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ABSTRACT 

Deep learning methods provide a novel way to establish a correlation between two quantities. In 

this context, computer vision techniques like 3D-Convolutional Neural Networks (3D-CNN) 

become a natural choice to associate a molecular property with its structure due to the inherent 

three-dimensional nature of a molecule. However, traditional 3D input data structures are 

intrinsically sparse in nature, which tend to induce instabilities during the learning process, which 

in turn may lead to under-fitted results. To address this deficiency, in this project, we propose to 

use quantum-chemically derived molecular topological features, namely, Localized Orbital 

Locator (LOL) and Electron Localization Function (ELF), as molecular descriptors, which provide 

a relatively denser input representation in three-dimensional space. Such topological features 

provide a detailed picture of the atomic configuration and inter-atomic interactions in the molecule 

and are thus ideal for predicting properties that are highly dependent on molecular geometry. 

Herein, we demonstrate the efficacy of our proposed model by applying it to the task of predicting 

atomization energies for the QM9-G4MP2 dataset, which contains ~134-k molecules. 

Furthermore, we incorporated the Δ-ML approach into our model, allowing us to reach beyond 

benchmark accuracy levels (~1.0 kJ mol−1). We consistently obtain impressive MAEs of the order 

0.1 kcal mol−1 (~ 0.42 kJ mol−1) versus G4(MP2) theory using relatively modest models, which 

could potentially be improved further using additional compute resources. 

 

 

 

 



1. Introduction 

A recent surge in deep learning and computer vision research has pushed this field to 

unprecedented heights, so much so that new state-of-the-art models are being developed and 

implemented every other month for 2D image recognition tasks.1 These newly developed 

computer vision techniques have profoundly impacted other branches of science as well, and 

chemistry is no exception. Thus, taking a cue from 2D image representations, molecules, being 

intrinsically three-dimensional in nature, can be imagined as 3D images and, therefore, can be 

analogously represented in the form of a 3D grid or a multi-dimensional tensor. However, 

unlike 2D images, where the input features are quite well-defined, viz., red, green, and blue 

(RGB) color channels, there is no clear consensus on the choice of descriptors to represent a 

molecule, and this remains an outstanding task in the field of machine learning in chemistry. 

Nonetheless, a variety of molecular descriptors have been identified for representing a 

molecule in a 3D data structure (vide infra) and successfully used for a diverse set of problems 

ranging from protein-ligand binding affinity prediction2-9 and receptor binding site detection 

and classification10-13 to the prediction of material properties14, 15 and NMR chemical shifts.16 

A major complication associated with 3D input representations is its high data sparsity 

aggravated due to its 3D grid cell structure; therefore, in this article, we advocate the use of 

spatially dense descriptors, especially the ones based on the electron distribution in the 

molecule, thus providing an alternative to mitigate the data structure sparsity. Specifically, we 

propose to use what are known as electron localization functions, viz., Localized Orbital 

Locator (LOL)17 and Electron Localization Function (ELF),18 which have found widespread 

use in elucidating molecular bonding topology. The input data structure usually dictates the 

architecture type of the network. Therefore, with the input data structure defined, a 

convolutional neural network (CNN) becomes an obvious choice for the model architecture. 

Among the host of CNN architectures available in the literature for image learning tasks, we 

chose to use the DenseNet architecture chiefly for its high parameter efficiency. 

Computing molecular bond energies to high accuracy is one of the holy grails of quantum 

chemistry. However, the steep computational requirements of highly accurate methods such 

as CCSD(T)19 and Gaussian-4,20 preclude their use on a routine basis. A variety of noteworthy 

graph-based architectures (viz., SchNet21, PhysNet22, DimeNet23, DeepMoleNet24, OrbNet25) 

have been proposed for the prediction of DFT level (B3LYP/6-31G(2df,p)) energies on the 



QM9 dataset.26, 27 In this work, however, we aim to predict G4(MP2) level energies, a 

relatively cheaper alternative to the G4 method, which is typically accurate within 1.0 kcal 

mol−1 of the experimental value, and hence is a more valuable quantity to reproduce. 

