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Cycle-life: Towards a Final Regularity Resembling Carnot-efficiency 
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Abstract 

A transition state theory-influenced approach on maximum battery cycle-life is outlined, arriving at an ideal model of 

general validity. The outcome may be understood further as a thermodynamic final regularity reminiscent of Carnot-

efficiency. In contrast to the common perception which attributes in blanket fashion the causality of changes in cycle-life to 

the engineering of battery-specific tangibles, this model allows for a more differentiated picture: That changes to battery-

specific tangibles may yield differences of several hundred or more cycles is here the result of them being enhanced by a 

comparatively long, natural constant-based, logarithmic lever. That way such changes can cause big differences though 

being comparatively small to the lever base value, which emerges as a quantity of natural constants, temperature(s) and 

relative capacity margins but independent of battery specific energy and applied power. These are findings suggesting a 

revision of the current empirics-biased consensus opinion about the matter. 

 

1. Introduction 

How many charge-discharge cycles a secondary battery may deliver under operational conditions 

belongs to the prime questions of reversible electrochemical energy storage. Approaches towards 

modelling that quantity of interest exist in literature and are either of electrochemical-physical 

character or (semi-)empirical nature:1 Both reflect the empiric positivist bias seemingly ruling the 

matter of reversible chemical energy storage ever since and emphasize the predominance or even 

exclusive significance of system-specific tangibles. While that bias is accountable considering the 

drive towards products and applications much less so is the total absence of chemistry approaches 

based on molecular conceptions. That is because the reversible transfer of mass, the one central 

concept to reversible chemical energy storage, is located right at the ideal theoretical fundament of 

physical chemistry. Considering the vast practical significance of reversible chemical energy storage, 

it is not an excessive expectation that at least some ideal idea about the attainable specific energy 

and battery cycle-life could/should have materialized a long time ago. Yet the discrepancy from that 

expectation is complete and stretches to the present day. 

How the fundamentals of physical chemistry set the limits to reversible specific energy has been 

already outlined by this author on previous occasions;2,3 yet pinning down by the selfsame principles 

how often a reversible reaction may ideally occur under failure conditions remained an open issue to 

date. This paper is set for closure on that matter and approaches the issue from a transition state 

theory (TST) angle as it inherently relates equilibrium thermodynamics to kinetics, thus accounting 

for an ambiguous role of time, which is a vital characteristic of the problem at hand. 

2. Methodical Approach 

Central to TST is the concept of a fast upstream equilibrium between the reactants and an activated 

complex in which the reaction products are virtually already present; the kinetically measurable 

reaction event is triggered by a molecular vibration along the reaction coordinate, causing product 

formation.4 This vibration is accounted for by means of a universal frequency factor kBT/h in which kB 

and h represent the Boltzmann and the Planck constant, respectively. Equation 1 shows the classic 
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Eyring-Polanyi equation connecting the reaction rate k to the molar standard Gibbs enthalpy Gm°‡ 

which governs the equilibrium between reactants and the activated complex. 

 

k = 
kB T

h  e–Gm°‡/RT           (1) 

 

The basic TST concept of an upstream equilibrium prior the actual reaction event may be applied in 

adjusted form to secondary batteries because of the fundamental equilibrium nature of reversible 

(electro-)chemical systems. Hence anything prior the most activated, thus slowest, thus kinetically 

visible step of the reaction may be subsumed in equilibrium manner and in a secondary battery the 

intercalation of the migrating species into the vacant electrode site qualifies as such a bottleneck 

step. Thus, the upstream equilibrium covers the mass transfer from one electrode just towards the 

vacant destination site in the other. The shift from a single-phase equilibrium towards a coupled 

multi-phase one is unproblematic as long as the adjustment of the global equilibrium occurs still 

faster than the intercalation of the migrating ion at the vacant site. A molecular vibration along the 

reaction coordinate triggers the apparent reaction event respective the charge or discharge process.  

