
 

 

Figure 1. Free energy coordinate diagram for 2 e- / 2 H+ 
steps in N2 ↔ NH3 interconversion. Free energies of for-
mation for N2H2 and N2H4 based on calculated thermochemi-
cal data.13 
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ABSTRACT: The life-sustaining reduction of N2 to NH3 is thermoneutral yet kinetically challenged by high energy intermediates 
such as N2H2. Exploring intramolecular H-bonding as a potential strategy to stabilize diazene intermediates, we employ a series of 
[xHetTpCu]2(ߤ-N2H2) complexes that exhibit H-bonding between pendant aromatic N-heterocycles (XHet) such as pyridine and a 
bridging trans-N2H2 ligand at copper(I) centers. X-ray crystallography and IR spectroscopy clearly reveal H-bonding in 
[pyMeTpCu]2(ߤ-N2H2) while low temperature 1H NMR studies coupled with DFT analysis reveals a dynamic equilibrium between 
two closely related, symmetric H-bonded structural motifs. Importantly, the xHet pendant negligibly influences the electronic struc-
ture of xHetTpCuI centers in xHetTpCu(CNAr2,6-Me2) complexes that lack H-bonding as judged by nearly indistinguishable (CN) fre-
quencies (2113 - 2117 cm-1). Nonetheless, H-bonding in the corresponding [xHetTpCu]2(ߤ-N2H2) complexes results in marked 
changes in (NN) (1398 - 1419 cm-1) revealed through rRaman studies. Due to the closely matched N-H BDE’s of N2H2 and the 
neutral pyH0 cation radical, the aromatic N-heterocylic pendants may encourage partial H-atom transfer (HAT) from N2H2 to xHet 
through redox non-innocent H-bonding in [xHetTpCu]2(ߤ-N2H2). DFT studies reveal modest thermodynamic barriers for concerted 
transfer of both H-atoms of coordinated N2H2 to the xHet pendants to generate tautomeric [xHetHTpCu]2(ߤ-N2) complexes, identify-
ing concerted dual HAT as a thermodynamically favorable pathway for N2 / N2H2 interconversion. 

 

The nearly 200 MT/yr industrial production of ammonia 
(NH3) via the Haber-Bosch process provides a lifeline of bioa-
vailable nitrogen required to sustain life.1,2 Owing to the large 
volumes of H2 consumed by this process, contemporary NH3 
production ultimately relies on H2 feedstocks like fossil CH4 
and coal.2–4 Consequently, NH3 production, which inherits its 
sizable carbon footprint from H2 synthesis, emits 1-2% of the 
world’s CO2.

5 Additionally, the centralization of industrial 
NH3 synthesis around H2 feedstocks contributes to geopolitical 
disparities in affordable fertilizer access.6 Nascent efforts to 
utilize NH3 as a carbon-free energy vector similarly reckon 
with the unsustainability of NH3 mass production.1,7 Yet, NH3 
oxidation methods such as H2 cracking8 or electrocatalytic 
oxidation9–12 may be key in availing strategies to tackle the 
microscopic reverse: sustainable N2 reduction to NH3. The 
nearly thermoneutral N2 reduction and NH3 oxidation suggests 
proton-coupled electron transfer (PCET) as an attractive ap-
proach to minimize kinetic barriers between intermediates. 

N2 / NH3 interconversion involves a nexus of high energy 
nitrogenous intermediates that involve N-H bond forming and 
bond breaking reactions. When performed in 2 e- / 2 H+ steps, 
high-energy intermediates such as diazene (N2H2) and hydra-
zine (N2H4) pose thermodynamic challenges to the overall this 
interconversion (Figure 1).13 Efficient N2 reduction14–17 and 
NH3 oxidation,18–21 therefore, each share the need to lower 



 

 

Figure 2. Complexes exhibiting various metal-diazene co-
ordination modes. 
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Figure 3. Secondary coordination sphere H-bonding with 
N2, N2H2, and N2H4 ligands. 
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Figure 5. A series of complexes [xHetTpCu]2(ߤ-OH)2 (1) 
possessing pendant heterocycles for tunable second sphere H-
bonding interactions. 
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barriers through high-energy intermediates such as N2H2 and 
N2H4 when proceeding via 2 H+ / 2 e- steps. 

