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Computational software workflows are emerging as all-in-one solutions to speed up the discovery of new materials.
Many computational approaches require the generation of realistic structural models for property prediction and can-
didate screening. However, molecular and supramolecular materials represent classes of materials with many potential
applications for which there is no go-to database of existing structures or general protocol for generating structures.
Here, we report a new version of the supramolecular toolkit, stk, an open-source, extendable and modular Python
framework for general structure generation of (supra)molecular structures. Our construction approach works on ar-
bitrary building blocks and topologies and minimises the input required from the user, making stk user-friendly and
applicable to many material classes. This version of stk includes metal-containing structures and rotaxanes as well
as general implementation and interface improvements. Additionally, this version includes built-in tools for exploring
chemical space with an evolutionary algorithm and tools for database generation and visualisation. The latest version
of stk is freely available at github.com/lukasturcani/stk.

I. INTRODUCTION

Computational modelling seeks to accelerate functional
material discovery and support experimental workflows by of-
fering insights into chemical processes and structures that are
not achievable through experiment. With advances in hard-
ware and software, it is now possible to couple computa-
tional and experimental exploration of the vast array of po-
tential materials and their properties at a much lower time and
resource cost than experiment alone, and with a lower risk
of wasted efforts.1–3 Artificial intelligence (AI) and machine
learning has the potential to assist in the efficient exploration
of known and unexplored chemical space toward the optimal
materials for a specific application.4 For example, AI-driven
computational workflows have been applied to explore the
chemical space of transition metal complexes5–7 and organic
electronics.8,9 Many of these approaches are facilitated by a
strong push in the materials modelling community to develop
open-source repositories of code, material structures and their
properties.

There are established computational methods (of varying
cost and accuracy) for calculating the properties of materi-
als for many of the problems in materials science. Such ap-
proaches have facilitated the prediction of the properties of
hypothetical and known materials for screening toward par-
ticular applications. However, the accurate calculation of
many material properties requires a realistic and representa-
tive structural model. One solution to this problem is to use
an existing database of structures from experimental results
and screen them for their properties, which is a common ap-
proach in solid-state materials or biological materials.10–13

Unfortunately, such an approach limits exploration beyond
known examples. Therefore, the ideal solution for novel ma-
terials discovery is to generate structures from scratch. Re-
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search groups often employ in-house scripts written for spe-
cific material types to generate structures for high-throughput
materials screening. As such, scripts are often tailor-made
for the groups’ specific needs and are not made available
to the broader scientific community. Furthermore, they are
hard to maintain and difficult to generalise to a broader sys-
tem set. In particular, the structure prediction of organic and
supramolecular materials is currently difficult to generalise
and limited to a small subset of possible chemical classes.
There are programs currently available (some of which are
open-source) for the generation of materials such as metal-
organic polyhedra,14,15 organic and inorganic molecules,16,17

and polymeric systems.18–26 However, it is not trivial to inter-
face such codes for more general workflows or more complex
projects and the structures that are constructable by these soft-
ware are specifically focused.

To tackle the problem of general structure generation for
materials discovery, we have previously reported developing
the supramolecular toolkit (stk): an open-source and easily ex-
tendable Python library for the assembly of complex molecu-
lar architectures, including supramolecular assemblies.27 Im-
portantly, stk mainly generates molecular representations of
materials and the problem of crystal structure prediction, or
how molecules pack in the solid-state, is beyond the scope
of this work. Here, we provide an update on the stk structure
generation software, an extension to new material classes, and
advanced capabilities including chemical space exploration.
We have rewritten stk to focus on constructing a diverse range
of structures with an easy-to-use interface and modular, mod-
ifiable functionality. Our code development ideology in stk
provides user-friendly defaults for generating molecules based
on an underlying topology while allowing for the safe exten-
sion to new approaches (e.g. structure construction without an
underlying topology) or materials classes without requiring a
brand-new implementation. The modular design of stk makes
the addition of new structure classes and reactions as simple
as possible for end-users. Also, stk allows users to deposit
molecules, and molecular properties, easily into local or re-
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FIG. 1. Examples of buildable topology types with stk. Names
do not match their name in the stk code. These structures represent
the placement and alignment of building blocks on a topology graph
and do not have chemically realistic bonds lengths and angles etc.
between building blocks as they are not geometry optimised here.

mote MongoDB databases. MongoDB databases constructed
by stk can be viewed through stk-vis,28 a standalone, cross-
platform application providing 2D and 3D molecular render-
ing and molecular property tabulation. Molecules deposited
by stk into MongoDB databases are immediately visible in
stk-vis, allowing users to easily share computationally con-
structed molecular databases both within and across teams.

On top of the previously reported construction of covalent
systems, such as linear polymers, covalent organic frame-
works (COFs), and porous organic cages,27 the most recent
version of stk allows for the inclusion of metal centres, thus
opening the scope to a diverse range of metal-organic cages
and metal–organic frameworks (MOFs). Furthermore, stk
now allows for the automated and custom construction of ro-
taxanes alongside existing supramolecular structures, such as
host-guest complexes. FIG. 1 shows examples of stk con-
structed molecules from each broad topology type already im-
plemented in stk. Finally, stk provides convenient methods
for interfacing with third-party software for geometry optimi-
sations and property calculations of stk-generated molecules.
Geometry optimisation is beyond the scope of stk; for this,
we have written the open-source repository stko that con-
tains functions for the geometry optimisation and analysis of
molecules (github.com/JelfsMaterialsGroup/stko).29

This paper describes the construction of numerous
molecule types and their associated construction approaches
currently implemented in stk. Additionally, we describe

the user interfaces provided by stk for making databases of
molecules and the use of an evolutionary algorithm (EA)
to explore chemical space with stk. Further examples and
more thorough documentation can be found at https://
stk.readthedocs.io; all stk code is freely available at
github.com/lukasturcani/stk while stk-vis can be found
on github.com/lukasturcani/stk-vis.

