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The past decade has seen an increasing interest in designing sophisticated density functional ap-
proximations (DFAs) by integrating the power of machine learning (ML) techniques. However, appli-
cation of the ML-based DFAs is often confined to simple model systems. In this work, we construct
an ML correction to the widely used Perdew-Burke-Ernzerhof (PBE) functional by establishing a
semilocal mapping from the electron density and reduced gradient to the exchange-correlation energy
density. The resulting ML-corrected PBE is immediately applicable to any real molecule, and yields
significantly improved heats of formation while preserving the accuracy for other thermochemical
and kinetic properties. This work highlights the prospect of combining the power of data-driven
ML methods with physics-inspired derivations for reaching the heaven of chemical accuracy.

I. INTRODUCTION

Density functional theory (DFT) has achieved enor-
mous success in physics, chemistry, biology and mate-
rial science as an efficient tool to study electronic struc-
tures and reactions in molecules, condensed phases and
extended many-body systems since 1990s [1]. The suc-
cess goes to the modern paradigm of DFT which consists
of the Hohenberg-Kohn (HK) theorem [2] and the Kohn-
Sham (KS) formalism [3], with the former offering a one-
to-one mapping between ground-state electron density
and external potential and the later providing a practical
approach to finding the ground-state energy by adopting
certain approximation for the exchange-correlation (XC)
functional.

A great variety of density functional approximations
(DFAs) have been proposed. Diversified strategies have
been employed, such as the analytic analysis on simple
physical models, the explicit imposition of exact physical
constraints or conditions, the adiabatic connection [4] be-
tween the reference noninteracting system and real inter-
acting system, and the use of semiempirical or empirical
parameters whose values are determined by optimizing
the numerical accuracy of density functional calculations
[5–12]. Despite the progress made, the chemical accuracy
has not been achieved universally within the framework
of KS-DFT. This is partly because the mathematical rep-
resentation of the KS mapping, ρ(r) 7→ vXC(r), with ρ(r)
and vXC(r) being the electron density and XC potential,
is not sophisticated enough.

One way to attain more expressive representation of
the KS mapping is to introduce more intricate density de-
scriptors. Following this idea, DFAs invoking more com-
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plex density related quantities have been constructed,
which belong to higher rungs of the “Jocab’s ladder”
[13]. It has been demonstrated that the growing com-
plexity of functional form indeed leads to enhanced ac-
curacy [14]. However, practical application of DFT still
faces challenges even with the most sophisticated manu-
ally designed DFAs.

An alternative approach to enhance the representa-
tion of the KS mapping has become increasingly pop-
ular, which is to exploit the machine learning (ML) tech-
niques [15–31]. As early as in 1996, Tozer et al. [32]
have used an artificial neural network (NN) to fit the
Zhao–Morrison–Parr XC potential [33]. This pioneering
work demonstrated that it is entirely possible to repre-
sent the KS mapping by means of ML models. Recently,
Zhou et al. have employed a deep learning technique –
the convolutional NN – to yield in principle the exact
KS mapping [34]. Nagai et al. have constructed an NN-
based mapping from a series of density descriptors to the
XC energy density εXC(r), which results in a family of
NN-based DFAs [35].

Aside from the KS mapping, other ML-based mapping
schemes have also been proposed to enhance the predic-
tive power of DFT [36–38]. For instance, NN models have
been used to optimize the values of semiempirical param-
eters [39, 40] in DFAs such as B3LYP and LC-BLYP. Sny-
der et al. have adopted an ML approach to construct the
mapping ρ(r) 7→ T , with T being the kinetic energy func-
tional, for one-dimensional (1D) noninteracting models
[41]. Brockherde et al. have attempted to bypass the KS
equations by directly learning the density-potential and
energy-density maps with ML [42]. Dick and Fernandez-
Serra [43, 44] and Chen et al. [45] have independently
constructed an NN-based mapping from the generalized
KS single-electron reduced density matrix to an energy
correction term.

