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ABSTRACT  

To discover new catalysts using density functional theory (DFT) calculations, binding energies 

of reaction intermediates are considered as descriptors and calculated to predict catalytic activities. 

Recently, machine learning methods have been developed to reduce the number of 

computationally intensive DFT calculations for high-throughput screening. These methods require 

several steps such as bulk structure relaxations, surface structure modelling, and active sites 

identification, which could be time-consuming as the number of new candidate materials increases. 

To bypass these procedures, in this work, we report atomic structure-free representation of active 

motifs to predict binding energies on catalyst surfaces. We identify binding site atoms and their 

nearest neighboring atoms positioned in the same layer and the sublayer, and their atomic 

properties are collected to construct fingerprints. Our method enabled a quicker training (~200 sec) 

compared to the previous deep-learning models, and predicted CO and H binding energies with 

mean absolute errors of 0.120 and 0.105 eV, respectively. Our method is also capable of creating 

all possible active motifs without performing any DFT calculations and the predicted binding 

energy distributions can suggest promising candidates to accelerate catalyst discovery. 
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In computational catalysis field, binding energies of reaction intermediates are central for 

predicting catalytic properties from first-principles calculations. They can be used to predict 

binding energies of other reaction intermediates based on scaling relations1-3 and estimate 

transition state energies via Brønsted−Evans−Polanyi (BEP) relation4 without performing 

expensive nudged elastic band (NEB) calculations.5, 6 By coupling scaling relations and BEP 

relations to perform a microkinetic analysis, volcano plots can be constructed to obtain a desired 

range of binding energies to achieve the maximum reaction rates.7, 8 In this sense, binding energies 

are considered as descriptors for predicting catalytic activity and selectivity, which can be utilized 

to discover new catalysts by performing high-throughput screening for diverse classes and 

compositions of materials.9-15  

A procedure of the conventional high-throughput screening is summarized as follows16, 17: (1) 

bulk structures are collected from inorganic materials database such as The Materials Project18 or 

The Open Quantum Materials Database (OQMD)19, (2) lattice parameters and a shape of the bulk 

unit cell are optimized using density functional theory (DFT) calculations, (3) surface atomic 

structures (e.g., (111) or (211) facets) are modelled and (4) binding energies at all unique sites are 

calculated. As the number of candidate materials increases, the number of required DFT 

calculations would significantly increase. To tackle this challenge, various approaches have been 

developed to date to reduce the number of required DFT calculations. 

For example, Hammer and Nørskov established d-band theory, which correlates adsorbate 

binding energies and d-band center of surface atoms20, which was further improved by considering 

other properties of d-band such as d-band upper edge21, 22 and 0−4 th moment characteristics 

(filling, center, width, skewness and kurtosis).23 With regard to structural effects on binding 

energies, Calle-Vallejo et al. developed a "generalized" coordination number, which is an weighted 
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average of surface coordinations.24 Recently, machine learning (ML) has been applied to the 

computational catalysis to alleviate formidable computational cost issues of DFT calculations. To 

predict binding energies on catalyst surfaces, Tran and Ulissi prepared fingerprints using 

information of coordination sites such as coordination numbers of binding sites, electronegativity, 

atomic numbers and median binding energies of the first and second nearest neighboring (NN) 

atoms, and their regression models predicted ∆ECO* and ∆EH* reasonably well (mean absolute error 

(MAE) ~ 0.2 eV) using ~20,000 DFT calculated data of intermetallic alloys for each adsorbate.25 

Using the same dataset, Back et al.9 reported convolutional neural network (CNN) on top of a 

graph representation of surface atomic structures, the modified version of CGCNN originally 

developed by Xie and Grossman26, to predict ∆ECO* and ∆EH* with MAE of 0.13 eV for both 

adsorbates. Recently, Gu et al.15 demonstrated that labeled site CGCNN (LS-CGCNN), which 

labels the binding site atoms of the unrelaxed bare surface geometry, greatly improved the 

prediction accuracy and resulted in MAE of 0.116 eV and 0.085 eV for ∆ECO* and ∆EH*, 

respectively. However, we note that the approaches reported to date require bulk optimizations, 

surface modelling and active sites identification followed by numerical transformations of the 

entire surface atomic structures into machine-readable inputs, implying that one needs to carry out 

all the processes for new materials. This could be time-consuming if one wishes to predict binding 

energies of multiple new materials that have not been uploaded to the database yet, necessitating 

a novel strategy for efficient high-throughput screening.  