Here, N2H2 reigns as the highest energy intermediate, uphill 
in free energy from both N2 (+33 kcal/mol) and N2H4 (+26 
kcal/mol) (Figure 1).13 Therefore, stabilization of N2H2 inter-
mediates in N2 / NH3 interconversion systems can thermody-
namically level the species involved for the efficient intercon-
version of near-thermoneutral N2 and NH3. Known transition 
metal diazene complexes reveal a range of N2H2 coordination 
motifs (Figure 2).22–27 Since the lifetime of free diazene is so 
short in solution (aqueous N2H2 decay: k = 2.2 × 104 M-1s-1 at 
25 °C),28 isolable metal-diazene complexes enable the study of 
N2H2 and the effects of coordination at metal centers by a wid-
er variety of spectroscopic and other direct methods.22–54  

Recent exploration of dynamic secondary coordination 
sphere Lewis acid and H-bonding interactions include metal-

N2 (Figure 3a)55–57 and metal-N2H4 (Figure 3c)58 complexes 
that accent studies by Sellmann and coworkers which outline 
secondary coordination sphere H-bonding with N2H2 ligands 
(Figure 3b).31–42 Guided by a developing understanding of the 
nitrogenase FeMo-cofactor, Sellmann’s complexes modelled 
possible cluster sulfur-N2H2 H-bonding interactions.45 These 
complexes, typically hosting Ru or Fe centers, possess “bifur-
cated” H-bonding whereby the N2H2 ligand simultaneously 
engages in a short and long H-bonding interaction with proxi-
mal S-donors (Figure 3b). More recent structural evidence for 
FeV- and FeMo-cofactors, however, suggests reduced nitroge-
nous intermediates may engage in more dynamic H-bonding 
with proximal N-donor residues (Figure 4a).59,60 Considering 
N2H2 as a critical, high-energy intermediate in N2 reduction, 
we seek to illuminate the effects of H-bonding between aro-
matic N-heterocycles with coordinated N2H2 (Figure 4b). 

We previously reported a series of [xHetTpCu]2(ߤ-OH)2 com-
plexes 1 that offer tunable secondary coordination sphere H-
bonding interactions via pendant aromatic heterocyclic N-
donor arms (Figure 5).61 Employing this family of 
[xHetTpCu]2(ߤ-OH)2 species, we set out to synthesize and char-
acterize the corresponding [xHetTpCu]2(ߤ-N2H2) complexes 2a 
– 2d to examine the effect of H-bonding against the closely 
related [iPr2TpCu]2(ߤ-N2H2) (3) species25 that lacks H-bonding 
(Figure 2d).  

Although Cu(I) may appear to be an unusual metal center to 
examine coordinated N2H2, limited d - ߨ* backbonding from 

 

Figure 4. (a) Suggested H-bonding to reduced nitrogenous 
intermediates at Fe cluster in nitrogenases.59,60 (b) This work: 
H-bonding between aromatic N-donor heterocycles and trans-
N2H2.
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Figure 6. (a) Synthesis of [pyMeTpCu]2(ߤ–N2H2) (2c) from [pyMeTpCu]2(ߤ–OH)2 (1c). (b) X-ray structure of [pyMeTpCu]2(ߤ–N2H2) (2c) 
(isopropyl groups and most H-atoms omitted for clarity). 
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low energy Cu d-orbitals as well as the reluctance of d10 Cu(I) 
centers to undergo reduction by N2H2 enables affords the op-
portunity to examine the effect of H-bonding involving di-
azene N-H bonds on the N=N interaction. Additionally, dia-
magnetic Cu(I) complexes enable the study of dynamic intra-
molecular H-bonding via NMR spectroscopic techniques. 
Since diazene possesses weak N-H bonds (N-H BDFE = 27 
kcal/mol),13,62 there is the possibility of H-atom transfer (HAT) 
to the intramolecular aromatic N-heterocycle (xHet) involved 
in H-bonding in the targeted [xHetTpCu]2(ߤ-N2H2) complexes: 
the pyridinium radical pyH0 has a similar N-H BDFE (35 
kcal/mol).2,63 Thus, xHet H-bonding to N2H2 may involve re-
dox non-innocence that stems from the possibility of HAT. 
Reported herein is the first systematic study that probes the 
impact of intramolecular H-bonding with N2H2 using ligands 
featuring tunable pendant H-bond acceptors. 