Despite the above exciting progress, the application
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of ML-based KS mapping has been confined to simple
model systems or specific types of molecules. Moreover,
to achieve a satisfactory accuracy, in some ML-based
mapping schemes, sophisticated density descriptors cor-
responding to higher rungs of the “Jacob’s ladder” had to
be invoked [35]. The goal of this work is to construct an
accurate and practical ML-corrected KS mapping which
is potentially useful for generic systems. In particular, we
restrict the choice of density descriptors to electron den-
sity and its first derivatives, and thus the resulting KS
mapping is a generalized gradient approximation (GGA)
for the XC functional. A GGA-type functional could of-
fer a simple interpretation of the KS mapping [46], and
meanwhile allows for an efficient treatment of extensive
systems such as solids. Furthermore, a semilocal map-
ping also has the advantages that it is intrinsically uni-
versal and transferable, automatically preserves the sys-
tem’s spatial symmetry, and does not require the use of
any auxiliary atomic basis functions.

Regarding the predictive power of the ML-corrected
mapping, we shall focus on thermochemical properties
for which conventional GGA functionals yield large er-
rors. For such properties, the functional-driven error usu-
ally dominates over density-driven error [47]. Therefore,
for numerical convenience, in this work an ML model
which presents a correction to a parent GGA functional
is constructed in a post-self-consistent-field (post-SCF)
manner.

The remainder of this paper is organized as follows.
Section II provides a detailed account of our construct of
the ML-corrected GGA functional as well as the datasets
adopted to determine and assess the parameters involved
in the ML model. In Sec. III we demonstrate the numer-
ical performance of the constructed ML-corrected func-
tional and present extensive discussion. Concluding re-
marks are finally given in Sec. IV.

II. METHODOLOGY

A. ML-PBE: An ML-corrected GGA functional

We choose the widely used Perdew–Burke–Ernzerhof
(PBE) functional [48] as the parent DFA. Although the
PBE functional yields much improved thermochemical
properties than the local density approximation (LDA),
its overall accuracy is still far from satisfactory. This is
partly because, while the analytic form of the PBE func-
tional satisfies a number of exact physical constraints, it
is not sophisticated enough to account for all the subtle
features of electron density as well as their influence on
the XC energy.

Instead of constructing a more superior GGA func-
tional completely from scratch, we consider a correction
to the PBE energy functional, EPBE

XC , and an ML model is
adopted to represent the energy correction, ∆EML

XC . The
ML-corrected PBE functional, abbreviated as ML-PBE

hereafter, assumes the following form:

EML−PBE
XC = EPBE

XC + ∆EML
XC

=

∫
dr ρ

[
εPBE
XC (rs, ζ, s) + ∆εML

XC

]
=

∫
dr ρ εunifX (ρ)FPBE

XC (rs, ζ, s)F
ML. (1)

Here, εunifX is the exchange energy density of a uniform
electron gas, and εPBE

XC and ∆εML
XC are the XC energy den-

sities corresponding to the PBE functional and the ML
correction, respectively. Regarding the involving density-
related quantities, ζ = (ρ↑ − ρ↓)/ρ is the relative spin
polarization, and s = |∇ρ|/(2kF ρ) is the reduced den-
sity gradient, with kF = (3π2ρ)1/3 and rs = (4πρ/3)−1/3

being the Fermi wavevector and Wigner–Seitz radius, re-
spectively [48]. Upon the last equality of Eq. (1), the
ML-PBE functional is recast into a compact form by re-
ferring to the LDA exchange and defining two enhance-
ment factors, FPBE

XC and FML, where FPBE
XC enhances the

LDA exchange to the PBE functional, and FML enhances
the PBE to the ML-corrected PBE.

The challenge then is to construct a universal and ac-
curate semilocal mapping, {ρ↑(r), ρ↓(r), s↑(r), s↓(r)} 7→
∆εML

XC (r), with sσ = |∇ρσ|/[2(3π2)1/3ρ
4/3
σ ] (σ =↑, ↓) be-

ing the spin-specific reduced density gradient. With the
inclusion of an ML correction, the exact physical con-
straints satisfied by the parent DFA are likely to be com-
promised. This presents another challenge for the devel-
opment of ML-corrected DFA, which is however beyond
the scope of the present paper.

