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Abstract

Deep generative models are used to generate arbitrary molecular structures with the desired

chemical  properties.  MolGAN  is  a  renowned  molecular  generation  models  that  uses

generative adversarial networks (GANs) and reinforcement learning to generate molecular

graphs in one shot. MolGAN can effectively generate a small molecular graph with nine or

fewer heavy atoms. However, the graphs tend to become disconnected as the molecular size

increase. This poses a challenge to drug discovery and material design, where large molecules

are  potentially  inclusive. This  study  develops  an  improved  MolGAN for  large  molecule

generation (L-MolGAN). In this model, the connectivity of molecular graphs is evaluated by

a depth-first search during the model training process. When a disconnected molecular graph
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is  generated,  L-MolGAN  rewards  the  graph  a  zero  score.  This  procedure  decreases  the

number  of  disconnected  graphs,  and  consequently  increases  the  number  of  connected

molecular graphs. The effectiveness of L-MolGAN is experimentally evaluated. The size and

connectivity of the molecular  graphs generated with data from the ZINC-250k molecular

dataset are confirmed using MolGAN as the baseline model. The model is then optimized for

a  quantitative  estimate  of  drug-likeness  (QED)  to  generate  drug-like  molecules.  The

experimental results indicate that the connectivity measure of generated molecular graphs

improved by 1.96 compared with the baseline model at a larger maximum molecular size of

20  atoms.  The  molecules  generated  by  L-MolGAN  are  evaluated  in  terms  of  multiple

chemical properties, QED, synthetic accessibility, and log octanol–water partition coefficient,

which  are  important  in  drug  design.  This  result  confirms  that  L-MolGAN  can  generate

various drug-like molecules despite being optimized for a single property, i.e., QED. This

method will contribute to the efficient discovery of new molecules of larger sizes than those

being generated with the existing method.

Keywords:  deep  learning,  generative  adversarial  network,  graph  convolutional  network,

molecular graph
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1. Introduction

Machine learning-based molecular design of drugs is used to efficiently determine the desired

molecular  structure  in  drug  discovery.  It  also  aids  the  automated  search  for  unknown

molecular structures of the desired properties and predict their physical properties without

requiring the domain knowledge of organic chemistry. A renowned classical molecular design

model is inverse quantitative structure-activity relationship (inverse-QSAR) [1]. Based on the

QSAR model—an  analytical  model  of  the  relationship  between  molecular  structure  and

bioactivity, formulated using molecular descriptors quantifying the features of the molecular

structure—inverse-QSAR performs a backward prediction of the molecular structure from the

desired bioactivity. Therefore, to obtain a molecular structure with the desired bioactivity, it is

necessary to select the appropriate molecular descriptors that are equivalent to the raw data of

feature engineering in machine learning. However, it is difficult to identify the descriptors

correlated with the desired bioactivity from the numerous available molecular descriptors,

which is a core problem in inverse-QSAR analysis.

Several molecular-structure search methods based on deep generative models, which generate

new  data  with  similar  features  as  the  original  without  the  availability  of  predetermined

feature vectors for the dataset, have been proposed and developed. Most adopt a graph-based

approach in which the molecular structure is represented as a graph and are classified into

two approaches in terms of the molecular generation process: sequential iterative process and
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one-shot generation [2].

In the sequential iterative process, molecules are assembled stepwise by adding atoms and

bonds to a predefined scaffold. The advantage of the generative model [3–6] when combined

with the sequential iterative process is the assurance of chemical validity of the generated

molecules.  Thus, it is possible to obtain functional molecules by reliably generating larger

molecules.  However,  the disadvantage of the sequential  iterative process is  the increased

computational cost of verifying the valence, topological prediction of molecular structure,

and  graph isomorphism to  calculate  the  reconstruction  error  when iteratively  assembling

molecules.

In one-shot generation, a molecule is generated by determining the combination of atoms and

bonds  in  a  single  step.  The  advantage  of  the  generative  model  combined  with  one-shot

generation [2,7–10] is the simplicity of its architecture and algorithm. Its computational cost

is smaller than the sequential iterative process. Consequently, the generative model can be

optimized in a short time. However, the one-shot generation method can only generate small

molecular  graphs  because  the  number  of  possible  connections  between  atoms  in  larger

molecules increases quadratically, increasing the likelihood of the generation of chemically

invalid molecules [8].

One of the most successful generative models using the one-shot generation scheme is  the

molecular  generative  adversarial  network  (MolGAN)  [7].  MolGAN  generates  small
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molecular  graphs  with  the  desired  chemical  properties  by  combining  GANs  [11]  and

reinforcement learning. It can generate chemically valid molecules if the number of heavy

atoms  used  for  molecular  representation  is  nine  or  fewer.  However,  when  this  number

exceeds nine, many disconnected molecular graphs are generated.