 

Results and Discussion 

 

Synthesis of [pyMeTpCu]2(ߤ-N2H2) (2c) 

The synthesis of the dicopper(I) diazene complex 
[pyMeTpCu]2(ߤ-N2H2) (2c) mirrors the synthesis of 
[iPr2TpCu]2(ߤ-N2H2)

25 (3) prepared upon addition of hydrazine 
to [iPr2TpCu]2(ߤ-OH)2.

64 Addition of N2H4 to a dichloro-
methane solution of blue [pyMeTpCu]2(ߤ-OH)2 (1c) at low tem-
perature leads to a gradual color change to maroon 
[pyMeTpCu]2(ߤ-N2H2) (2c) over 4 h (Figure 6a). Subsequent 
crystallization of 2c from a supersaturated dichloromethane 
solution at -45 °C for 14 h yielded X-ray quality platelet crys-
tals in 74% isolated yield.  

The single crystal X-ray structure of [pyMeTpCu]2(ߤ-N2H2) 
(2c) reveals symmetrical H-bonding between the pendant pyr-
idine and diazene N-H bonds, resulting in a crystallographic 
inversion center through the diazene N-N bond that relates the 
two Cu centers (Figure 6b). The diazene N8-N8’ distance of 
1.248(10) Å and Cu1-N8 distance of 1.892(5) Å are closely 
related to the diazene N=N and Cu-N distances in an inde-
pendently prepared sample of [iPr2TpCu]2(ߤ-N2H2)

 (3) (N7-N7’ 
1.239(7), Cu1-N7 1.918(3) Å) that does not possess intramo-
lecular H-bonding (Figure S19). Further distortion of the tet-
rahedral copper coordination environment of 2c (߬4’ = 0.67) 
relative to 3 (߬4’ = 0.75),65 may result from the elongation of 
the pyrazole-copper interaction (N1-Cu: 2.271(5) Å) in 2c to 
accommodate py-diazene H-bonding.  

In [pyMeTpCu]2(ߤ-N2H2) (2c) the N atoms of the pendant 
pyridyl (N3) and bridging diazene (N8) are clearly within H-
bonding range (N3-(H)N8: 2.08 (8) Å). Allowing the diazene 
H-atom to refine after placement in an idealized position re-
sults in a nearly linear N3…H-N8 vector with an angle of 
168(8)°. These metrical parameters within the H-bonding in-
teractions are consistent with those reported in Fe(II) and 
Ru(II) diazene complexes (N…H: 2.201 – 3.858 Å) which pos-
sess bifurcated H-bonding between thiolate donors and a 
bridging trans-diazene (Figure 3b).36,42  

 

NMR Characterization of [pyMeTpCu]2(ߤ-N2H2) (2c) 

The low temperature 1H NMR spectrum of 2c in dichloro-
methane-d2 at -50 °C reveals a broad downfield resonance at 
15.7 ppm (Figure 7a). We assign this signal as the diazene 
HN=NH resonance (N-H) which appears in the range 12 – 18 
ppm in other diamagnetic diazene complexes.26,36 Prepared 
from copper(II) hydroxide 1c and 15N2H4, the 1H NMR spec-
trum of the 15N isotopologue [pyMeTpCu]2(15-ߤN2H2) (2c15N) 
exhibits a distinct doublet at N-H at 15.7 ppm with 1JN-H = 64 
Hz at -60 ºC (Figure 7a). At even lower temperature (-80 ºC), 
the 1H NMR spectrum of C2h-symmetric 2c15N reveals an 
AA’XX’ system due to coupling between magnetically in-
equivalent 1H and 15N nuclei. NMR lineshape simulation of 
this AA’XX’ system provides coupling constants 1JNH = -64 
Hz, 2JNH

 = 1 Hz, 1JNN = 10 Hz and 3JHH= 23 Hz (Figure S11). 
The vicinal 3JHH coupling is within the range of reported in 
previously characterized diazene complexes (3JHH = 21 – 30 
Hz).26,27,31 Moreover, other diamagnetic C2-symmetric 15N-
labeled diazene complexes such as [(B2Pz4Py)Fe](-N2H2)

27 
and [PhBPCH2Cy

3]Fe(OAc)}2(ߤ–N2H2)
26 also exhibit character-

istic AA’XX’ in 1H NMR spectra.  