Figure 1 illustrates the workflow for establishing the
ML-based KS mapping. To construct a semilocal map-
ping, an individual point in the r-space of any chemical
species is taken as an independent sample. Each sample
is associated with a data entry, with the density descrip-
tors {ρσ(r), sσ(r)} representing the features of the sam-
ple and ∆εML

XC (r) as the label. The key is to acquire a
sufficient amount of pointwise data to enable supervised
learning of the ML model. To this end, highly accurate
reference data ∆εrefXC(r) are needed to guide the learning
process, which aims to minimizing the loss function,

Ω =
1

M

M∑
m=1

∫
dr
∣∣∆εML

XC,m(r)−∆εrefXC,m(r)
∣∣ , (2)

where M is the number of species in the training dataset.
Usually, it is the energy difference between two species

that can be obtained accurately from experiment or from
high-level quantum chemistry calculation. However, to
enable the training of a semilocal ML model, the refer-
ence value for the energy of each species, Eref

m , is required.
Moreover, the discrepancy between the energy calculated
by the PBE functional and the corresponding reference
value, ∆EXC,m = Eref

tot,m − EPBE
tot,m, is to be decomposed

into pointwise errors, which are then assigned to each
individual r-point. In the present work, the decomposi-
tion of error is done by presuming that the correction to
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FIG. 1. Schematic diagram illustrating the workflow for constructing the ML-corrected PBE functional. Details are elaborated
in the main text. Here, Ω0 is a preset threshold for the minimization of loss function Ω.

energy density is proportional to the XC energy density
itself, i.e.,

∆εrefXC,m(r) =
εDFA
XC,m(r)

EDFA
XC,m

∆EXC,m. (3)

In practice, the r-space integral of a function f(r) is often
evaluated via a summation over discretized grids, i.e.,∫
dr f(r) 7→

∑
i f(ri)W (ri), with W (ri) being the weight

of the ri grid. Equation (3) is thus rewritten as

∆εrefXC,m(ri) =
εDFA
XC,m(ri)W (ri)∑

i ρm(ri)εDFA
XC,m(ri)W (ri)

∆EXC,m. (4)

In principle, the DFA in Eqs. (3) and (4) can be the ML-
PBE functional so as to form a self-closed training pro-
cess; while in practice, the DFA is chosen as the origi-
nal PBE, which is found to yield a more accurate ML
model; see the Supporting Information (SI) for more de-
tails. Since each ri grid point presents an independent
sample, a few chemical species are already capable of pro-
viding an ample amount of samples, which suffice to train
a sophisticated ML model.

B. Datasets and ML model

The dataset used in this work consists of two parts:
a training set for optimizing the ML model, and a test
set for evaluating the performance of the ML-corrected
functional. The training set contains 166 energetic data,
including 148 standard heats of formation (HOF) taken
from the G2/97 set [49] (denoted as the G2-HOF set here-
after) and 18 total energies of neutral atoms of the first
three periods (from H to Ar). Note that the HOF (or the
atomization energy) of a molecular species involves the
calculation of the molecular energy as well as the energies
of all the constituent atoms. For numerical convenience,
the error associated with an HOF data is assigned com-
pletely to the molecular species, i.e., ∆EXC,m in Eqs. (3)

and (4), while the PBE energies of neutral atoms are
taken as constant parameters in the training stage.

The test set contains 75 HOF from the G3-3 subset
of the G3/99 set [50] (denoted as the G3-HOF set here-
after), and 88 ionization potentials (IPs) and 58 elec-
tron affinities (EAs) from the G2/97 set [51] (denoted
as the G2-IP and G2-EA sets). The G3-HOF set con-
sists mainly of organic molecules containing 2–10 carbon
atoms as well as covalent compounds made of elements
from the first three rows of periodic table.

We also assess the predictive power of ML-PBE beyond
thermochemical properties by examining energies for re-
action kinetics. Specifically, the test set also includes 38
barrier heights for hydrogen-transfer reactions from the
HTBH38/08 set [52–54], and 38 barrier heights for non-
hydrogen-transfer reactions from the NHTBH38/08 set
[52–54] (denoted as the HTBH38 and NHTBH38 sets).
There are around 2.4 million r-points in the training set,
and around 6 million in the test set.