Therefore, in the present work, we attempt to leverage and adapt some of the latest 

developments in fields such as computer vision for the task of predicting atomization energies 

at high levels of accuracy. In this context, we note that Ward et al.28 have achieved a highly 

impressive out-of-sample mean absolute error (MAE) of the order of 0.1 kcal mol−1 (versus 

the G4(MP2)29 level of theory) on the QM9-G4MP2 dataset27, 30 using the SchNet and FCHL31 

models in conjunction with the Δ-Machine Learning approach.32 As the name suggests, the Δ-

ML strategy targets learning the energy difference between an expensive target level of theory 

and a cheaper baseline level of theory, thus exploiting the systematic nature of the error 

between the two theoretical methods. Thus, given the energy at the baseline theory, energy at 

the expensive level of theory could be obtained using the ML-learned additive correction term. 

Indeed, Δ-ML procedures have been shown to provide significantly better accuracy than 

models attempting to learn absolute energies directly,28 thus allowing to reach chemical 

accuracy (±1.0 kcal mol−1) and within striking distance of the elusive benchmark accuracy 

(±1.0 kJ mol−1) with respect to the experimental value (or a high level of theory) through 

machine learning means. Therefore, we have also incorporated the Δ-ML model in our 

proposed machine learning protocol.  

 

2. Methods 

2.1 Data 

The QM9-G4MP2 dataset is a collection of 133,296 molecules composed of C, N, O, F, 

and H atoms, with each molecule containing up to nine heavy atoms.27, 30 The dataset provides 

the atomization energies of the molecules at B3LYP/6-31G(2df,p) (precursor for G4(MP2) 

computations) and G4(MP2) levels of theory, and thus is ideally suited to be used for the Δ-

ML approach. Ward et al.28 used a total of 130,258 molecules from the QM9-G4MP2 dataset, 

excluding the ones whose bond connectivity was found to be ambiguous. In their study, a 

random selection of 10% of molecules from the entire dataset (13,026 molecules) was chosen 

as the test set to validate the working of their machine learning models, viz., Schnet21 and 



FCHL.28, 31, 33 To make a fair comparison with their results, we have also chosen the same 

training and test split. 

2.1.1 Data Representation 

The three-dimensional space (where a molecule 'lives') can be imagined as a cubic grid 

composed of voxels. Given the cartesian coordinates of a molecule, its atomic positions can 

be mapped onto the voxelized grid. In addition, any property associated with an atom viz., 

atom type (based on atomic number, aromaticity/aliphaticity, etc.), charge (or population), 

spin density, valence, hybridization, etc., can be directly embedded into one of the voxels 

based on its position in the 3D space. Formally, the 3D input representation of a molecule is a 

four-dimensional tensor (say, N×N×N×C), with the three equal indices (or dimensions) 

representing the voxel grid length (N) of the cube confining a molecule, and the remaining 

one representing the number of different features (or channels (C) in the context of 

convolutional neural networks (CNN)) associated with a given molecule. Thus, the embedded 

properties can act as molecular descriptors for a machine learning model to predict a chemical 

property of interest. However, a naïve mapping of the discreet atomic attributes to their 

corresponding voxels leads to a highly sparse tensor (or input representation) (Figure 1), which 

in turn may lead to an under-fitted model due to the lack of enough information to learn from, 

in the input representation. Such a performance degradation is caused due to sparse gradients 

being propagated through the network. Sparsity can be reduced to some extent by convolving 

the 3D molecular image with a gaussian or a wave-transform kernel, which imparts a 

smoothing (or blurring) effect to the input representation, thus approximately capturing inter-

atomic interactions, while also providing a continuous feature representation.34, 35 3D sparse 

data is most efficiently represented through an octree data structure, where only the non-sparse 

regions (voxels) of a cubic volume is recursively partitioned into octants. Following this 

algorithm, a uniformly spaced voxelized data structure can be converted to one with 

numerically dense regions represented at fine resolutions and sparse spaces at low resolutions. 