II. SOFTWARE OVERVIEW

Here, we describe the individual software components of
stk building up to the use of the evolutionary algorithm. stk
is a Python library that provides users with the following ca-
pabilities: (i) automated construction of diverse molecular and
supramolecular models, regardless of their complexity, (ii) au-
tomatic design of molecules with user-desired properties and
(iii) creation of molecular databases. The default construction
algorithm of stk is split into distinct algorithms that perform
specific tasks (e.g. placement or reactions). These specific
algorithms are fundamentally similar to other topology-based
algorithms available in other software. However, stk provides
a software library for implementing these techniques toward
the construction of any desired molecule type. The develop-
ment of stk focuses on a robust and straightforward user in-
terface, with the implementation details being ultimately hid-
den from the user. Therefore, the above capabilities of stk are
easily accessible with limited programming experience. For
a tutorial-style introduction to using stk, we recommend vis-
iting the documentation (https://stk.readthedocs.io).
Additionally, while stk provides built-in examples for each of
its features, a primary design goal is that users may extend any
aspect of stk in their code, without touching the source-code
of stk itself. Throughout this paper, we describe the default
implementation of stk.

The interface of stk handles the input, construction and
output of molecules (FIG. 2). While previously stk pro-
vided an interface for interacting with third-party optimisa-
tion software, this functionality has since been removed, as
there already exists a well-developed Python ecosystem for
providing this functionality.30–32 This reduction in scope al-
lows the development of stk to focus on its key features.
However, many of the previously implemented protocols (in-
cluding Schrödinger’s Macromodel,33 GULP,34,35 xTB36 and
RDKit37; these software packages provide access to geom-
etry optimisations, property calculations, dynamics simula-
tions and conformer generation algorithms) are available in
our repository stko29. Recently, we added open-source opti-
misation protocols to the construction process; these protocols
were added into stk because they do not introduce significant
software dependencies. Additionally, we have developed stk-
vis,28 which is a cross-platform application for the visualisa-
tion of databases created by stk (Section II F). stk-vis can also
connect to remote MongoDB databases of stk molecules, fa-
cilitating sharing among researchers.

github.com/JelfsMaterialsGroup/stko
https://stk.readthedocs.io
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FIG. 2. The connection between the user-input, stk construction
and evolutionary algorithms, and output. The complexity of stk is
behind the construction and evolutionary algorithms, while the user
interface is as simple as possible. We highlight the variety of input
and output options, which allow for interfacing with other computa-
tional chemistry software. The construction algorithm is the crucial
component behind stk usage.

A. Construction Overview

The primary process that stk performs, which facilitates
most of its capability, is the construction of constructed
molecules from a topology graph and building blocks (rep-
resented by the ConstructedMolecule, TopologyGraph and
BuildingBlock classes, respectively; bold text represents a
class name within stk). The default implementation of the
construction process occurs in stages: (1) BuildingBlock in-
stances are placed and aligned on vertices of a Topology-
Graph, (2) FunctionalGroup instances of those Building-
Blocks are assigned to the edges of the TopologyGraph, (3)
‘reactions’ are performed to connect functional groups as-
signed to the same edge and, as an optional final step, (4) the
geometry of the structure is optimised. For example, FIG. 3
shows the placement of building blocks (separated molecules
in (b)) on a topology graph to form a constructed molecule.
The topology graph used to construct a molecule defines the
underlying algorithms of each step, which are described in
short below. Section III shows that stk allows the construction
of broad classes of molecules using this simple default imple-
mentation, where distinctions between molecules comes from
the specific algorithms implemented in their topology graph.

B. Topology graphs, vertices and edges

In the default implementation of stk, molecules are con-
structed by placing building blocks on topology graphs
(FIG. 3(a) to (b)). Topology graphs construct molecules
by first defining an underlying graph of vertices (Vertex in-
stances) and edges (Edge instances) (FIG. 3(a)). Each ver-
tex in a topology graph defines a position, where the building
block is placed (this can be defined in Cartesian coordinates

(a)

topology placement reactions

Vertex

Edge

(b) (c)

FIG. 3. Schematic of the construction process of an organic cage
in stk starting from a (a) topology graph of vertices connected by
edges. The supplied building blocks are (b) placed and aligned on
the topology, and then (c) ‘reactions’ are performed between them.
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FIG. 4. Schematic of the alignment of a (a) NonLinearCageV-
ertex and (b) LinearCageVertex, which are vertex classes specific
to cage construction. These vertices use different approaches to ori-
ent the bulk (part of the chemical structure in black) of their build-
ing blocks away from the topology centre (pink circle). Nonlinear
building blocks align the normal (blue arrow) to the plane defined
by its functional groups (shaded triangle) with the pink arrow, while
the Linear building blocks align the vector between the placer and
core centroids (black arrow) with the pink arrow. Both instances use
the position of the edge and functional group centroids to define the
alignment of a functional group (purple in (d), cyan in (e)) with an
edge (green circles).

or defined relative to the vertex’s neighbours), and the series
of transformations applied to the building block to align its
functional groups with the neighbouring edges. Edges in a
topology graph define which functional groups are joined dur-
ing the reaction step of the construction process. Additionally,
the position of edges determines the orientation of the building
blocks, where the transformation defined by the vertex aligns
functional groups with their assigned edges. The implemented
alignment algorithm of a vertex class, which is made up of a
series of independent transformations, aims to orient a build-
ing block while minimising distortion and clashes in the bonds
generated during construction (FIG. 4).