In the evaluation stage, the total energies of the species
in the test set (including atoms, molecules, ions and tran-
sition state complexes) are calculated with the ML-PBE
functional. The only exception is the total atomic ener-
gies for the assessment of the G3-HOF set. To be con-
sistent with the training process, the PBE energies of
neutral atoms are taken as constant parameters for the
computation of HOF.

The density functional calculations are performed
by the Gaussian 16 suite of program [55]. For each
species, the atom-centered r-points [56, 57] are gener-
ated by an in-house built quantum chemistry software
package QM4D [58], with which the density descrip-
tors {ρσ(r), sσ(r)} on these r-points are then evaluated.
The Gaussian basis set 6-311++G(3df, 3pd) is employed
throughout this work unless specified. Computational
details are provided in the SI.

A number of ML models were tested for constructing
the semilocal KS mapping of our interest. These include
some well-established deep learning techniques such as
the convolutional NN. Among all the candidates, the XG-
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FIG. 2. Performance of ML-PBE in comparison with the PBE, SCAN and B3LYP functionals. The number over each bar is
the MAE of the corresponding dataset yielded by a particular DFA; see Sec. II B for the details about the datasets. The MAEs
of the G2-IP and G2-EA sets by SCAN are evaluated via calculations done with the 6-311++G(3df, 3pd) basis set, while the
other MAEs associated with SCAN are taken from Refs. 59 and 60. The MAEs of the HTBH38/08 and NHTBH38/08 sets by
B3LYP are evaluated via calculations done with the MG3S basis set [61], while the other MAEs associated with B3LYP are
extracted from Refs. 53 and 62.

Boost [63], which implements the gradient boosting deci-
sion tree (GBDT) algorithm [64, 65], excels in the overall
performance, and is finally adopted to construct the ML
mapping. A generic function F (x) learned by the GBDT
has the form of

F (x) =

T∑
t=1

ft(x), (5)

where the basis function ft(x) is a simple decision tree.
The model is trained additively, i.e., at each epoch a
new basis function ft(x) is added to the existing model,
followed by optimization of the involving parameters.

Owing to its prevailing advantages in numerical effi-
ciency and robustness, XGBoost has gained increasing
interests from practitioners in various fields of chemistry
and materials science, and is particularly favorable for
our task. In contrast, a sophisticated NN model with a
large number of hidden neurons, according to our prac-
tical experience, is not compatible with a feature vector
of only four dimensions in our problem.

III. RESULTS AND DISCUSSION

To assess the performance of the ML-PBE functional,
the mean absolute errors (MAEs) for the various datasets
yielded by ML-PBE are exhibited in Fig. 2. For the
purpose of comparison, the MAEs of the same datasets

yielded by the original PBE functional, the strongly con-
strained and appropriately normed (SCAN) functional
[66] which is a meta-GGA on the third rung of the Jacob’s
ladder, and the Becke-3-Lee-Yang-Parr (B3LYP) [67–69]
hybrid functional which belongs to the fourth rung of the
Jacob’s ladder, are also displayed.

As shown clearly in Fig. 2, the original PBE yields ap-
preciable errors for the HOF, with MAEs as large as 17.1
and 33.7 kcal/mol for the G2-HOF and G3-HOF sets,
respectively. By invoking the ML correction to XC en-
ergy density, ∆εML

XC (r), the resulting ML-PBE achieves
a much improved accuracy for the calculation of HOF.
Specifically, the MAEs are substantially reduced to 4.9
and 9.3 kcal/mol for the G2-HOF and G3-HOF sets, re-
spectively. Such errors are already comparable to those
yielded by the meta-GGA SCAN. With both PBE and
ML-PBE, the MAE for the G3-HOF set is about twice
that for the G2-HOF set, because of the larger sizes of
molecules in the former dataset. Such error accumulation
over the r-space will be scrutinized below.