The octree-based CNN36, 37 proposed by Liu et al.8 for the prediction of protein-ligand binding 

energies showed incredible performance gains in terms of memory usage and computation 

time; however, the model accuracy did not improve at high resolutions (< 1.0 Å), potentially 

due to the (quality of) molecular descriptors used being unsuitable for high resolutions. 

Therefore, molecular descriptors that are intrinsically dense in nature and contain meaningful 



information at fine resolutions are needed. Naturally, a well-defined volumetric function 

depending on the atomic spatial positions would be an obvious choice, for example, the 

electrostatic potential due to nuclear charges. Alternatively, a molecular descriptor based on 

the electron probability distribution (electronic structure) of the molecule can also provide a 

non-sparse way of encoding molecular features into a spatial grid, and is the main focus of this 

paper.  

Electron density, a scalar-valued function depending on the three spatial coordinates, is the 

primary observable associated with a molecule's electronic state. A plethora of electron 

density-based functions are available in the literature to extract physically interpretable 

information from a molecule's electronic structure. For the problem at hand of predicting 

atomization energies, which are highly dependent on the molecular geometry, an accurate 

picture of the bonding patterns in the molecule must be provided to the machine learning 

model. Therefore, in the present work, we have mainly explored the performance of the so-

called electron localization functions, viz., LOL (Localized Orbital Locator),17 and ELF 

(Electron Localization Function),18 which are known to provide comprehensive topological 

information of a molecule.  

ELF and LOL, developed by Becke and coworkers, are scalar functions providing a 

quantitative value to the degree of electron localization in space for a molecule. The idea 

behind the concept of localization functions is built on the premise of Pauli's exclusion 

principle, or more precisely, on the conditional probability of finding an electron with a given 

spin in the immediate vicinity of a reference electron with the same spin. The corresponding 

spherically averaged probability could be further shown to be directly proportional to the non-

interacting kinetic energy density using the Taylor series expansion.38, 39 For interpretation 

purposes, the expression for the conditional pair probability density in terms of kinetic energy 

density is scaled with respect to the kinetic energy density for the uniform electron gas and 

then mapped to a range of [0,1]. Physically, a low probability of finding another like-spin 

electron in the neighborhood of a reference electron implies high localizability of the reference 

electron in that region, which can also be interpreted as the reference electron being low in 

kinetic energy, and hence is termed as a "slow" electron. Such electrons are said to be highly 

localized within a region and are associated with those found in the core, bonding, and lone-



pair regions. Whereas a high pair probability corresponds to a high delocalizability of the 

reference electron, implying a high associated kinetic energy ("fast" electrons), and refers to 

the delocalized regions such as those found near orbital boundaries. Thus, a localization 

function cleanly partitions the molecular topology into electronically dense and diffuse 

regions, thus providing a chemically interpretable picture of a molecule akin to VSEPR and 

Lewis-dot theory. For the sake of visual comparison, a discrete voxel-based representation of 

a simple molecule (C2N2) is shown in Figure 1, and a voxelized LOL profile for the same 

molecule is shown in Figure 2. The two contrasting images depict the difference in sparsity 

levels in the two representations. 

The information needed to compute localization functions or any other wavefunction-

dependent molecular descriptor, viz., orbital coefficients, is usually stored in large data files 

(viz., checkpoint or wfx files in Gaussian 16), and hence are not included in curated datasets, 

potentially due to huge memory requirements. Therefore, to obtain the requisite descriptors, 

an additional electronic structure calculation on the full dataset is needed, which is probably 

one of the reasons why there has been a reluctance to use wavefunction-based descriptors in 

the machine learning models. Fortunately, localization functions depend only on the symmetry 

and nodal properties of the orbitals, making them topologically invariant with respect to the 

level of theory used.40 In contrast to most population analysis methods, the level of theory 

does not change the qualitative nature of the molecular topology and, by extension, 

localization functions. Therefore, a simple computation such as a single-determinant small 

basis set or a semi-empirical method would be sufficient to provide learnable topological 

features of a molecule. In the present work, the localization functions used for molecular 

representation are generated using B3LYP/6-31G, a relatively cheap level of theory. 