Throughout stk, we have implemented robust alignment
processes for the built-in topology graphs that vary in com-
plexity. In Section III, we describe the built-in molecule types,
all of which use similar, but distinct topology graph, vertex
and edge classes that are appropriate for their construction.
Different chemical systems require different vertex transfor-
mations to achieve alignment successfully; for example the
processes that orient building blocks on a cage topology graph
will differ to those that orient a cycle and axle to form a ro-
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taxane molecule. However, the independent steps underlying
these algorithms are simple and conserved among all vertex
classes (i.e. they use the same code to transform the build-
ing blocks). Therefore, we have made the implementation of
new topology graph, vertex and edge classes straightforward
such that the extension of stk to a user’s materials is possible.
Importantly, user-defined topology graph, vertex, and edge
classes can use an approach that is equivalent to one of the
built-in classes or an entirely new approach; in other words,
the processes used by developers of stk are entirely customis-
able.

C. Building blocks and functional groups

The BuildingBlock class in stk represents a molecule,
which is placed and aligned on the vertices of a topology
graph. Building blocks will also be joined to other building
blocks during the construction process, assuming an edge con-
nects the vertices on which the building blocks are placed. The
building block representation includes the atoms and bonds
of a molecule, and its position matrix, which is a matrix of
atomic coordinates. For placement, alignment and reactions to
be carried out, building blocks also contain FunctionalGroup
instances, which are defined by the user using the Function-
alGroupFactory interface (FIG. 5).

A functional group of a building block defines three sets of
atoms designated for use by the default construction process:
bonders, deleters, placers, (FIG. 5). Bonder and deleter atoms
represent the atoms that will bond and be deleted, respectively,
during a reaction. Placer atoms are used to place and align the
building block. Finally, a building block also has core atoms,
representing the bulk of the molecule, which often needs to be
oriented in a specific direction. Note that core atoms will not
get modified by reactions during the construction process. All
building blocks have defined core and placer atom sets, while
a building block can have no functional groups and, as a result,
no bonder or deleter atoms. Therefore, to define bonder and
deleter atoms, a functional group must be defined.

Functional groups in stk are defined by searching the build-
ing block for the chemical pattern that represents the desired
functional group. We provide many built-in functional groups
in stk that cover common functionalities (such as alcohols,
amines, aldehydes and halogens), and the documentation cov-
ers the definition of new functional groups. Additionally, new
chemical patterns can be defined very simply using SMARTS
strings (a string-based representation of chemical patterns)
to search for functional groups within the molecule using
RDKit.37 Therefore, stk can handle arbitrary chemical trans-
formations of interest to the user. Importantly, this approach
to defining functional groups in stk, through the Functional-
Group classes, is as user-friendly and straightforward as pos-
sible.

PrimaryAmino

O

OO

Aldehyde

BuildingBlocks with functional groups:

core atoms deleter atoms

H2N NH2

O

OO

placer atoms

H2N NH2

FIG. 5. Code snippet showing the generation of BuildingBlock
instances of two molecules from their SMILES strings using built-
in functional group factories. Functional group factories search the
molecules for the user-requested functional groups, as an alternative
to having the user specify each functional group individually. Blue
and purple coloured boxes highlight the code used to request specific
functional groups, shown in the same colour on the middle chemi-
cal structures. Below the dashed lines, we show the four subsets of
atoms defined upon building block initialisation: bonder and placer
(highlighted by blue outlines), core (coloured red) and deleter atoms
(coloured black). By default, placer and bonder atoms are equiva-
lent, which is automatically handled based on the functional groups
present. However, they can also be user-defined.

D. Reactions

Reactions are the algorithms that stk uses to connect build-
ing blocks during the construction process. We must empha-
sise that we discuss reactions on topology graphs from the
perspective of the implementation within stk, not the associ-
ated chemical process. Reaction classes define algorithms
that act on functional groups to either add or remove atoms
or bonds. The addition of bonds between atoms of functional
groups of different building blocks is what ultimately leads
to building blocks being joined by the construction process.
Steps two and three (FIG. 3(b) to (c)) of the default construc-
tion process define, then perform, reactions between building
blocks. In the case of vertices connected by edges, the sec-
ond step assigns each functional group on a BuildingBlock to
an edge connected to that vertex. In step three, each edge is
designated a reaction based on the set of associated functional
groups, and then stk performs those reactions. stk provides
three generic reactions which can be used with a wide array of
functional groups: OneOneReaction, OneTwoReaction and
TwoTwoReaction, which work on pairs of functional groups
with the following combinations of bonder atoms: one and
one, one and two, and two and two. In these cases, the al-
gorithm is simple but generally applicable: a generic reac-
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tion between two such functional groups will delete deleter
atoms and form bonds between bonder atoms on different
functional groups. For a TwoTwoReaction, the ambiguity be-
tween which bonders get connected is resolved by bonding the
two closest atoms and then the second nearest set.