However, the present scope requires that said global equilibrium relation is augmented by a specific 

(i.e. mass) reference. This additional information provides the equilibrium constant with the quality 

of a reservoir of reaction events because a given amount of system mass can allow for only so many 

of them: in relation to equation 1 that may be achieved by expressing the chemical reaction rate k 

via the ratio of specific battery power in W kg-1 by battery specific energy in Wh kg-1. How reaction 

event count relates to maximum cycle-life is as follows: in each cycle, the real system will experience 

capacity degradation and the minimum causal increment to that process is one molecular reaction 

event falling away per macroscopic cycle. The loss of one reaction event over two cycles does not 

make sense because failure is a binary matter in this context: on what grounds could the chemistry 

have worked in the first cycle but then failed in the subsequent one? There are none; in contrast, 

knowing about the actual reason why a reaction event failed is non-essential as it does not matter 

why the thermodynamic driving force became insufficient, it only matters that it did. By that line of 

argument it is assessed how often the Gibbs enthalpy of the reaction suffices to vault the system 

over a residual capacity bar while each time one reaction event breaks away: due to the causality of 

minimum degradation this gives the ideal cycle-life of a battery under real failure conditions. 

Hence equation 1 is adapted towards equations 2 and 3: The mass transfer of the migrating species 

M between the cathode (C) and the anode (A) occurs via two respective global upstream equilibria 

of the constants K1 and K2, each reaching from the occupied site by M in one electrode upfront the 

vacant destination site in the other (indicated by dots). Both equilibria adjust faster than the 

incorporation of M into the target vacancy. The respective equilibrium constants are outfitted with 

an implicit specific reference via the kinetic reaction constants as sketched, creating the connotation 

of reaction event reservoirs. The reactions occur at two distinct temperatures T1 and T2. Overall, the 

respective apparent reaction rates k1 and k2 are defined in analogy to the classic Eyring-Polanyi 

equation but the index ‡ is omitted because the activated complex and its properties are of no 

concern to the actual scope. 

 



3/8 
 

C∙M ⇌ [C∙∙∙M∙A] ⟶ A∙M  ⇒ – RT1 ln K1 = Gm,1° = – RT1 ln 








 
k1 h
kB T1

    (2) 

C∙M ⟵ [C∙M∙∙∙A] ⇌ A∙M  ⇒ – RT2 ln K2 = Gm,2° = – RT2 ln 








 
k2 h
kB T2

    (3) 

 

3. Results 

Central to this problem is its multi-layered structure: there is a macroscopic cycle and a microscopic 

reaction event level and bringing these soundly together is the task at hand. Equation 4 displays the 

base hypothesis of this approach and constructs by means of the sum of both Gibbs enthalpies via 

the relation – RT ln K = Gm° an equilibrium constant K1,2 (a mere auxiliary quantity) which is a 

measure of total reaction event count per macroscopic cycle.  

 

– 






Gm,1° + Gm,2°

R   = ln K1,2 = ln ( )#reaction events        (4) 

 

Equation 4 is expressed in terms of equations 2 and 3 as shown in equation 5. 

 

– 






Gm,1° + Gm,2°

R   = T1 ln 








 
k1 h
kB T1

  + T2 ln 








 
k2 h
kB T2

  = ln ( )#reaction events     (5) 

 

Reversibility implies equal thermodynamic driving forces back and forth and due to that symmetry 

requirement both Gibbs enthalpies are equal but in order to unify indexes, both are expressed by 

the arithmetic mean Gm,a° as equation 6 shows. 

 

– 






Gm,1° + Gm,2°

R   = – 






2 Gm,a°

R Ta
  = 









T1 ln 








 
k1 h
kB T1

  + T2 ln 








 
k2 h
kB T2

      (6) 

 

The pre-logarithmic temperatures T1 and T2 are expressed in terms of their arithmetic mean Ta 

accordingly which is isolated and brought to the left side as equations 7a to 7c show. 