Nevertheless, for the sake of comparison, the model's efficacy was tested with a large basis 

set (B3LYP/6-31G(2df,p)) generated localization functions as well. Additionally, we have also 

analyzed the performance of nuclear electrostatic potential (as a molecular descriptor) due to 

its dense nature and being independent of any electronic structure computation. 



 

Figure 1. Discrete voxelized representation of C2N2, with the occupied voxels representing the 

atomic positions. 

 

 

 

Figure 2. Voxelized LOL profile of C2N2. Larger values represent electron localized regions, 

while smaller values represent electron diffuse regions. 



 

2.1.2 Data Preparation 

A molecule can attain multiple orientations in three dimensions; therefore, to remove any 

ambiguity in the orientations between different molecules in the dataset, a unique orientation 

for each structure is needed. Although, it should be noted that multiple orientations for the 

same molecule can be incorporated into the dataset to increase the number of training samples. 

This is a well-known data augmentation technique often used in the field of computer vision 

if the dataset is scarce. Such data augmentations are feasible only if the input representations 

are rotationally invariant in space, thus uniquely setting 3D representations apart from other 

input types. Hence, while dealing with datasets with insufficient training samples, designing 

a machine learning framework based on 3D input representations could be advantageous 

compared to other options. However, the QM9-G4MP2 is a reasonably large dataset (~130,000 

data points); therefore, no data augmentation procedure was incorporated during data pre-

processing. A unique molecular orientation for every molecule was obtained using the 

Principal Component Analysis (PCA) algorithm, which could be used to provide a new set of 

molecular coordinates at which the variance in the (heavy atom) x-coordinates is maximum. 

Thus, the molecule is oriented along the first principal component (or x-axis in this case). The 

reoriented molecules thus obtained could be enclosed in a cubic box of dimension 10.4 Å (with 

the geometric center of the cube taken as the origin), which is large enough to encompass all 

the heavy atoms of any molecule in the dataset. 

Grid resolution determines how finely the topological details of a molecule are encoded in 

the voxelized grid, and can be formally defined as the dimension of a single voxel cell. The 

number of uniformly spaced voxels along a grid dimension is known as the grid length (N) 

and determines the size of the 4D-input tensor. For a cube of fixed dimensions, the larger the 

grid length, the higher would be the grid resolution, and thus more would be the topological 

information embedded into the grid, which should theoretically improve model accuracy. 

However, the computational cost of training a convolutional neural network (CNN) roughly 

scales as the cubic power of the grid length. Therefore, grid length (or grid resolution) should 

be carefully chosen, keeping in mind the available computational resources. We used a grid 

length of 14 (grid resolution=0.743 Å) to construct the input tensors for model training; 



however, we also experimented with multiple grid lengths (or equivalently, grid resolutions) 

to ascertain their correlation with the model performance. 

The requisite molecular descriptors (viz., LOL, ELF, and nuclear electrostatic potential 

(NEP)) were obtained using the Multiwfn program41 in a 3D grid format from the Gaussian 

1642 generated wfx files. The generated data was then converted to a 4D tensor (N×N×N×1), 

suitable to be used as an input for a 3D-CNN. Data preparation scripts are available in the 

paper's GitHub repository. 

2.2 Model 

2.2.1 Architecture 

DenseNet43 model architecture, known for its parameter efficiency and ease of training, 

was employed for the task of learning the molecular topology. Most computer vision 

architectures, including DenseNets, were developed for 2D image recognition tasks where the 

input shape is a three-dimensional tensor. Thus, we modified the standard DenseNet 

architecture accordingly to make it compatible with 3D input representations. A schematic 

diagram of the basic DenseNet architecture used is shown in Figure 3. DenseNet introduces 

what is known as dense-blocks into the network architecture, which are composed of the so-

called dense-layers, which in turn is a stack of 1×1 and 3×3 convolution layers, reminiscent 

of the bottleneck-block in ResNets.44 The defining trait of a DenseNet architecture is the dense 

connectivity pattern within a dense block, wherein every dense layer is directly connected to 

every other dense layer through a concatenation operation. Mathematically, the feature maps 

generated by a dense layer are concatenated with those produced by all the preceding layers, 

which are then passed as an input to the next layer in the architectural hierarchy. In this way, 

the features learned by the shallower layers are transferred to the deeper layers, thus enhancing 

the learning process. Since features are being reused throughout the network, only a small 

number of new features (or channels) need to be added by every dense layer, making 