Reactions also have the capability to create bonds with any
bond order desired by the user and dative bonds for use with
metal-coordinating species. As with the other parts of stk, the
reaction process has robust defaults, but these are very cus-
tomisable if need-be; i.e. the user can override which reac-
tions are used to react specific pairs of functional groups when
creating a ConstructedMolecule. By default, stk will select
the reaction (from OneOneReaction, OneTwoReaction and
TwoTwoReaction) that matches the number of bonder atoms
in the functional groups. Our interface for chemical reactivity
in stk focuses on simplicity and generalisability. Importantly,
arbitrary functional groups and reactions can be defined using
the provided interface, which affords the general applicability
of stk to user-defined problems. The default options for reac-
tions (provided in the online documentation) are well suited
to most uses of stk.

E. Modular and independent construction steps

Here, we describe the default implementation of molecule
construction in stk, which is performed at the level of vertices
and edges; this means each vertex performs an independent,
self-contained, operation on a single building block. Simi-
larly, reactions between functional groups on one edge are
entirely independent of those on other edges. Therefore, the
construction process is local to a single building block, or pair
of building blocks for the reaction step and is trivially par-
allelisable Additionally, by separating the entire process into
smaller, well-defined algorithms the code is easier to test, ex-
tend and maintain. A topology graph can define arbitrary ver-
tex and edge geometries, making the structure space accessi-
ble by stk infinitely extendable. For example, vertices do not
need to be connected by edges, which results in nonreactive
topology graphs that are crucial for the study of supramolecu-
lar materials (Section III D).

The main focus of stk is implementing robust and gen-
eral construction algorithms using idealised topologies. How-
ever, this process results in a nonphysical structure where
the connectivity between building blocks is exaggerated in
distance. We recognise the need for chemically reasonable
structures and have implemented an interface for third-party
software in our repository stko29 and recently added two
open-source geometry optimisation processes to the construc-
tion process within stk that are accessible as optional argu-
ments. The newly implemented geometry optimisation proto-
cols (part of the MCHammer package available at github.
com/andrewtarzia/MCHammer) work to decrease the dis-
tance between building blocks on a topology graph by per-
forming rigid translations of the building blocks after their re-
action. These processes are nonphysical and, as a result, are
generally applicable to any ConstructedMolecule. However,
their lack of physical meaning suggests that they should be

used with care and perhaps as the initial step in further opti-
misation sequences.

F. Databases

A significant aspect of computational structure genera-
tion is developing and sharing databases of structures and
their properties. As such, stk provides built-in support
for depositing molecules and their properties into Mon-
goDB databases; the database interface is generalisable
to other database schemas. stk supports three database
types: MoleculeDatabase, ConstructedMoleculeDatabase
and ValueDatabase. MoleculeDatabase and Constructed-
MoleculeDatabase databases are used for storing molecules
(atoms, bonds, position matrices) and ValueDatabase is used
for storing properties in the form of strings, numbers, lists,
dictionaries and nested dictionaries thereof. Notably, the con-
structed molecules maintain the information about the build-
ing blocks used to construct the molecule, which are also
stored in the database; these building blocks do not maintain
the functional groups used.

Here, we introduce a secondary piece of software, stk-vis,28

an open-source, cross-platform application for browsing local
and remote stk-generated MongoDB databases. For each en-
try in the database, stk-vis provides visualisation of the proper-
ties (from a ValueDatabase), 2D representation and 3D struc-
ture (from the stored position matrix). Additionally, if visu-
alising constructed molecules, stk-vis makes the inspection
of its constituent building blocks very simple. stk-vis facili-
tates the tabulation of molecules and their properties, includ-
ing sorting based on a specific property and sharing this inter-
face through a single file transfer. FIG. 6 shows an example
of the stk-vis graphical interface.

G. Evolutionary algorithm

Evolutionary algorithms (EA) are efficient approaches for
exploring chemical space.38–41 EAs mimic the evolutionary
process by taking some population, performing mutation and
crossover events on that population and then selecting sur-
vivors for the next generation. They are highly flexible algo-
rithms, where the definition of the genome of the population,
and the way the population is selected, modified and ranked
are all modifiable by the user. This flexibility allows EAs to
be applied in a variety of fields. The fragment-based approach
treats members of the population as a collection of compo-
nents that can all be modified. Such an approach is amenable
to the construction approach of stk, where molecules are con-
structed from a combination of building blocks and a topology
graph. We provide a general and modular implementation of
the components of an EA in stk to automate materials discov-
ery using the fragment-based approach.42,43

Given a population of molecules, stk’s EA provides a se-
ries of functions for selection, mutation, crossover, and fitness
function calculation and normalisation. The EA works specif-
ically on the ConstructedMolecule class and uses, by default,

github.com/andrewtarzia/MCHammer
github.com/andrewtarzia/MCHammer
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3D structure

2D representation

FIG. 6. Screenshot of the stk-vis graphical interface showing a table
of molecule properties in a database and the 2D and 3D representa-
tions of the selected molecule. A zoom in on part of the database
table bounded by the green box is shown at the bottom.

molecule gene:

building block building block topology

new molecule gene:

building block building block topology

mutation and crossover functions

Swap TopologyGraphSwap BuildingBlock and/or

FIG. 7. Schematic of the modification of the generalised molecule
gene available within stk, where a molecule gene is defined by the
constituent building blocks and underlying topology graph, to a
new molecule gene based on mutation or crossover functions. Here
colours represent a change in the building block or topology graph.

the building blocks and topology graph as the gene (FIG. 7).
Therefore, stk explores mutations of that gene toward con-
structed molecules with the desired properties by modifying
the constituent building blocks or topology graph; this pro-
cess uses the stk construction process to generate new candi-
dates. Finally, the EA in stk directly feeds its results into stk
databases and stk-vis for real-time collaboration.