 

– 






2 Gm,a°

R   = 








( )2 Ta – T2  ln 








 
k1 h
kB T1

  + ( )2 Ta – T1  ln 








 
k2 h
kB T2

        (7a) 

– 






2 Gm,a°

R Ta
  = 









2 – 
T2

Ta
 ln 









 
k1 h
kB T1

  + 








2 – 
T1

Ta
 ln 









 
k2 h
kB T2

       (7b) 
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– 






2 Gm,a°

R Ta
  = 









2 – 
2 T2

T1 + T2
 ln 









 
k1 h
kB T1

  + 








2 – 
2 T1

T1 + T2
 ln 









 
k2 h
kB T2

      (7c) 

 

The operations to this point do not account for the transitional, cyclic nature of the issue and this 

feature is now accounted for by adjusting both ln-terms for their geometric mean temperature Tg via 

the basic thermodynamic equilibrium relation – RT ln K = Gm° as equations 8a and 8b show. 

 

– 






Gm,x°

R   = Tx ln Kx = Tx ln 








 
kx h
kB Tx

  ⇒ Tx ln 








 
kx h
kB Tx

  = Tg ln 








 
kg h
kB Tg

  ⇒ ln 








 
kx h
kB Tx

  = 
Tg

Tx
 ln 









 
kg h
kB Tg

  (8a) 

– 






2 Gm,a°

R Ta
  = ln 









 
kg h
kB Tg

  
















2 – 
2 T2

 T1 + T2
 
Tg

T1
 + 









2 – 
2 T1

 T1 + T2
 
Tg

T2
      (8b) 

 

Combining equation 8b with equation 4 yields equation 9 which is the baseline equation about the 

relation between macroscopic and microscopic level: so if only a relative (y – z) margin of the battery 

capacity (1 ≥ y > z ≥ 0) respective Gibbs enthalpy on the left is used what about the right? 

 

– (y – z) 






2 Gm,a°

R Ta
  = ln ( )#reaction events  ?        (9) 

 

The chemical potential of the ideal gas which is shown in equation 10 points a fundamental answer 

to that question: a difference of Gibbs enthalpies translates by principle in a logarithmic manner.  

 

µ – µ° = RT ln 






p

p°           (10) 

 

Yet how might that apply to equation 9? That a molecular image of battery capacity might clarify: 

the charging reaction will take the empty battery towards the capacity threshold y, which is a 

relative proportion of the specific total of reaction events. Then the system is discharged to a lower 

relative value z. So if the system starts in the charged state y, discharges to state z and recharges 

back to state y for a full cycle, the reaction event reservoir argument entails that the system is two 

times at the reaction event level of state y and one time at those of state z. Hence a cycle between 

(y, z)-capacity margins has an intrinsic reference to (2 y – z) regarding the filling level of the reaction 

even reservoir. Due to equation 10 respective the logarithmic nature of equation 9, ln (2 y – z) is 

placed in lieu of the question mark as a denominator to ln (#reaction events) as shown in equation 11. 

 

– (y – z) 






2 Gm,a°

R Ta
  = 

ln ( )#reaction events

ln (2 y – z)         (11) 
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Accounting in some logarithmic manner for the relative capacity margins y and z gets a fundamental 

feature of the issue right as it makes a difference with regard to cycle-life which e.g. 40 % of battery 

capacity are used: The (70/30) % capacity margin yields a different cycle-life from those obtained 

from using (100/60) % of battery capacity. The next adjustment is the substitution of the Gibbs 

enthalpy term in equation 11 according to equation 8b and making the factor 2 in the temperature-

related term on the left change place with the denominator on the right because by the model a fail 

of one reaction event causes the falling away of a complete cycle. That is shown in equation 12 and 

completes the meaning-wise transition from reaction event count towards cycle count.  