In this work, we report atomic structure-free representation of active motifs to predict binding 

energies on catalyst surfaces without performing any DFT calculations. In our method, we first 

identify binding site atoms and their nearest neighboring atoms positioned in the same layer and 

the sublayer, and prepare fingerprints using their tabulated atomic properties. This model achieved 
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test set MAEs of 0.120 and 0.105 eV for predicting ∆ECO and ∆EH*, respectively, comparable to 

the previously reported graph-based deep-learning models using the same dataset,9, 15 with the 

elapsed time for training the model being much faster (~200 sec) compared to the deep-learning 

models (a few hours). As our method does not require any DFT calculations for prediction, we 

further apply the method to collect binding energy distributions of bimetallic catalysts by 

predicting binding energies of 3,780 unique active motifs. Our method successfully identified 

compositions of several high-performing CO2 electroreduction catalysts reported to date, and 

suggest promising combinations requiring future experimental validations.  

 

 

Figure 1. The overall procedure of our method. (a) Identification of FNN, SNNsame and SNNsub 

atoms. (b) Preparation of fingerprints to train models. Weighted average values of 11 atomic 

properties and the number of atoms comprising the site for FNN, SNNsame, and SNNsub are 

concatenated to construct fingerprints. For each type of the sites (FNN, SNNsame and SNNsub), vi, 

ni and N correspond to an atomic property, the number of element i and the number of total atoms, 

respectively. 
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Compared to the previous approaches,9, 15 which converted entire atomic structures into graph 

representations, we focus on active motifs including binding sites and their nearest neighbors, 

which correspond to the first and second NN of adsorbates, respectively (referred to as FNN and 

SNN henceforth). The previous results indeed suggested that contributions from the third and 

fourth NN to binding energies are negligible.9 Using the optimized structures from GASpy 

database25 (16,097 for CO* and 18,362 for H* adsorbed metal alloy surfaces, see Supplementary 

Note: Data preprocessing), we employed Voronoi algorithm implemented in pymatgen27 to 

determine the FNN and SNN of adsorbates. We then converted atomic coordinates of the FNN 

and SNN into fractional coordinates. When a difference between the fractional z coordinate of 

SNN atoms and that of FNN is less than a fractional atomic radius (atomic radius normalized by 

the cell length in z direction) of binding site atoms, SNN atoms are assigned to be in the same layer 

(SNNsame). Otherwise, they are assigned to be in the sublayer (SNNsub) (Figure 1). We note that 

fractional coordinates are necessary to correctly classify atoms in the same layer and sublayer for 

parallelepiped unit cells (Figure S1). As a result, we obtained three types of sites that could affect 

binding energies, i.e., FNN, SNNsame and SNNsub. We then collected 11 tabulated atomic properties 

(atomic number, block, ionic radius, common oxidation state, electronegativity, row, group, 

thermal conductivity, boiling point, melting point, first ionization energy) from “periodic table 

module” implemented in pymatgen.27 Finally, we prepared fingerprints of active motifs consisting 

of 36 columns in total, where we have three types of sites and each type has 12 columns consisting 

of weighted averages of atomic properties and the number of atoms in the type (Figure 1). The 

prepared fingerprints were then standardized using the standard scaler implemented in scikit-

learn.28 An example of fingerprint constructions can be found in Figure S2.  
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Figure 2. MAEs of test and train set with respect to the number of total data for (a) ∆EH* and (b) 

∆ECO* predictions, where error bars refer to standard deviations of MAEs obtained from 5-fold 

cross validations. Two-dimensional histograms of ML predicted and DFT calculated (c) ∆EH* and 

(d) ∆ECO*. 

 

Based on our representations, we evaluated performances of various ML algorithms 

implemented in scikit-learn,28 including random forest regressor (RFR)29, extra-trees regressor 

(ETR)30, light gradient boosting regressor (LGBR)31, gradient boosting regressor (GBR)32, least 

absolute shrinkage and selection operator (LASSO)33 and support vector machine regressor 

(SVR)34, where the optimal hyperparameters were selected by Bayesian optimization35. We 
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performed 5-fold cross validations by 100 times with random splits of train (80 %) and test data 

(20 %) to avoid overfitting and data selection bias. In addition, we applied an ensemble approach, 

where a set of trained models was used to provide statistics of predictions, which was reported to 

further improve a model prediction accuracy.15 Prediction performances of various ML algorithms 

are summarized in Table S1. 

Generally, ensemble-based methods such as RFR, ETR and GBR predicted binding energies 

more accurately compared to other algorithms, with the GBR achieving the lowest MAEs for 

predicting ∆ECO* (0.120 eV) and ∆EH* (0.105 eV), comparable to the results of LS-CGCNN by Gu 

et al. (0.116 eV (∆ECO*) and 0.085 eV (∆EH*))15 or better than the results of CGCNN by Back et 

al. (0.13 eV for both ∆ECO* and ∆EH*).9 From learning curves, we observed a remarkable decrease 

in test set MAEs as the number of data increases up to ~10,000 total data (Figure 2a and 2b). We 

highlight that our method achieved reasonable accuracy (MAE ~ 0.15 eV) using only 3,000 data, 

i.e., 16.5 % of total data, which is noticeable considering that similar MAEs were achieved using 

10,000 data in the case of CGCNN by Back et al.9 To rationalize the origin of improvements of 

our model's prediction accuracy, we tested the effect of not distinguishing atomic positions of SNN. 