Curiously, in our characterization of the known 315N isoto-
pomer in dichloromethane-d2 at -50 ºC, we observed a down-
field peak at 12.4 ppm that possesses an AA’XX’-like splitting 
pattern (Figure S8). While attempts to fully model the 
AA’XX’ pattern of this weak signal were unsuccessful, we 
observe strong 1JNH (-54 Hz) coupling characteristic of a N2H2 
ligand. The nearly 3.3 ppm downfield shift of N-H for 2c15N in 
comparison to 315N reflects deshielding of the N-H resonances 
via intramolecular H-bonding in 2c15N.  

Unexpectedly, 1H NMR spectra of 2c contain an additional 
minor downfield peak at 13.8 ppm that is also sensitive to 15N-
diazene isotopic substitution (Figure 7). The lineshape simula-
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To estimate the barrier, we computationally explored the 
species 2c’-perpendicular in which each pendant pyridine 
arm cannot engage in efficient H-bonding through the con-
straint of the Npy-Cu-Ndiazene-H dihedral angles to 90º (Figure 
S66). Optimized without symmetry constraints, this orienta-
tion prevents efficient py…diazene H-bonding. For instance, 
this model possesses a closest Npy

…H-Ndiazene
 distance of 3.77 

Å and unfavorable, bent Npy
…H-Ndiazene angles of 98.2º.  This 

conformation is uphill in free energy at 298 K from both 2c’ 
(+7.8 kcal/mol) and 2c’-inverted (+3.2 kcal/mol). The ener-
getic separation roughly corresponds to the barrier ΔG‡

228.15 = 
10.3 േ 0.3 kcal/mol observed in the interconversion of 2c and 
2c-inverted experimentally measured by variable temperature 
VT NMR spectroscopy. 

Thermal Loss of N2H2 from [Cu]2(-N2H2) Complexes  

 [pyMeTpCu]2(ߤ-N2H2) (2c) exhibits a subtle color change 
from maroon to light orange in dichloromethane solution at 
RT over the course of 2 h, whereas [iPr2TpCu]2(-N2H2) (3) 
changes from deep purple to light tan over approximately the 
same timeframe. After stirring at 0 °C for 10 min, dichloro-
methane solutions of 2c and 3 show detectable amounts of H2 
gas in the headspace as determined by mass spectrometry 
(Scheme 1; Figure S6). The detection of H2 is consistent with 
the decomposition of free N2H2 to N2 and H2 in solution.39,67 

Further supporting the loss of free diazene, dichloromethane 
solutions of 2c and 3 left to stand at 25 °C in the presence of 
excess diphenylacetylene generate cis and trans isomers of 

stilbene (Scheme 1). This represents a method of diazene de-
tection previously employed for 
[W(N2H2)(CO)2(NO)(PPh3)2][SO3CF3] that loses diazene in 
solution.22  

Loss of diazene from [pyMeTpCu]2(ߤ-N2H2) (2c) provides a 
dinuclear [pyMeTpCu]2 (4) as orange block crystals upon cool-
ing a toluene solution to -40 °C after standing at RT for 16 h 
(Figure 8a). The X-ray structure of 4 reveals a dinuclear coor-
dination preference of the pyMeTp scaffold in the absence of a 
donor ligand which features a nearly linear, two-coordinate 
CuI site (N1-Cu1-N13 175.4(8)°) possessing an additional 
long Cu-py interaction (Cu1-N3 2.371(16) Å) as well as a 
three-coordinate CuI site with a Cu-Cu separation of 3.466(2) 
Å.   