DenseNets, parameter efficient by design and hence less susceptible to overfitting. Although 

quite simple in concept, the densely connected topology of DenseNets makes it robust to the 

vanishing gradient problem, and boosts information and gradient flow. For the sake of 

simplicity, only four dense layers are included in the dense block shown in Figure 3. Any two 

adjacent dense blocks are connected through a transition layer, which downsamples the feature 



maps through the average-pooling operation. Data downsampling is often necessary to train 

deeper networks without proliferating the number of FLOPs, and hence training time, albeit 

at the cost of some loss in resolution (or information). The compactness of the DenseNet 

architecture is further increased by reducing the number of incoming channels (Cin) in the 

transition-block by a factor, called the compression factor (cf), with its domain being 0 <

𝑐𝑓 ≤ 1, which provides further computational efficiency to the model without compromising 

accuracy to a large extent. A cf value of 0.5 was found to be optimal for providing a reasonable 

balance between model cost and accuracy.43 All the architectural hyperparameters except the 

number of dense layers in each of the dense blocks are depicted in Figure 3. We experimented 

with different dense-layer configurations in the two dense blocks, which determines the 

overall depth of the architecture, and is one of the primary factors dictating the model's overall 

performance and cost. Henceforth, the number of dense-layers in the first and second dense-

block are referenced as d1 and d2, respectively, and is collectively denoted as (d1, d2), 

representing the dense-block configuration of a DenseNet architecture. For example, a dense-

block configuration of (16, 8) implies 16 dense layers in the first dense block and 8 dense 

layers in the second dense block.  

 

Figure 3. Schematic diagram of the DenseNet architecture. 

 

 



2.2.2 Training 

The entire machine learning workflow was implemented in PyTorch-Lightning,45 with 

PyTorch46 as backend. The 3D-DenseNet code was adapted from the publicly available 

memory-efficient version of Densenet implemented in PyTorch by Pleiss et al..47 All of the 

models were trained in parallel on four NVIDIA V100 GPUs with a combined batch size of 

128. The mean absolute error (MAE) is chosen as the loss function for model training. The 

model parameters were optimized using the SGD (Stochastic Gradient Descent) algorithm in 

conjunction with Nesterov momentum (0.9) using a weight decay parameter (L2 penalty) of 

1.0×10−4. During the optimization procedure, the learning rate is controlled through a learning 

rate schedule that decreases the learning rate by a factor of 0.75 whenever the training loss 

plateaus within a certain threshold (0.005 kcal mol−1). The model optimization was initialized 

with a starting learning rate of 0.1 to run for 250 epochs, enough for both training and test 

metric values to converge comfortably. While benchmarking the performance of a 

hyperparameter of interest, the corresponding trials were run under fixed random seed 

conditions to eliminate any variability whatsoever due to dissimilar weight initializations. 

However, due to the non-deterministic nature of certain GPU algorithms, a small degree of 

variance is still inevitably introduced between different runs; hence all the reported metrics 

were obtained using an average of five different runs.  

3. Results and Discussion 

Following the Δ-ML philosophy, the proposed machine learning model is trained to 

reproduce the difference in the atomization energies between the G4(MP2) and B3LYP/6-

31G(2df,p) levels of theory. The optimized model could then be used to predict the Δ-

atomization-energy values for out-of-sample cases, which in turn could be used to predict their 

absolute atomization energies at the G4(MP2) level of theory, provided the corresponding 

atomization energies at B3LYP/6-31G(2df,p) level are known. The predicted values for an 

out-of-sample dataset by the model network, however, must be within a reasonable error 

threshold to be of any practical use, and is indicative of the quality of a model. Therefore, the 

mean absolute error (MAE) between the ML-predicted values and the exact values over the 

test set (13,026 molecules) is used as the metric to quantify the performance of a given model. 