In this representation, we only have two types of sites (FNN and SNN), thus SNN atoms in the 

same layer (SNNsame) and the sublayer (SNNsub) are considered to be identical. MAEs of test set 

were found to be 0.128 eV and 0.121 eV for ∆ECO* and ∆EH*, respectively, highlighting the 

importance of considering relative positions of SNN.  
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Figure 3. Two approaches to generate fingerprints for binding energy predictions. The 

conventional approach is to relax bulk materials by DFT calculations, build surface structures, find 

unique active sites and construct fingerprints. Our representation enabled new approach, where we 

select elements, place those elements in the FNN, SNNsame and SNNsub to enumerate any active 

motifs for binding energy predictions without performing any DFT calculations.  

 

We highlight two merits of our method compared to the previously reported graph-based deep-

learning models trained using the same dataset.9, 15 First, our method achieved comparable  

accuracies for ∆ECO* and ∆EH* predictions, considering only the FNN and SNN instead of entire 

atomic structures and employing simple machine learning algorithms. Consequently, the time 

required for training was noticeably short compared to the deep-learning models, 196.448 seconds 

using 1 core of Intel(R) Xeon(R) Gold 5222 CPU @ 3.80 GHz, while the deep-learning models 

required a few hours. Second, our method can predict ∆ECO* and ∆EH* of any active motifs without 

performing any DFT calculations. One can either (1) build atomic surface structures to generate 
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fingerprints of active motifs (the conventional approach) or (2) enumerate any active motifs by 

placing elements in the FNN, SNNsame and SNNsub (Figure 3). We note that the previous models 

and other ML methods9, 15, 36, 37 for binding energy predictions required DFT optimizations of bulk 

structures, modelling of atomic surface structures, or density of states calculations to construct 

fingerprints. In the following, we demonstrate a practical application of our method to accelerate 

catalysts discovery. 

 

 

Figure 4. Heat map visualizing densities of possible surfaces of bimetallic catalysts, which have 

optimal ∆ECO* (-0.67 eV ± 0.1 eV) and ∆EH* (-0.27 eV ± 0.1 eV)25. White squares refer to 

experimentally identified bimetallic combinations for CO2 reduction38, 39 (upper left) and H2 

evolution (lower right)40. 
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We enumerated 3,780 unique active motifs for many combinations of two elements and 

predicted their ∆ECO* and ∆EH* using the trained model (See Figure S5 for details on the 

fingerprint enumeration), and their densities close to the optimal ∆ECO* and ∆EH* for CO2 reduction 

and H2 evolution, respectively, are plotted in the heat map (Figure 4). Bimetallic combinations 

having high density of surfaces with near-optimal binding energies can be considered as promising 

candidates for the CO2 reduction and H2 evolution. Interestingly, our method found some of 

experimentally observed catalysts. For the CO2  reduction, which uses ∆ECO* as an activity 

descriptor, Cu41-43, Ni44, 45, Pt46 and In47-based bimetallic catalysts are commonly reported to be 

active. Particularly, Pt-Ni48, Pd-Ni49, Cu-Si41 and Pt-Co46 were found to have high densities of 

near-optimal CO binding energies. In addition, we also found that Ir-Pd50, Ir-Ni51, 52, Ag-Pd53, 

known to be active for H2 evolution, have high densities of near-optimal ∆EH*. We expect some 

bimetallic combinations with high densities of the near optimal ∆ECO* (e.g., In-Sb, Ag-Sn) and 

∆EH (e.g., Pd-Re, Co-Rh) can be considered as promising candidates for CO2 reduction and for H2 

evolution, respectively, requiring further experimental validations. 

In summary, we developed atomic structure-free representation for binding energy predictions. 

Compared to the conventional representation requiring entire atomic structures and DFT 

calculations, we only considered the first nearest neighbors and the second nearest neighbors in 

the same and sublayer. Their atomic properties and the number of atoms in the type of sites (FNN, 

SNNsame, SNNsub) were used to construct fingerprints, and GBR algorithm was used for training. 

Our method enabled a quick training (~200 sec using CPU vs. a few hours in the case of CGCNN 

using GPU), and achieved accurate predictions of ∆ECO* (0.120 eV MAE) and ∆EH* (0.105 eV 

MAE) comparable to the CGCNN methods.9, 15 Particularly, the number of data required to achieve 

reasonable accuracy (0.15 eV MAE) was significantly smaller than the CGCNN method.9 
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Furthermore, as our representation does not require any DFT calculations and surface structure 

modelling to predict binding energies of new materials, all possible active motifs can be 

enumerated at once and their binding energy distributions can be predicted. Given fast 

training/prediction with high accuracies, this approach could be used to accelerate catalyst 

discovery by suggesting promising elemental combinations for experimental validations.  
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