In contrast, mononuclear complexes result upon addition of 
the isonitrile CNAr2,6-Me2 (Ar2,6-Me2 = 2,6-Me2C6H3) or 
acetonitrile donors to 2c (Figure 8b,c). The crystal structure of 
5c reveals a four-coordinate Cu(I), distorted tetrahedral (߬4’ = 
0.7) center with a Cu1-C28 distance of 1.8305(19) Å.	 	 Im-
portantly,	 the py-donor arm does not coordinate to this cop-
per(I) center. Coordination of the pyridyl pendant to the cop-
per(I) center observed for acetonitrile adduct 7 (Cu1-N3: 
2.328(5) Å) gives rise to a five-coordinate geometry between 
square pyramidal and trigonal bipyramidal (߬5 = 0.5).68  More-
over, addition of two equiv. CNAr2,6-Me2 or NCMe to dinuclear 
4 results in rapid conversion to mononuclear 5c and 7. 

Systematic Study of H-bonding with N2H2 by IR Spec-
troscopy 

We employed IR spectroscopy to characterize H-bonding in 
[pyMeTpCu]2(ߤ-N2H2) (2c). A solid sample of 2c prepared in a 
KBr pellet exhibits no easily discernable ߥ(NH) signals for the 
diazene ligand near the reported value for [iPr2TpCu]2(ߤ-N2H2) 
(3) at ߥ(NH) =	3222 cm-1. As it is likely that H-bonding suffi-
ciently red-shifts (NH) into the aromatic and aliphatic CH) 
peaks that typically appear in the 3100 - 2750 cm-1 region, we 
prepared the isotopologue [pyMeTpCu]2(ߤ-N2D2) (2cD) from the 
reaction of copper(II) hydroxide 1c with N2D4•D2O.  The IR 
spectrum of [pyMeTpCu]2(ߤ-N2D2) (2cD) possesses a broad, yet 
easily discernable (ND) band at 2236 cm-1 from which a 
Hooke’s law estimate for [pyMeTpCu]2(ߤ-N2H2) predicts ߥ(NH) 

  

Figure 8. (a) X-ray structure and synthesis of [pyMeTpCu]2 with all pyrazole substituents omitted for clarity. (b) X-ray structure and 
synthesis of pyMeTpCu(CNAr2,6-Me2) (5c). (c) X-ray structure and synthesis of pyMeTpCu(NCMe) (7) (isopropyl substituents are omitted 
for clarity in 4, 5c, and 7). 
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Scheme 1. (a) Thermal N2H2-loss and decay to N2 and H2. (b) 
Thermal N2H2-loss in the presence of diphenylacetylene to 
give a mixture of cis/trans-stilbenes. 
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per dinitrogen complexes [xHetHTpCu]2(ߤ-N2) (9a – 9d). In 
each case, the aromatic N-heterocycles become pyridinium-
type radicals pyH0 (Figure 14a).  We note that the related di-
copper dinitrogen complex [iPr2TpCu]2(-N2) has been struc-
turally and spectroscopically characterized with an N-N dis-
tance of 1.111(6) Å and (NN) = 2130 cm-1 pointing to a gen-
tly reduced N2 ligand.73 

We modeled these redox tautomers 9a’ – 9d’ by DFT as tri-
plet species because in the prototypical case of 9c’ (Figure 
14b), the triplet configuration is 7 kcal/mol more stable than 
the unrestricted open-shell singlet 9c’-singlet (Table S3). Alt-
hough these pyridinium radical/dinitrogen redox tautomers 
[xHetHTpCu]2(ߤ-N2) (9a’ - 9d’) are calculated to be 6.4 - 20.2 
kcal/mol higher in free energy at 298 K than the corresponding 
H-bonded diazene complexes [xHetTpCu]2(ߤ-N2H2) (2a’ - 2d’), 
there is a clear trend in their relative stabilities (Figure 14c). 
As the pendant aromatic N-heterocycle becomes more electron 
deficient, the redox tautomer 9 resulting from dual HAT be-
comes more thermodynamically accessible. Trends in free 
energy differences observed between redox tautomers 2’ and 
9’ appear in calculated free energies for dual HAT from free 
N2H2 to a pair of free aromatic N-heterocycles (Figure 14d). 
Free energies for dual HAT range from -6.3 kcal/mol for the 
most electron-poor heterocycle (10a) to +13.9 kcal/mol for the 
most electron-rich heterocycle (10d; DMAP). Indeed, the res-
onance Raman spectra of 2a – 2d support the contribution of 
partial redox tautomerization to the electronic structure. All of 
the H-bonded N2H2 ligands show an upshifted N=N) fre-
quency relative to that in 3, indicative of increased N=N mul-
tiple bonding character. Moreover, the frequency increases as 
the heterocycle becomes more electron-deficient, consistent 
with greater contribution of the redox tautomer’s greater con-
tribution as HAT becomes more favorable. 