The model performance usually depends on a number of model and data-related 



hyperparameters; therefore, the effect of varying a few seemingly important hyperparameters 

is reported in this section, thus gleaning insight into different ways that systematically improve 

model performance.  

3.1 Effect of Varying the Voxel Grid Length (or Grid Resolution) 

The input tensor's shape and size depend on the grid length (or equivalently, grid 

resolution), which ultimately governs the quality of topological information encoded in the 

grid. However, the number of FLOPs associated with a convolutional neural network formally 

scales as the cubic power of the grid length (Figure 4b). Therefore, selecting an appropriate 

grid length is imperative if the computational resources are scarce. To assess the performance 

of the model as a function of the change in the grid length, the topological descriptors are 

generated with different grid lengths (N) viz., 12, 14, and 16, with the corresponding grid 

resolutions being 0.867 Å, 0.743 Å, and 0.650 Å, respectively. These input representations are 

then used to train the base DenseNet architecture (Figure 3) with a fixed dense block 

configuration of (16, 16). The obtained metrics summarized in Figure 4a clearly show an 

improvement in model performance with an increase in grid length. All three molecular 

descriptors improve model generalizability at finer grid resolutions. Indeed, the higher the 

input grid resolution, the more detailed interatomic features would be available to the model 

to help it discern between different molecular patterns. Comparing the two localization 

functions' performance, LOL provides superior results than ELF in all cases. Additionally, the 

performance of nuclear electrostatic potential (NEP) is comparable to that of LOL. More 

importantly, all the errors are well below the desired benchmark accuracy of 1.0 kJ mol−1, with 

the N=16 errors being comparable to the best result obtained by Ward et al.28, i.e., 4.5 meV (= 

0.43 kJ mol−1 or 0.104 kcal mol−1).  



 

Figure 4a. Effect of varying grid length (N) on the MAE of the test set. All results were obtained 

using the base DenseNet architecture (Figure 3) with a dense block configuration of (16,16). 



 

Figure 4b. Increase in elapsed time for an epoch with change in grid length. All results were obtained 

using the base DenseNet architecture (Figure 3) with a dense block configuration of (16,16). 

 

3.2 Effect of Varying the Training Set Size 

High volume and quality of data are essential to increase the generalization capability of a 

machine learning model. To decipher the extent of correlation between the amount of data and 

model accuracy, we experimented with multiple training set sizes keeping the architectural 

and data hyperparameters fixed. To be more precise, we prepared training sets of various sizes, 

viz., 25,000, 50,000, 75,000, and 117,232 (full train set), keeping the grid length for the input 

representation at 14, which provides a reasonable balance between cost and accuracy. The 

(16,16)-DenseNet architecture was used to test the variation in the model performance. The 

mean absolute error (MAE) of the test set as a function of the training set size is depicted in 

Figure 5. As expected, the model performance improves with an increase in the training set 

size. Moreover, even with a relatively small training set composed of only 25,000 samples, 

the model achieves a respectable accuracy of approximately 1.2 kJ mol−1 (=0.287 kcal mol−1), 



which could be useful in situations with limited compute availability. Interestingly, both LOL 

and nuclear electrostatic potential (NEP) provide similar quantitative results with respect to 

change in the training set size, indicating further similarity between the efficacies of the two 

descriptors.  

 

Figure 5. Effect of varying the training set size on the MAE of the test set. All results were obtained 

using the base DenseNet architecture (Figure 3) with a dense block configuration of (16,16). 

 

3.3 Effect of Varying the Dense Block Configuration 

The depth of a dense block refers to the number of dense layers (or convolution layers) it 

is composed of. The depth of the first dense block (d1) is a hyperparameter of critical 

importance since it is one of the primary determining factors of the computational cost 

associated with a DenseNet architecture. All the convolutional layers in the first dense block 

act on the full un-downsampled input tensor, making its associated FLOP count substantially 

larger than that for the second dense block. The latter operates only on a downsampled version 

of the data, thus losing some of the topological information. Therefore, for the model to learn 



as many high-level input features as possible, the first dense block needs to be as deep as 

computationally feasible. In short, increasing the number of layers in the first dense block 

should theoretically improve model accuracy but at an associated computational cost. To 

measure model sensitivity as a function of the change in the first dense block's depth, 