 

– (y – z) ln 








 
kg h
kB Tg

  
















1 – 
T2

T1 + T2
 
Tg

T1
 + 









1 – 
T1

T1 + T2
 
Tg

T2
  ln (2 y – z) = 

ln ( )#reaction events

2  = ln ( )#cycles  (12) 

 

The rate constant kg in equation 12 is now expressed as the quotient of geometric mean specific 

power Ps by mean specific energy Es. Since the specific energy Es of a battery cell is a quantity set by 

reaction stoichiometry,3 thus a setup-specific constant, the variable character of kg rests with specific 

power Ps respective the mean P1, s  P2, s  of both reactions. Equation 13 shows this transformation for 

the common units of W kg-1 respective Wh kg-1 and pools all pre-logarithmic factors in a variable . 

 

–  ln 








 
P1, s  P2, s  h

Es kB T1 T2

  = ln ( )#cycles         (13) 

Es = [Wh kg
-1

]  Px, s = [W kg
-1

]  = ln (2 y – z) ∙ (y – z) ∙ 









1 – 

T2

T1 + T2
 
Tg

T1
 + 



1 – 

T1

T1 + T2
 
Tg

T2
   1 ≥ y > z ≥ 0 

 

The arithmetic sign on the left is drawn into the ln-term which is shown in equation 14. 

 

 ln 






Es

 P1, s  P2, s

 
kB T1 T2

 h   = ln ( )#cycles         (14) 

Es = [Wh kg
-1

]  Px, s = [W kg
-1

]  = ln (2 y – z) ∙ (y – z) ∙ 









1 – 

T2

T1 + T2
 
Tg

T1
 + 



1 – 

T1

T1 + T2
 
Tg

T2
   1 ≥ y > z ≥ 0 

 

It is discernible that equation 14 can be separated into a natural constant-temperature ln-term and a 

setup-specific ln-term: towards that end, time needs to be split among both by means of conversion 

factor  = 1 h/3600 s for unit neutrality within both ln-terms, which equation 15a shows (of the / 

term the in the numerator is absorbed by Es at no further effect). The setup-specific term is then 

expressed by its negative reciprocal for its more instructive form which is shown in equation 15b. 
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ln (#cycles) =  ln 






Es

 P1, s  P2, s

 



 
kB T1 T2

 h  



=  ln 






Es 

 P1, s  P2, s

 
3600 [seconds] kB T1 T2

[1 h] h               (15a) 

   =  ln 






Es

 P1, s  P2, s  [1 hour]
  +  ln 







3600 [seconds] kB T1 T2

 h  



     

ln (#cycles) =  ln 






3600 [seconds] kB T1 T2

 h  



–  ln 






P1, s  P2, s  [1 hour]

Es
                (15b) 

Es = [Wh kg
-1

] Px, s = [W kg
-1

]  = ln (2 y – z) ∙ (y – z) ∙ 









1 – 

T2

T1 + T2
 
Tg

T1
 + 



1 – 

T1

T1 + T2
 
Tg

T2
   1 ≥ y > z ≥ 0 

 = 1 h (3600 s)
-1 

 

 

A glance at the proportions between both ln-terms in equations 15 suggests that a final regularity 

reminiscent of Carnot-efficiency underlies the entire matter of battery cycle-life! True to that notion, 

the battery-specific ln-term is expressed under the premise of constant voltage by the geometric 

mean of C-rates to the charge and discharge process. These C-rate values, which may be data 

averages themselves, are either readily available information or can be estimated from application 

profiles or modelled on basis of reasonable generic values: Either way, equation 16 presents a most 

non-specific, ideal relation of general terms towards the maximum cycle-life of a secondary battery.  

 

ln (#cycles) =  ln 






3600 [seconds] kB T1 T2

 h  –  ln ( )C-ratecharge C-ratedischarge [1 hour]   (16) 

 = ln (2 y – z) ∙ (y – z) ∙ 









1 – 

T2

T1 + T2
 
Tg

T1
 + 



1 – 

T1

T1 + T2
 
Tg

T2
   1 ≥ y > z ≥ 0 

 

4. Discussion 

Equation 16 is the culmination point of an ideal approach and exactly because of that quality it has 

significance for real systems as a limit to the feasible. While the line of argument towards equation 

