 13.

normalized ACFfit(t) = Ae−t/σ + (1−A)e−αt
2

(12)

τ =

∫ ∞
0

dt (normalized ACFfit(t)) = Aσ +
1−A
2

√
π

α
(13)

Following calculation of a normalized ACF from methane trajectory data,
a python script using the numpy package [25] fit the analytical function of
Equation 12 to the normalized ACF data. The analytical integration of the
normalized ACF was then calculated from Equation 13. To confirm a successful
fit, the integral of the normalized ACF was also obtained numerically using the
trapezoidal rule over the first 25 picoseconds. Cases where the numerical and
analytical integrations differed by more than 25% were discarded from the data
set.

The diffusion coefficients computed from the methane ACFs were generally
consistent for the x and y directions, but different in the z direction. Ultimately,
the effective diffusion coefficient for only the x and y directions is desired, as the
z direction would be impervious. Furthermore, the channel itself is identical in
the x and y directions, so the expected results for these two directions would
be identical. Accordingly, the homogenization process used an isotropic local
diffusion coefficient, which was computed as the arithmetic average of the x and
y results from the MD simulations.

As noted in Section 3.1, the local diffusion coefficient results from MD were
normalized to the bulk value predicted by the same method. In any cases where
the normalized result was greater than 2.0, the result was limited to this value.

Homogenization theory is intended for application to periodic functions. Be-
cause the local diffusion coefficients and PMF values from the MD simulations
were not periodic, they were reflected about both their right and upper bound-
aries to produce a symmetric unit cell for homogenization.
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6.2 Finite Element Modeling
6.2.1 Continuum level modeling of aqueous methane diffusion in sil-

ica material
Diffusion is represented in the continuum model by Fick’s law [30] which can be
written as

∂c

∂t
=

∂

∂xi
Dij

∂c

∂xj
(14)

where

• c represents the concentration of methane as a function of space and time
• t represents time
• xi represents one of the three spatial coordinates
• the summation convention is used (a repeated index in any term implies
summation over all three dimensions for that index)

• Dij represents the diffusion matrix, with three rows and three columns

When the diffusive medium is isotropic and spatially invariant, the diffusion
matrix is simply the identity matrix scaled by a diffusion constant, D, and Fick’s
law can be written as

∂c

∂t
= D∇2c (15)

Eq. 15 can be generalized to reflect the influence of a time-independent and
spatially-heterogeneous mean field, V (x), using the Smoluchowski equation

∂c

∂t
= ∇ ·

(
De
− V

kBT ∇
(
ce

V
kBT

))
(16)

This can be written in the Slotboom formulation as
∂c

∂t
= ∇ ·

(
D∇ (c)

)
(17)

where

D = De
− V

kBT

c = ce
V

kBT
(18)

Following this transformation, the steady-state diffusion equation has the
same form as the Fickian diffusion equation, with a spatially varying diffusion
coefficient.

6.2.2 Homogenized model of continuum and atomistic scale methane
diffusion

Homogenization [3, 4] is a procedure for separating scales in a partial differ-
ential equation for a periodic geometry. The equation used as an input to the
procedure describes the processes that takes place at the smaller scale. The pro-
cedure produces an equation appropriate for analysis at the larger scale, which
contains a parameter found by integrating over the unit cell at the smaller scale.
For the homogenization approach to be valid, the relevant length scales must
be well-separated. For notational clarity, we denote spatial coordinates at the
larger scale by xi and at the smaller scale by yi. The volume of the unit cell is
denoted as |Y |.
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Using the procedure described in Chapter 1 of Bensoussan, Lions, and Pa-
panicolaou [4], the homogenization of Fick’s law indicates that the diffusion
matrix for the larger scale is:

Dmacro
ij =

1

|Y |

(∫
Y

(
Dij −Dik

∂χj
∂yk

)
dny

)
(19)

where the vector χ is defined as the solution to
∂

∂yi

(
Dik

∂χj
∂yk

)
=

∂

∂yi
Dij (20)

Homogenization of the Smoluchowski equation was accomplished by using
the Slotboom transformation, followed by using the homogenized Fickian equa-
tion with a spatially varying diffusion coefficient. In this case, the integral over
the unit cell provides a value of D for the larger scale. For the inverse Slotboom
transformation to obtain the Fickian diffusion coefficient, D, for the larger scale,
the potential to be used is a constant value representing the potential of the sur-
roundings at the larger scale. This potential must use the same gauge condition
as the smaller-scale potential.

6.2.3 Computational Details

The finite element meshes for homogenization were created in GMSH [31]. The
Finite Element Method (FEM) analysis was conducting with python code rely-
ing on version 2019.1.0 of the FEniCS package [32, 33].

In homogenization, the boundary conditions for the unit cell are that the cor-
rector function should be periodic, with period matching the unit cell [4]. The
python scripts using FEniCS were able to implement periodic boundary condi-
tions for two-dimensional problems. While FEniCS supports periodic boundary
conditions in three-dimensions, the programming effort required is considerably
greater. Consequently, periodic boundary conditions were implemented for two-
dimensional unit cells only. For three-dimensional unit cells, Dirichlet boundary
conditions were used instead, with the corrector set to zero at the boundaries.
While this is technically a periodic condition, it may be too restrictive for the
corrector functions in some cases. Generally, this boundary condition is appro-
priate for situations where barriers to diffusion within the unit cell are located
away from the cell boundaries.

All code written in support of this publication are publicly available at
https://bitbucket.org/pkhlab/pkh-lab-analyses. Simulation input files and gen-
erate data are available upon request.
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