To overcome this issue, we propose a large MolGAN (L-MolGAN), an improved version of

the MolGAN model, for generating larger, more connected molecular graphs. Increasing the

number of connected molecular graphs in MolGAN will lead to the rapid generation of large

molecular graphs. We integrated into L-MolGAN a mechanism that enhances the generation

of  connected graphs in the generative process of MolGAN. The first  stage of  the model

judges  if  the  generated  molecular  graph  is  connected  or  disconnected.  If  the  graph  is

disconnected,  it  will  be penalized during model training.  Consequently,  the generation of

disconnected molecular graphs is suppressed in the model optimization process.

The contributions of this study are:

1. An improved MolGAN that produces large (up to 20 atoms), novel molecules without

disconnections.

2. A molecular graph expansion mechanism that penalizes, and consequently suppresses,

the production of disconnected graphs.

The remainder of  this paper is organized as follows. Section 2 presents an overview of the

proposed L-MolGAN and a method to represent the molecular graph and the framework of

the original MolGAN. A method to improve the connectivity of molecular graphs generated
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by L-MolGAN is also described in this section. Then, in Sections 3 and 4, the effectiveness of

the proposed model is validated by comparing its performance in generating new molecules

with that of the original MolGAN using a publicly available dataset of drug-like molecules.

Finally, the paper is concluded in Section 5.

2. Method

2.1 Model Architecture

MolGAN, which is the baseline model, consists of GANs (generator and discriminator) and a

reward network. In this model,  the molecular structure is represented by a graph. The L-

MolGAN adds a mechanism called molecular graph expansion to the baseline model that

increases the number of generated connected molecular graph. The model architecture of L-

MolGAN is illustrated in Fig 1. The L-MolGAN differs from the original MolGAN only in

terms of the molecular graph expansion mechanism, highlighted by the colored box in the

figure.

Fig 1 Model architecture of L-MolGAN for generating large molecular graph. It consists

of  a  generator,  a  discriminator,  a  reward  network,  and  a  molecular  graph  expansion

mechanism. Molecular graphs are generated by inputting into the generator vectors sampled
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from  a  prior  distribution.  The  discriminator  classifies  the  input  molecular  graph  into

generator-produced or dataset. The reward network predicts the chemical properties of the

input molecular graph.

GANs were  used  to  learn  the  molecular  features  of  the  training  dataset,  and the  reward

network was trained to predict the chemical properties of the given molecular graph. A multi-

layer  perceptron  (MLP)  was  adopted  for  all  three  components,  the  generator,  the

discriminator, and the reward network, similar to the baseline study by De Cao et al. [7]. In

the following subsections, we shall explain the molecular representation and each network

model, as well as the proposed modifications to the baseline model.

2.2 MolGAN

2.2.1 Molecular representation as a graph

Studies related to the artificial generation of molecules using deep generative models [12–14]

represented  molecules  as  strings  using  the  simplified  molecular-input  line-entry  system

(SMILES)  [15].  The  linear  SMILES is  in  turn  generated  string  using  a  recurrent  neural

network  and  long  short-term  memory.  Thus,  the  molecule  of  interest  was  artificially

produced.

However,  the  inherent  syntax  of  SMILES  is  complex,  and  the  chemical  structure  and

properties of a molecule can vary drastically with the order of the string and changes in a

7

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

13
14



single character. In addition, the same molecule has multiple string representations, making it

impossible to determine a unique SMILES [16, 17]. To avoid these problems, researchers

have developed molecular graphs that represent molecules based on the graph theory.

Molecular graphs are an intuitive, more robust representation of molecules compared with

intermediate representations such as SMILES. In this study,  the molecules  were treated as

labeled undirected graphs. A molecular graph was defined as  G=(V , E),  where  E and  V

denote a set  of edges and nodes, respectively.  Each atom and each bond that make up a

molecule correspond to a node  vi∈V  and an edge  (v i , v j)∈E, respectively. The molecular

graph consists of two types of matrix: the node feature matrix and the adjacency matrix. The

node vi∈V  in the molecular graph G was defined by the one-hot vector x i in T dimensions,

where T represents the number of types of atoms. From this vector, the type of atom, which is

an  attribute  of  node  vi,  can  be  determined. The  node  feature  matrix  is  represented  by

aggregating all node feature vectors. The edge (v i , v j)∈E in the molecular graph G indicates

that nodes vi and v j are connected. In addition to the connections between nodes, the type of

bond y∈ {1 , …,Y } is considered in the molecular graph, where Y is the number of bond types.