16 is tight, it may be challenged whether intercalation of the migrating species into the vacant 

electrode site is indeed the highest activated, kinetically visible step of the reaction as this approach 

presupposes. It is not denied that this is a conception but it is a good one, resonating the principal 

direction in Li-battery research of aiming at easier Li-intercalation by opening up of the layers of e.g. 

graphite electrodes (e.g. by silicon or potassium). Another noteworthy aspect is that the model 

accounts for the influence of temperature by the deviation of the geometric from the arithmetic 

mean: for T1 = T2 the temperature-term adopts the value of 1, for T1 ≠ T2 it is always < 1. The term 

kB T1 T2 suggests a generally favourable effect of higher temperature(s) but it is to consider that 

degradation reactions, which also accelerate with temperature, are not part of the model.  

The radical statement of equation 16 is that battery cycle-life is independent of battery-specific 

tangibles regarding energy and power in the strict, explicit sense: this solution comprises of two 

logarithmic terms of which the predominant one is defined by natural constants, temperature(s) and 
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relative capacity margins; the argument of the other one comes down to the arithmetic mean of C-

rates. Meaning-wise, the former term is reminiscent of Carnot-efficiency as it tells about the two 

energy levels of a cycle in terms of temperature(s) and relative capacity margins. The second term 

tells how fast the system is run through a cycle and both terms combine by the outlined minimum 

causality of failure to the figure how often that can be done at best: the ideal battery cycle-life.  

In contrast to the current consensus opinion, which attributes the causality of changes to cycle-life in 

blanket fashion to the engineering of battery-specific tangibles, this work arrives at a much more 

differentiated picture: That changes to battery-specific tangibles may yield differences of several 

hundred or more cycles is here the consequence of them being reinforced by a long, natural 

constant-based, logarithmic lever. Due to the final exponential enhancement towards the cycle-life 

value, comparatively small changes taking effect at the tip of that long lever cause big differences. 

The approach is fundamental but may be refined further for better compliance with real systems 

(e.g. regarding failure mechanism) though that might not be necessary as engineering is capable of 

getting close to the ideal thermodynamic limits to reversible mass transfer – eventually.3  

The findings of this work represent a fundamental answer and seemingly warrant nothing less than a 

revision of the current academic consensus on the matter. That however might mean asking for 

(too?) much because the mere existence of a solution of the kind is considered an impossibility by 

the empiric positivist bias dominating the field of reversible chemical energy storage ever since: Yet 

the notion of battery cycle-life being virtually or exclusively a matter of empiric nature is not sound 

to begin with as suggesting that the nature of a material item could be studied solely by methods 

based on the principles of causality to matter while denying the possible significance or even 

existence of any higher regularity ensuing from them. That is contradictory, either there are general 

principles to natural science or there are none, which is of course not a matter open to choice. 

Hence discussing this work’s result in terms of that incomplete yet authorative position and the 

results it bore forth is insofar pointless as this outcome originates from diametrically opposed 

premises and it is only consequential that its qualities, namely convergence in outcome, general 

significance and timeless validity reflect that. Thus, the only possible common ground might be the 

factual level of cycle-life figures. The difference is principal and has a long history, ultimately 

stretching back to the dualism between Aristotle and Plato as far as Western thinking is concerned.  

Even though this divergence about the philosophy of science is a matter vital to this work and would 

thus merit a wider discussion, this is something beyond the means of this paper. A dedicated effort 

another day may address this point with due depth towards a balanced, abiding dialectic resolution.  

As far as the factual dimension of reversible chemical energy storage is concerned, the befogging 

empiric positivist monopoly of opinion has been broken and those who wish to see may now see. 

5. Conclusion 

An approach based on physical chemistry fundamental on the issue of maximum battery cycle-life 

leads to an ideal model of general validity: The result can be understood further in the sense of a 

thermodynamic final regularity similar to Carnot-efficiency which challenges the hitherto academic 

consensus opinion that battery cycle-life were an issue of virtually or exclusively empiric nature.  
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