The entire EA process can be user-defined for a spe-
cific problem, i.e. automating the search for molecules
with user-defined properties. Fitness functions, in partic-
ular, must be provided to the EA and are regular Python

functions that take a ConstructedMolecule and return a
value representing its fitness. stk provides multiple selec-
tion, mutation and crossover algorithms for an EA. All im-
plemented algorithms use a fragment-based approach, where
each building block is treated as a fragment of its correspond-
ing constructed molecule. Therefore, the implemented mu-
tation and crossover algorithms work at the building block-
level by mutating or swapping building blocks in constructed
molecules. For example, the RandomBuildingBlock muta-
tion will switch out the building block used in construction
with a random replacement from some population of build-
ing blocks and construct a new molecule. Additionally, the
user can mutate the topology graph of a constructed molecule
to explore entirely distinct structures. stk provides a robust
interface for implementing arbitrary fragment-based EAs and
is continuously in development. Importantly, the documen-
tation provides thorough examples of implementing the EA
from scratch.

III. EXAMPLES OF IMPLEMENTED SYSTEMS

In the following sections, we highlight the materials classes
that stk can construct, including molecular materials and ex-
tended framework materials. Molecular materials are dis-
crete and include examples of varying complexity, such as lin-
ear polymers, macrocycles, metallocycles, organic and metal-
organic cages, catenanes, rotaxanes, knots and molecular ma-
chines. Extended materials are periodic and include metal–
organic frameworks (MOFs) and covalent organic frameworks
(COFs), which can be two- or three-dimensional. Importantly,
stk constructs materials from building blocks and a topology
graph, and can assemble materials with covalent, coordination
or noncovalent interactions. Such an approach is effectively
similar to the synthetic processes used for many supramolec-
ular materials and other molecular materials, such as cage-like
molecules and crystalline frameworks. Ultimately, stk allows
for the structure generation of molecules of arbitrary complex-
ity.

Given a topology graph and the appropriate functional
groups, stk can, in principle, build any structure type seen
in materials chemistry, and indeed, other fields of chemistry.
Crucially, the construction interface in stk provides the neces-
sary control over relative building block orientation and place-
ment on a topology graph to allow for the construction of dif-
ferent structural isomers of a constructed molecule. The crit-
ical distinction between material types is that their underly-
ing topology graph will define a specific series of construction
steps and vertices with specific alignment processes. Here, we
describe the implemented topology graphs and corresponding
molecule types, together with some examples of their use. In
all cases, we show the structures directly output by stk without
any geometry optimisation. Importantly, to add new topolo-
gies, of molecule types similar to those below, only the def-
inition of the new idealised geometry and its connectivity is
required.
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A. Polymers and macrocycles

Previously we introduced the stk interface for construct-
ing Linear polymers of any size with arbitrary repeat unit
sequence and directionality.27 We have added the Macro-
cycle topology graph, which allows for the construction of
macrocyclic structures using a similar interface and process
to the Linear polymer class. Both topology graphs take
repeating_unit and monomer_orientation information as in-
put to give the user full control over the order and orienta-
tion of building blocks in the polymer or macrocycle chain
(i.e. to control configurational isomers). In both cases, the
placer atoms in the building block’s functional groups are
used to align the building blocks (producing the black arrows
in FIG. 8(a)). This interface allows for the user to set frac-
tional probabilities of building block “flipping” on the topol-
ogy graph (purple arrows in FIG. 8(b) and (c)). To date, the
Linear polymer class has been used to explore very large
(∼ 200000 molecules) chemical spaces of organic aromatic
molecules.9,44–49 FIG. 8(b) and (c) shows that with a family
of building blocks at hand (FIG. 8(a)), we can easily construct
arbitrary Linear polymers and Macrocycle structures.

B. Metal-complex construction

In this release of stk, we have added MetalComplex
topology graphs, which handle the placement and align-
ment of metal atoms and ligands on metal-complex geome-
tries. Other groups have recently implemented tools for con-
structing metal complexes and small molecules that encom-
pass a broader set of possible metal-complex geometries than
stk.5,16,17 While stk can in principle be extended to construct
any metal-complex geometry, we have focused on common
geometries in supramolecular chemistry (e.g. variations of
square planar and octahedral complexes, porphyrin and pad-
dlewheel geometries; FIG. 9(a)). Other than the porphyrin
topology, stk currently only handles mono- and bidentate co-
ordination geometries. FIG. 9(b) shows a code-snippet ex-
ample of the definition of a palladium(II) atom and the sub-
sequent assembly of a bidentate square planar complex with
it.