DenseNet models with different d1 values (viz., 12, 16, 20, 24) were prepared, keeping the 

total depth (d1+d2) of the network fixed at 32. The number of dense layers in the second dense 

block (d2) is varied accordingly to keep the overall depth constant across all the models. It 

should be noted that even though the dense block configuration is different, the total number 

of trainable parameters remains the same across the different models, as it depends only on 

the total depth of the model. As predicted, the test error decreases with an increase in the depth 

of the first dense block (Figure 6a).  

Furthermore, we also experimented varying d1 (viz., 8, 16, 24, 32) while keeping d2 

constant (at 8) (Figure 6b). Finally, we also show results obtained by simultaneously doubling 

the number of layers in each of the dense blocks (Figure 6d). In both of these cases, the overall 

depth of the network is being increased, causing a lowering of test set MAE. Clearly, out of 

all the models tested, the best performing (and also the most expensive) model is the one with 

the most number of dense layers, i.e., a dense block configuration of (32, 32), which provides 

an MAE of 0.094 ± 0.002 kcal mol−1; however, it should be reiterated that errors could 

potentially be lowered further by increasing the architecture depth and/or using a finer grid 

resolution. All the results shown are obtained using the LOL descriptor; however, the general 

trend is expected to be the same for other topological descriptors as well. The training time for 

an epoch for different models is shown in Figures 6c and 6e, roughly scaling linearly with 

respect to the number of dense layers (or convolutional layers) in the model. In summary, the 

model performance could be systematically improved by increasing the depth of the 

architecture, which, however, is accompanied by an increase in the computational cost.  

 



 

Figure 6a. Effect of varying the depth of the first dense block on the test set MAE while keeping 

the architecture's total depth constant. All results were obtained using the base DenseNet architecture 

(Figure 3) with the total number of dense layers fixed at 32. 



 

Figure 6b. Effect of varying the depth of the first dense block on the test set MAE. All results were 

obtained using the base DenseNet architecture (Figure 3) with the number of dense layers of the 

second dense block fixed at 8. 



 

Figure 6c. Change in elapsed time for an epoch with change in depth of the first dense block. All 

results were obtained using the base DenseNet architecture (Figure 3) with the number of dense 

layers of the second dense block fixed at 8. 



 

Figure 6d. Effect of doubling the dense block configuration on the test set MAE. All results were 

obtained using the base DenseNet architecture (Figure 3). 



 

Figure 6e. Change in elapsed time for an epoch with the doubling of the dense block configuration. 

All results were obtained using the base DenseNet architecture (Figure 3). 

 

3.4  Effect of Varying the Level of Theory to Generate the Localization 

Functions 

Electronic-wave function-dependent topological functions (viz., LOL, and ELF) are 

obtained through an electronic structure computation and, as such, depend quantitatively on 

the level of theory used. To test whether the level of theory affects the model performance or 

not, the localization functions (viz., LOL and ELF) were generated using two different levels 

of theory (or basis sets), viz., B3LYP/6-31G, and B3LYP/6-31G(2df,p), which were then used 

as inputs to train the standard (16,16)-DenseNet architecture. From the results shown in Figure 

7, it is apparent that the results vary negligibly between the two levels of theory. Moreover, as 

noted before, LOL outperforms ELF at both levels of theory. Thus, the model performance 

does not rely heavily on the quantitative nature of the localization functions but rather on its 



qualitative aspects, further reinforcing the idea of network learning from broad topological 

features. 

 

Figure 7. Effect of varying the basis set used to generate the localization functions on model 

performance. All results were obtained using the base DenseNet architecture (Figure 3) with a dense 

block configuration of (16,16). 