The resulting N2 ligand in redox tautomers 9 also becomes 
modified through interaction with the N-H moiety of the pyri-
dinium-type radicals xHetH0 that can serve as H-atom donors.  
In [xHetHTpCu]2(ߤ-N2) models 9a’ -9d’, the N-N bond and 
xHet(N)…H bond distances increase with increasing electron 
richness of the pendant aromatic N-heterocycle. Tautomer 9a’ 
with the most electron-poor N-heterocycle possesses an only 
mildly reduced N2 ligand (d(NN) = 1.140 Å; NN) = 2060 
cm-1) with metric and spectroscopic parameters for the bound 
N2 ligand quite similar to those experimentally determined for  
[iPr2TpCu]2(-N2).

73 On the other hand, electronic communica-
tion between the pendant N(H)-heterocycle radicals and the N2 
ligand is clearly evident in DMAP based 9d’ that possesses the 
most potent H-atom donor. This results in a significantly more 
reduced N2 ligand (d(N=N) = 1.151 Å; NN) = 1924 cm-1). 
The NHet-H

…N2
...H-NHet interaction also results in a transfer of 

spin density from the pyridinium-type radical to the N2 ligand 
that increases in these triplet species from 9a’ (8%) to 9d’ 
(32% ) as the strength of the intramolecular H-atom donor 
increases. While we acknowledge the potential limitations of 
DFT in the computational analysis of redox tautomers 
[xHetHTpCu]2(ߤ-N2) (9a’ - 9d’) relative to the respective ground 
state structures [xHetTpCu]2(ߤ-N2H2) (2a’ - 2d’), the size and 
complexity of these models render more sophisticated, multi-
configurational calculation methods beyond the reach of this 
study.  Nonetheless, the thermodynamic matching of diazene 
and pyridinium radical N-H bond strengths clearly supports 
the thermodynamic possibility of dual HAT along the H-

bonding vectors in the experimentally characterized diazene 
complexes [xHetTpCu]2(ߤ-N2H2) (2a - 2d). 

 

Conclusions 

We report a unique family of [xHetTpCu]2(ߤ-N2H2) (2a – 2d) 
complexes that feature tunable intramolecular H-bonding be-
tween modular xHet pendants and N2H2. Unambiguously re-
vealed by X-ray crystallography and IR spectroscopy of 
[pyTpCu]2(ߤ-N2H2) (2c), variable temperature 1H NMR studies 
indicate that the pendant aromatic N-heterocycles provide a 
dynamic H-bonding environment to the bridging trans-N2H2 
ligand. This H-bonding introduces profound changes in elec-
tronic structure mediated through the xHetN…HN=NH…NHetx 
linkage.  

Interaction along this linkage leads to a marked increase in 
(NN) in [xHetTpCu]2(-N2H2) complexes (1398 - 1419 cm-1) 
relative to electronically similar [iPr2TpCu]2(-N2H2) with 
v(NN) at 1353 cm-1. This is an especially significant differ-
ence since the related isonitrile complexes xHetTpCu(CNAr2,6-

Me2) and iPr2TpCu(CNAr2,6-Me2) exhibit nearly indistinguishable 
isonitrile stretching frequencies (CN) of 2113-2117 and 2109 
cm-1, respectively. These closely spaced stretching frequencies 
indicate that the d10 copper(I) fragments xHetTpCuI and 
iPr2TpCuI possess nearly identical -backbonding ability. 
Nonetheless, H-bonding of the pendant aromatic N-
heterocycles xHet with diazene turns on an interaction that 
leads to increased NN bond order, one that is maximized by 
the most electron-poor, weakest H-bond acceptor.  