MetalComplex graphs have specific metal-type and ligand-
type vertices, where metal-vertices are single atoms and do
not undergo any orientation. All ligand orientation is based on
aligning ligand binding sites (defined by FunctionalGroup
instances) and the defined location of the edges in the Topol-
ogyGraph. Importantly, these topology graphs strictly define
the position of Edge instances, which represent the ideal po-
sition of metal-coordinating atoms in the complex geometry.
For bidentate ligands, the alignment process requires two ide-
alised Edge positions to align the two functional groups on
the ligand. This process appropriately enforces the alignment
of the ligand bulk away from the metal-centre and the two
ligand-binding sites inline with the two metal-binding sites
(defined by the TopologyGraph).

To handle metal-containing systems, stk allows for the def-
inition of dative bonds. Examples of defining a Reaction

B

A B

A

BA

(a)

(b)

(c)

A B A B C

FIG. 8. (a) Definition of three building blocks in stk. The resulting
molecules are visualised in the coloured boxes with their orientation
vectors (black arrows) highlighted. Assembly of a (b) Linear and (c)
Macrocycle topology from the defined building blocks in (a). Build-
ing block ordering and repeats are highlighted in red and orientations
are highlighted using purple arrows (for building blocks that are not
symmetric). Coloured boxes match code snippets with their structure
or effect on the structure.

that produces dative bonds are available in the documentation
(https://stk.readthedocs.io). Finally, our approach
to metal geometries requires the strict definition of a metal-
complex geometry by the user (this has been completed for
the implemented examples). Therefore, distinct Topology-
Graph classes are required to handle the following use-cases
(for example): i) assembly of octahedral symmetries (Λ vs ∆

symmetry of tris-bidentate octahedral complexes) and ii) as-
sembly of cis-protected square planar metal-complexes with
free binding sites for further reaction (see FIG. 9(a)).

C. Molecular cages

Molecular cages are a broad class of molecular systems
that may have an internal cavity (e.g. porous molecular
cages). Cages are commonly synthesised from a bottom-up
building block approach and can be formed from purely or-
ganic building blocks50 or building blocks that contain metal

https://stk.readthedocs.io
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(a)

CisProtectedSquarePlanar

OctahedralLambda

Porphyrin

Paddlewheel

OctahedralDelta

Octahedral SquarePlanar

BidentateSquarePlanar

(b)

FIG. 9. (a) Implemented MetalComplex topology graphs. Green
dashed arrows show where subsequent coordination may be per-
formed for the CisProtectedSquarePlanar graph. (b) Code snip-
pet showing the definition of a palladium (II) atom with four Sin-
gleAtom functional groups and the subsequent assembly of a Biden-
tateSquarePlanar metal complex. Coloured boxes match up to code
snippets with their structure. The code snippet in (b) is from an on-
line example and is not complete because initialisation of a precursor
is required.

complexes.51,52 They are candidate materials for solid-state
and solution-phase applications in, for example, storage, sep-
arations and catalysis.50,53 Of particular interest is the mod-
ularity of their design process, where specific structures or
properties are targeted by choice of its constituent building
blocks. Modular design processes based on constituent build-
ing blocks are well suited to stk. Previously, we reported func-
tionality for constructing porous organic cages with various
topology graphs,27 which has since been used in the high-
throughput screening of porous organic cages,42,43,54 and the
generation of a large (∼ 60000 structures) cage database for
training machine learning models to predict their stability.55

FIG. 10(a) shows a code snippet of cage construction using
stk, highlighting its simplicity.

In this release, we have implemented the handling of metal-
based systems toward the construction of metal-organic cages.
Overall, we have implemented 31 distinct cage topologies
(FIG. 10(b)) that encompass structures with diverse con-
nectivities commonly seen in the literature. We split the
topology graphs based on organic and metal-organic cate-
gories to aid the user experience and maintain domain-specific
nomenclature.56 However, stk does not make any techni-
cal distinction between them (i.e. metal-containing building

(b)

(a)

topologies by num. connections:
(2) M3L3triangle, M4L4Square

(2, 5) 12plus30

(3, 4) 6plus8, M6L2L3Prism, M8L6Cube

(2, 3)
20plus30, M4L6TetrahedronSpacer

2plus3, 4plus6, 4plus62 6plus9, 8plus12,

(2, 4)

M4L8, M6L12Cube, M12L24, M24L48

8plus16, 10plus20, M2L4Lantern, M3L6,

2plus4, 3plus6, 4plus8, 5plus10, 6plus12,

(3)
M4L4Tetrahedron, M4L6Tetrahedron

1plus1, 2plus2, 4plus4,

FIG. 10. (a) Code snippet showing cage construction from two
building blocks. (b) Listing of all cage topology graphs built into
stk separated by the number of connections or functional groups re-
quired by building blocks in the topology graph. Each row contains
the name of topology graphs in stk. The column on the left shows
the number of connection points of building blocks in each topology
graph; i.e. (2, 3) implies that the building blocks have either two or
three connection points.

blocks can be placed on an organic cage topology). The criti-
cal modification required to handle metal-containing cages is
that cage topologies can now handle vertices where building
blocks cannot be aligned because they are a single atom (e.g.
a metal atom with SingleAtom functional groups). Young and
co-workers recently developed cgbind, which is open-source
software for the construction of a handful of metal-organic
cage topologies.15,57 In comparison, stk’s implementation is
more general, but constructed molecules require further opti-
misation compared to those generated using cgbind. However,
we aim to overcome this using simple optimisation algorithms
that result in cage structures with reasonable geometries.