The ML correction does not improve the prediction of
IP and EA, as the MAE yielded by ML-PBE is almost
the same as that by the original PBE; see Fig. 2. There
are two possible reasons. First, the original PBE yields
much larger errors for HOF than for IP and EA, and thus
the ML model will focus mainly on the former errors to
achieve an overall balanced performance across various
energetic properties. Second, the training dataset only
involves neutral species, and thus the ML model might
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FIG. 3. Histogram of pointwise errors in the XC energy den-
sity for PBE and ML-PBE, ∆ε̃PBE

XC (r) and ∆ε̃ML−PBE
XC (r), as-

sessed for the (a) G2-HOF and (b) G3-HOF sets. The hori-
zontal position of a bar represents the magnitude of pointwise
error in unit of kcal/mol, while the height of a bar stands for
the number of r-points possessing that particular amount of
error. The vertical axis is in a logarithmic scale.

not gain enough knowledge about the charged species.
We have attempted to add several ionic species to the
training set, but there was not much change in the MAEs.
This confirms that the training of the ML model is pre-
dominantly driven by the errors of HOF. Nevertheless,
both PBE and ML-PBE outperform SCAN in the pre-
diction of IP and EA.

We also extend the assessment of ML-PBE to kinetic
properties. As demonstrated in Fig. 2, the ML correc-
tion leads to a marginal improvement in the prediction
of reaction energy barriers. Just like the situation of
IP and EA, since the training dataset consists mainly
of molecular species at their equilibrium geometries, the
ML model does not learn much about the transition-state
species. Moreover, the discrepancy of calculated reac-
tion barriers from the reference values is closely related
to the delocalization error of a semilocal DFA, which has
been analyzed and understood from the perspective of
fractional charges [70–74]. To correct the delocalization
error, exact physical constraints such as the Perdew-Parr-
Levy-Balduz condition [75] needs to be imposed explicitly
[72, 74, 76, 77], which is however beyond the scope of this
work. The ML-PBE produces slightly larger MAEs than
SCAN for the HTBH38 and NHTBH38 sets.

From the above analysis, it is reasonable to conclude
that the ML-PBE generally outperforms the original
PBE in the prediction of thermochemical and kinetic
properties of molecules, and achieves almost the same
level of accuracy as the meta-GGA SCAN. This justifies
our proposed strategy of constructing a sophisticated KS
mapping by using relatively simple density descriptors.
On the other hand, the ML-PBE underperforms the hy-
brid B3LYP functional for all the energetic properties
examined in Fig. 2. This accentuates the limitation of
a semilocal functional form, as well as the necessity of
building nonlocal ingredients into the ML correction to
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FIG. 4. The error in the XC energy (∆EXC) versus the num-
ber of non-hydrogen atoms (NA) for the molecular species in
the G3-HOF set. The lines are linear regressions of the errors,
with the slopes being 9.3 and 2.6 kcal/mol per atom for PBE
and ML-PBE, respectively.

XC energy for improving further its predictive power.

We proceed to examine whether the distribution of
pointwise errors in the XC energy density is improved by
the ML correction. Figure 3(a) and (b) depict the his-
togram of pointwise errors, ∆ε̃PBE

XC (r) = εrefXC(r)−εPBE
XC (r)

and ∆ε̃ML−PBE
XC (r) = εrefXC(r) − εML−PBE

XC (r), assessed for
the G2-HOF training set and the G3-HOF test set, re-
spectively. Clearly, the original PBE gives rise to a rather
biased error distribution with a long tail of positive val-
ues, while with the ML correction the pointwise errors
become more centralized and balanced. It is noticed that
the calculation result on the G3-HOF set by PBE is so
biased that the deviation from the reference values are
all positive. Nevertheless, ML-PBE counterbalances the
biased positive distribution of errors by a relatively larger
amount of negative deviations, leading to a drastic drop
of MAE. The improvement is overall consistent for both
the training and test sets, though the error distribution
is somewhat broader for the latter.

As mentioned earlier, a semilocal KS mapping in-
evitably leads to the accumulation of pointwise errors,
i.e., the error in the total XC energy ∆EXC increases lin-
early with the size of the system. As shown in Fig. 4, with
the original PBE, ∆EXC of a molecular species grows
rapidly with the number of constituent atoms NA, and
a linear regression indicates a slope of 9.3 kcal/mol per
atom. Although the linear increase of ∆EXC still persists
after adopting the ML correction, the rate of growth is
greatly suppressed, as verified by a significantly reduced
slope of 2.6 kcal/mol per atom. Such a reduction in the
slope is consistent with the drop of MAE associated with
the G3-HOF set; cf. Fig. 2.