We rationalize this unusual behavior by considering the H-
atom accepting ability of these pendant aromatic N-
heterocycles which increases as they become more electron-
poor. Dual, symmetric transfer of H-atoms from weak diazene 
N-H bonds (average N-H BDFE = 27 kcal/mol) to the aro-
matic N-heterocycle is thermodynamically matched as the 
pyH0 N-H bond is only marginally stronger (BDFE = 35 
kcal/mol) Accordingly, dual HAT from the diazene ligand 
along the H-bonding pathway to the xHet pendants in 
[xHetTpCu]2(-N2H2) (2a’ - 2d’) is a redox tautomerization that 
results in the formation of corresponding xHetH radical / dini-
trogen complexes [xHetHTpCu]2(-N2) (9a’ - 9d’). Indeed, the 
thermodynamic accessibility of xHetH radical / dinitrogen 
complexes 9 (Figure 14c) scales directly with the H-atom ac-
cepting ability of the xHet pendant that is favored by electron-
withdrawing substitutents (Figure 14d).  

Since many molecular dinitrogen reduction systems operate 
with strong reductants and pyridinium-derived acids (pyH+), 
transient formation of pyridinium radicals pyH0 has been con-
sidered as a mechanism for stepwise HAT to reactive metal-
nitrogen intermediates.2,74 For instance, with its reduction po-
tential (-1.77 V vs. Fc+/Fc)75 and pKa (12.53)76 in MeCN, the 
Bordwell equation calculates a N-H BDFE of 35.8 kcal/mol 
for pyH0.77 Many key intermediates in dinitrogen reduction 
catalytic cycles by discrete metal complexes feature weak N-H 
bonds such as [M]-N=NH and [M]-N=NH2 calculated at -42.7 
and -39.4 kcal/mol, respectively, in the Schrock-type reduction 
[ArN3N]Mo system.2 We note that protonated metallocenes 
such as [Cp*Co(4-CMe5H)]+ can also serve as a H-atom do-
nors due to their weak C-H bond (BDFE = 29 - 30 
kcal/mol).63,78 



 

These observations underscore the significantly lower ther-
modynamic barriers for simultaneous HAT involving two H-
atoms to N2 to give N2H2 as compared to stepwise HAT path-
ways.  For instance, single HAT to free N2 from pyH0 must 
overcome a thermodynamic free energy barrier of 29.3 
kcal/mol to give unstable HN=N• that can readily accept an 
additional H-atom from pyH0 in a subsequent step that is 
downhill by 27.3 kcal/mol in free energy. If both HAT steps 
were to occur simultaneously, however, this represents only a 
modest free energy barrier of +1.6 kcal/mol at this level of 
theory (Figure 15). While choice of the aromatic N-
heterocycle xHet tunes these energies, stepwise HAT to N2 
intrinsically possesses a higher barrier than simultaneous, dual 
HAT to N2. 

The series of compounds [xHetTpCu]2(-N2H2) demonstrate 
that H-bonding modifies diazene in tunable ways within the 
secondary coordination sphere of well defined, symmetrical 
metal complexes. Beyond H-bonding, xHet pendant groups 
that interact with bound diazene may further modify it through 
nascent H-atom transfer to these aromatic N-heterocyclic pen-
dants. Symmetric organization of diazene with functionalities 
that serve both as good H-bond and H-atom acceptors estab-
lishes H-bonding pathways that may be used for H-atom trans-
fer. Performed simultaneously, dual HAT to free N2 to form 
N2H2 possesses a far lower thermodynamic barrier when car-
ried out in a stepwise fashion. While metal centers undoubted-
ly stabilize high energy HN=N• species via [M]-N=NH inter-
mediates, symmetric metal complex designs that enable dual 
HAT to [M]-N2-[M] intermediates could possess intrinsically 
lower thermodynamic and kinetic barriers to form [M]-N2H2-
[M] intermediates in N2 reduction catalysis. 

Moreover, metals that only gently reduce N2 upon binding 
can facilitate N2 reduction via H-atom transfer pathways. For 

instance, Singh and colleagues have recently reported that 
electrodeposited Cu films catalyze N2 reduction to NH3 in 
water at pH = 13.5 under ambient conditions with a maximum 
current density that occurs at an applied potential of -0.5 V vs. 
RHE.79 Thus, discrete copper complexes that outline features 
relevant to N2 / N2H2 interconversion may possess relevance to 
heterogeneous systems for electrocatalytic ammonia produc-
tion under mild conditions.14 
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