Molecular cages are constructed from building blocks of
different connectivity (FIG. 10(b)), including building blocks
with one to five connection points. Therefore, their align-
ment with the topology graph’s edges can be more compli-
cated. In stk, we define alignment procedures based on the
number of connections a building block will have in a given
topology by defining the Vertex class (the construction ap-
proach is described in Section II E). For example, vertices
with two connection points require building blocks with two
functional groups and are aligned using the LinearCageVer-
tex process. Similarly, vertices with three or more connec-
tions require building blocks with three or more functional
groups and are aligned using the NonLinearCageVertex pro-
cess. Additionally, we provide the UnaligningVertex class
for building blocks that do not require alignment. The Non-
LinearCageVertex placement process happens in two steps
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(FIG 4): i) orientation of the building block such that the vec-
tor normal to the plane of the placer atoms aligns with the nor-
mal of the plane of edge positions, ii) orientation of the build-
ing block such that a specific structural isomer is constructed.
The user selects a structural isomer by specifying which func-
tional group of their building block aligns with which edge
on the topology graph using an input argument to the Topol-
ogyGraph class (examples are given in the documentation at
https://stk.readthedocs.io). After a building block is
oriented on a vertex, functional groups are assigned to edges
following a vertex-specific protocol. Once all building blocks
are placed, and functional groups assigned to edges, reactions
are performed between functional groups assigned to the same
edge. So far, we have found that these processes are robust to
any topology (metal-organic or organic) we implement and
are sufficient for avoiding collisions of building blocks and
inter-building block bonds. However, all the topology graphs
we have implemented to date are concave geometries, where
the bulk of the building blocks also point away from the struc-
ture’s centre.

D. Nonreactive topology graphs: rotaxanes and host-guest
complexes

Nonreactive topology graphs construct molecules focusing
on the relative spatial arrangement of the building blocks,
where no bonds are created between them. Two examples
discussed here are [n]rotaxanes and host-guest complexes.
Rotaxanes are molecules in which a ring-shaped macrocy-
cle is threaded on an axle with stoppers at each end of the
axle.58 The bulky stoppers on the axle prevent the macrocy-
cle from slipping and, hence, the rotaxanes are mechanically-
interlocked, and the building blocks cannot be separated de-
spite not being covalently bonded. The n in [n]rotaxane corre-
sponds to the number of interconnected building blocks, so a
single macrocycle on one axle would be called a [2]rotaxane.
Host-guest complexes are complexes formed between a guest
molecule encapsulated in the cavity of a host molecule.59

Here we describe the construction of two nonreactive topol-
ogy classes: NRotaxane and Complex. This differs from the
synthetic process for rotaxanes, where a chemical reaction is
required to form the mechanical bond holding the macrocycle
on the axle. Importantly, stk does not attempt to model the
realistic reaction processes and should be used in an alchem-
ical way that simplifies the construction process as much as
possible. We have implemented the NRotaxane class, which
takes an axle and any number of cycles and assembles a rotax-
ane. FIG. 11(a) shows the formation of an NRotaxane from
building blocks constructed using the Linear and Macrocy-
cle classes. The macrocycles are evenly spaced along the
axle, with full control over their orientation (with respect to
the direction of the axle) and sequence along the axle, and
are placed such that the normal of the plane of best fit of the
macrocycle is parallel with the axle.

We have introduced general code to construct host-guest
complexes. The method shown here is entirely generalisable
to any two stk BuildingBlock instances, but focuses on the

(a)

(b)

vector of best fit

A B A B

FIG. 11. (a) Assembly of an NRotaxane from an axle and two
distinct macrocyclic building blocks. The code snippet highlights
the possible modifications to the rotaxane structure by specifying the
repeating unit, the number of repeating units and orientations. (b)
Assembly of a Complex from a host and guest. The code snippet
highlights the methods and vectors used for guest orientation within
the host structure. Coloured boxes match up to code snippets with
either their structure, impact on a structure, vector or position. Code
snippets are not complete and require initialisation of precursors.

relative orientation and placement of a guest molecule to a
host molecule (FIG. 11(b)). To handle the guest’s orientation
relative to the host (e.g. to align a functional group with a
specific binding site), the Complex can be provided with an
initial and final vector, where the guest is rotated such that
the initial and final vector are parallel. FIG. 11(b) shows how
to use the vector of best fit through a building block’s atoms,
to align the guest along a particular vector. By additionally
defining the guest’s translation relative to the host’s centroid,
the user can explore many host-guest conformations using stk.
A recent example of host-guest structure generation in metal-
organic cages15 shows efficient ways of determining optimal
guest orientation and placement, which can be automated with
stk for any molecule class. Using low-cost simulation meth-
ods and the EA in stk (Section II G), we showed this on the
simple case of C60 encapsulation in porous organic cages.43

https://stk.readthedocs.io
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This work highlighted the benefit of fragment-based host evo-
lution toward optimal binding that is possible within stk.

E. Constructing extended framework materials

Extended framework materials are two or three-
dimensional structures that can be periodic, and hence,
represented by an infinitely repeating unit cell. Covalent
organic frameworks (COFs) and metal–organic frameworks
(MOFs) are two classes of extended framework materials
that generally use the reticular chemistry approach60,61

of constructing structures based on a given topology and
systematically replacing building blocks on this topology to
produce a vast potential chemical space. This process has
been replicated in stk, and we have introduced the handling
of periodicity such that stk can construct MOFs and COFs.
Currently, we focus on 2D-COF construction, but because
any BuildingBlock instance (with the appropriate number
of functional groups) can be placed on any topology, it is
possible to construct MOFs by placing metal-complexes on a
COF topology.