 

3.5 Effect of Using Multiple Descriptors. 

A single molecular descriptor is usually insufficient to capture every molecular detail and 

thus may lack enough learnable data to provide expected accuracy levels, especially in case of 

a challenging problem like protein-ligand binding energy predictions. However, for the 

problem of predicting atomization energies, a single topological feature by itself proved 

sufficient to provide excellent results. Nonetheless, we tested the model performance for 

multi-channel inputs as well, which could be obtained by stacking individual input tensors 

along the channel axis. Specifically, two different combinations from the available topological 

features were formed, viz., LOL+NEP, and ELF+LOL+NEP, where the '+' sign indicates a 



concatenation operation between any two topological tensors. The concatenated inputs were 

then used to train the base DenseNet network (Figure 3) with a (16,16) dense block 

configuration. As depicted in Figure 8, the test MAE did not reduce much upon providing 

more learnable features to the network, potentially due to information overlap between the 

three topological descriptors, thus leading to redundant features being added to the input upon 

their concatenation. This observation can also be attributed to the test loss saturation with 

respect to the network architecture and could mean that a deeper or wider architecture is 

required to learn the additional features. Due to computational considerations, only three 

topological descriptors are tested; however, a myriad of other discrete and dense molecular 

descriptors existing in literature could also be used in different combinations to construct a 

grid representation of a molecule. In fact, for a set of n distinct molecular descriptors, a total 

of (2𝑛 − 1) input combinations could be obtained, thus making the scaling exponential in the 

space of molecular descriptors. A thorough benchmark of the architecture's learning capacity 

with respect to a more extensive set of input features will be pursued in a future publication.  

 



 

Figure 8. A performance comparison between different molecular descriptor combinations. All 

results were obtained using the base DenseNet architecture (Figure 3) with a dense block 

configuration of (16,16). 

 

4 Conclusions 

The present article highlights the importance of using non-sparse molecular descriptors for 

a machine learning task utilizing the 3D-CNN framework. The 3D-DenseNet architecture 

successfully learned the subtle molecular topological features encoded in the localization 

functions and correlated them with the Δ-atomization energies. Moreover, the network was 

also able to learn the structural features through the nuclear electrostatic potential (NEP) of a 

molecule. Furthermore, we analyzed the proposed model's performance with respect to several 

key hyperparameters, some of which helped improve model accuracy in a systematic manner. 

Among the localization functions tested, LOL outperformed ELF in all instances, indicating 

the former's superiority over the latter in providing a clear topological picture of a molecule, 



as noted in several other publications as well.48-51 Moreover, NEP performed comparably to 

LOL, potentially due to its relatively denser input representation, and could be a cheaper 

alternative to LOL as it does not require any additional electronic structure computations. 

Nevertheless, it is likely that there are cases where NEP will fall short, such as in problems 

involving open-shell species or electronic transitions, where the electron distribution is known 

to play a critical role in property determination. Moreover, datasets composed of transition 

metal species, which often involve multiple energetically accessible spin states, may present 

a situation where a single atomic configuration (but having different electronic configurations) 

has multiple corresponding target values associated with it, differing only due to subtle 

changes in the electronic structure of the molecule. Fortunately, localization functions provide 

a novel way to visualize alpha and beta electron topologies (or distributions) separately, thus 

making it easier to locate regions associated with unpaired electrons, which could help predict 

properties such as redox potentials and ionization energies.52, 53  Additionally, localization 

functions have been widely used to characterize the bonding nature in transition metal 

complexes and thus could be an indispensable tool for their tensorial representation.53-60  

The encouraging results in the present article show incredible promise for future endeavors 

to tackle even more challenging problems. The existing frameworks could be further refined 

by leveraging recent developments in the field of computer vision. For example, as noted 

earlier, the 3D-CNNs can be made further computationally efficient by taking advantage of 

the octree data structure. Additionally, the latest and ever-improving state-of-the-art network 

architectures could be adopted for learning tasks; however, challenges remain, as the training 

protocols for chemistry-related problems could be quite different from those for image 

classification tasks. The model accuracy could be further improved through data augmentation 

techniques, which could be quite valuable while dealing with small datasets. The future 

directions concerning these deep learning frameworks should also be directed towards solving 

problems of practical interest such as predicting ligand-receptor binding affinities, thus 

providing complementary ways to enhance high throughput virtual screening (HTVS) 

methods. 
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