An intriguing question is: how large is the ML correc-
tion as compared to the XC energy density of PBE? To
answer this question, we examine the magnitude of the
enhancement factor corresponding to the ML correction,
FML = 1 + ∆εML

XC/ε
PBE
XC . Figure 5 exhibits the distri-

bution of FML for all the r-points associated with the
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FIG. 5. A histogram showing the distribution of the pointwise
enhancement factor FML for all the species in the training
set. The height of a bar represents the number of r-points
assuming a particular value of FML.

species in the training set. It is found that a predomi-
nant majority of FML falls within a tiny interval between
0.997 and 1.0, indicating that the ML correction amounts
to only about 0.3% of the magnitude of εPBE

XC . Therefore,
the ML correction scheme proposed in this work is in
fact rather conservative, and thus the physical consider-
ations behind the original design of the PBE functional
are largely preserved in the ML-PBE.

Nagai and co-workers have also constructed ML-based
GGA and meta-GGA functionals [35]. Different from our
proposed scheme of finding a correction to an existing
DFA, they attempted to establish NN-based DFAs com-
pletely from scratch, and thus the enhancement factor of
a resulting NN-DFA deviates appreciably from those of
the existing DFAs in certain regions of density descrip-
tors; cf. Fig. 5 in Ref. 35. In contrast, we always have
FML−PBE
XC ' FPBE

XC because of the small magnitudes of
the ML correction.

In terms of numerical performance, the NN-GGA ob-
tained by Nagai and co-workers yields an MAE of 11.0
kcal/mol for the G2-HOF set and an MAE of 9.6 kcal/mol
for the HTBH38 and NHTBH38 sets combined [35];
while the corresponding MAEs are 4.9 kcal/mol and 8.0
kcal/mol respectively by our proposed ML-PBE. In fact,
the ML-PBE achieves an MAE of only 9.3 kcal/mol for
the G3-HOF set, which consists of molecules considerably
larger than those in the G2-HOF set. Therefore, the ML-
PBE is expected to outperform the NN-GGA obtained in
Ref. 35 for the prediction of thermochemical energies. Of
course, it is worth pointing out that much improved ac-
curacy has been achieved by Nagai and co-workers, with
the use of more sophisticated density descriptors [35].

IV. CONCLUDING REMARKS

To summarize, in this work we construct an ML cor-
rection to the PBE functional by establishing a semilocal

mapping {ρσ(r), sσ(r)} 7→ ∆εML
XC (r). The resulting GGA

functional, ML-PBE, yields substantially improved HOF
of molecular species than the original PBE, and its overall
performance on the prediction of molecular thermochem-
ical and kinetic properties is comparable to the widely
used meta-GGA SCAN. The encouraging performance
of ML-PBE confirms that integrating the power of data-
driven machine learning with physics-inspired derivation
is a promising approach towards the heaven of chemical
accuracy.

In principle, the ML-PBE functional constructed in
this work is immediately applicable to general electronic
systems including molecules, clusters, and bulk solids.
However, limited by the computational resources and
codes at our disposal, numerical calculations were re-
stricted to simple molecules. Further optimization and
more extensive assessment of the ML-corrected DFA are
certainly desired.

There is still much room for improvement regarding
the design of the ML-based KS mapping. First, the con-
struct of a semilocal mapping requires the error in the
total energy of a molecule be decomposed into point-
wise contributions. The present scheme relies on the pre-
sumption of Eq. (3). A more rational way is perhaps to
take the XC energy density of a highly accurate hyper-
GGA as εrefXC(r). Second, the ML model obtained by this
work merely provides a post-SCF correction to the en-
ergy, while the electron density is left uncorrected. In
principle, the XC potential vXC(r) can be evaluated by
exploiting the analytic gradients of the ML model, which
should enable a self-consistent correction to both the en-
ergy and the electron density. This is to be pursued in
our future work.

Finally, to preserve the computational efficiency of a
GGA functional, the present work focuses only on a
semilocal KS mapping. However, it has been demon-
strated that nonlocal density descriptors may be crucial
for addressing long-range electron correlation effects such
as the dispersive interaction [34, 35]. This thus raises an-
other challenge: incorporating the nonlocal dependence
effectively and efficiently into an ML model. Work along
this direction is underway.
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