Within stk, we distinguish between discrete molecules and
extended materials at the topology level, where we provide a
series of topology graphs defined by repeating unit cells for
generating structures of extended materials. To construct an
extended material, the topology graph’s unit cell can be re-
peated in the x, y and z directions to create a larger graph
that the building blocks are placed on. This approach al-
lows for the creation of infinitely repeating structures, where
“periodic” bonds are created at the cell boundaries, or finite
structures with unreacted groups at the cell boundaries. This
distinction is required to provide an interface for generating
crystal structures and “island” models of extended materials
(FIG. 12(b)).

At the moment, stk contains four common two-dimensional
topologies of COFs (hexagonal (net: hxl), honeycomb (two
variations exist with and without a ditopic linker between
three-coordinate nodes; net: hcb), square (net: sql) and
kagome (net: kgm)) (FIG. 12(c)). However, the current im-
plementation is extendable to three-dimensions and other ex-
tended topology graphs. For two-dimensional systems, the
construction places the COF layer in the xy plane and orients
building blocks by rotating them along the z direction. As with
other topology graphs, unsymmetrical building blocks can be
manually oriented with respect to their neighbours as desired.

F. Hierarchical construction and further analysis of stk
molecules

An important feature of stk is the easy conversion of a Con-
structedMolecule into a BuildingBlock, which allows for
the simple use of a previously constructed molecule as the
building block in a new construction as part of a “hierarchi-
cal” construction process. Specifically, a BuildingBlock can
be created from an existing BuildingBlock object, or from a
ConstructedMolecule, but with a different set of functional

groups. Therefore, stk is well suited for constructing complex
molecules over many steps from elementary building blocks.
In particular, the Linear class, for example, can be used to
construct combinatorial libraries of precursor molecules for
further construction, e.g. to act as a family of potential ro-
taxane axles (FIG. 13). Additionally, we find this approach
useful for assembling metallo-architectures from MetalCom-
plex structures. For example, constructing an Octahedral
metal complex, and then placing that, as a building block,
on the node of a cage topology graph is much simpler than
constructing both simultaneously. By tackling the problem
in a step-wise fashion, this approach simplifies the underlying
topology graph (improving the code’s generalisability) and the
complexity of the user input (i.e. the building blocks are sim-
pler). A similar approach could be used to construct coordina-
tion polymers using the MetalComplex and Linear classes.
Finally, all molecules generated by stk can be used to generate
new molecules of arbitrary complexity.

In the latest version of stk, we also support the writing of
molecules to various common file types (XYZ, MOL V3000,
Protein Data Bank (PDB) and Turbomole files). The new im-
plementation can also handle the output of periodic structures
(FIG. 12(a)) for relevant file types (namely PDB and Tur-
bomole files). Users may also straightforwardly define new
functions for writing molecules to files if the built-in formats
do not match their requirements. Furthermore, stk Molecule
instances can be converted directly into the molecular rep-
resentation of the cheminformatics software RDKit.37 Ulti-
mately, this allows for the interfacing of molecules generated
by stk with many other computational chemistry software.

CONCLUSIONS

stk is a Python library designed for the automated con-
struction of structures of arbitrary complexity from their con-
stituent building blocks. We provide a modular and open-
source framework that is generally applicable and simple to
extend to a user’s material of interest. Currently, constructable
molecule types include linear polymers, small molecule
oligomers, macrocycles, rotaxanes, metal complexes, metal-
organic cages, organic cages, and extended framework mate-
rials. Importantly, we provide a robust interface to the meth-
ods required for construction: (1) functional group searching,
(2) placement and alignment of building blocks on the ver-
tices of a topology graph, and (3) reacting functional groups
along edges of the topology graph; all of which can be used
in any new user problem and as parts of much larger work-
flows. When coupled with other open-source codes in the stk
ecosystem, including stk-vis and stko, we provide a solution
to structure generation and exploration that includes a modu-
lar evolutionary algorithm and a simple interface to databasing
tools (such as MongoDB) for the simplified storing and shar-
ing of large chemical libraries. With stk-vis, the stk ecosystem
is ideal for real-time collaboration between experimental and
computational chemists in various materials chemistry fields.
As the active developers of stk, we aim to provide consistent
improvements and guidance for new users with example us-
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Square

Hexagonal

(a) (b)

Vertex Functional groupEdge

(c)

HoneycombKagome

FIG. 12. (a) Assembly of a cluster (“island”) and periodic Cof model. The code snippet highlights the use of a “periodic” TopologyGraph
to include periodic information, which can now be saved to PDB or Turbomole files (lines 21–25 of the code snippet). (b) Schematic showing
the topological difference between the (left) nonperiodic and (right) periodic cases, where the main difference is the connectivity of the
FunctionalGroups at the cell boundaries. (c) Implemented extended topology graphs showing a unit-cell containing vertices and edges.
Coloured boxes in (a) match up to code snippets with their structure in (b). Code snippets from online examples are not complete and require
initialisation of precursors.

ages and tutorials; additionally, we are active in assisting new
users in implementing new topology graphs or reactions. Fur-
thermore, stk comes with a test-suite covering the code base,
which makes extending stk simpler and safer. We anticipate
that stk will provide users with a robust and general solution to
structure generation and the pre- and post-processing of struc-
tures, and precursor generation.
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