In  this  study,  the  node  feature  matrix  
X=[ x1 , …, xN ]

T∈ RN ×T  and  the  adjacency  matrix

A∈RN × N × Y were used to identify the types of atoms in all node sets of the molecular graph

G and the adjacency matrix.
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2.2.2 Generative adversarial networks

GANs are deep generative models that aim to generate samples similar to a training set by

approximating the model distribution to an empirical distribution. In computational molecular

design,  adversarial  generation  is  an  important  strategy  for  producing  molecular  species

similar to a given molecular dataset.

GANs can  be  interpreted  as  an  implicit  generative  model  as  it  does  not  need assume a

specific probability distribution for the model distribution when approximating the empirical

distribution. This eliminates the need for an explicit likelihood function for approximating the

probability  distribution.  On  the  one  hand,  the  variational  autoencoder  (VAE)  [18],  a

likelihood-based  model,  adopts  a  method  to  approximate  the  empirical  and  model

distributions by assuming in advance the latter to be Gaussian and maximizing the evidence

lower bound instead. On the other hand, GANs adopt a method to approximate the model

distribution to the empirical distribution by parameterizing the distribution with a deep neural

network and estimating its density ratio. GANs mainly consist of two deep neural networks to

approximate  the  distribution  by  density  ratio  estimation:  generator  Gθ,  generates  a  new

sample  G(z ;θ) similar to the training sample  x pdata by inputting a random number  z pz

obtained from a prior distribution pz; discriminator Dφ, which accurately identifies the input

data as a training sample  x pdata or a sample  G(z ;θ) generated by the generator. Training

generator Gθ to generate samples similar to the empirical distribution means will yield worse
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identification results for the samples produced by the generator. In other words, the density

ratio estimation problem is replaced by a classification problem, which can be effectively

solved  by deep neural  networks  are  good.  Therefore,  these deep neural  networks  can  be

considered players in the minimax game of Equation 1, which shows the expected value of

the cross-entropy error.

min
θ

max
φ

E x pdata(x) [ log Dφ (x)]+ Ez pz (z)[ log (1−Dφ (Gθ(z)))] (1)

In adversarial learning, the generator is trained to generate samples similar to the training set

and misidentify them to the discriminator. In contrast, the discriminator is trained to correctly

discriminate between the samples generated by the generator and those from the training set.

With this process, the two models coevolve in adversary, with the generator minimizing the

second term in Equation 1 and the discriminator maximizing the linear sum of the first and

second terms. The alternate optimization the two neural networks through back-propagation,

a sample is eventually generated such that the discriminator cannot distinguish between real

and fake samples.

2.2.3 Generator

The  generator can generate molecular graphs with the desired chemical properties. In this

study, its architecture was a simple MLP with four layers. The number of units in each layer
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was 256, 512, 1024, and 2200, respectively. By inputting a random number z sampled from

the standard normal distribution N (0 , I ) into the generator, we output the adjacency matrix ~A

and the node feature matrix ~X  representing the molecular graph. The output graph ~G=(
~
A ,~X)

is a probabilistic complete graph, which is interpreted as a categorical distribution for the

types of atoms and bonds. Here, ~A  contains the existence probabilities of the nodes and edges

for each bond type, and ~X  the class probabilities of the nodes. To enable its transformation

into a chemically valid molecular graph, the discrete graph G=( A , X ) was obtained using the

argmax function on the output probabilistic complete graph ~G=(
~
A ,~X). The adjacency matrix

was defined as 
A∈RN × N × Y , and the node feature matrix as 

X=[ x1 , …, xN ]
T∈ RN ×T .

The maximum number of nodes in the molecular graph was set to N = 20, and the number of

bond types to  Y = 5.  The five types of bonds are single bond, double bond, triple bond,

aromatic  bond, and no bond.  The number of  types  of atoms was set  to  T = 10:  carbon,

nitrogen,  oxygen,  fluorine,  phosphorus,  sulfur,  chlorine,  bromine,  and  iodine,  and  one-

padding  symbol.  Thus,  the  maximum number  and  types  of  atoms  and  bond  types  were

restricted.  These  constraints  shall  be  used  to  determine  the  generator architecture. The

dimensions of the output adjacency and output node feature matrices were represented by

N × N ×Y  (i.e., 20×20×5) and N ×T  (i.e., 20×10), respectively.

To output the two types of matrices simultaneously, an output layer is required to output the
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2200-dimensional vector, which is the sum of the number of elements of the adjacency and

node feature matrices. The number of units in the output layer depends on these constraints.

The random number inputs to the generator had 256 dimensions. Based on the results of

existing research,  the number of  units  in  each hidden layer  was set  as a  multiple  of  the

number of dimensions of the input random numbers. The 2200-dimensional vector output

from the generator was split into two vectors—2000- and 200-dimensional vectors—to create

the adjacency and node feature matrices. These divided vectors were then transformed into

the dimensionality of each defined matrix. Consequently,  the output molecular graph is a

complete probabilistic graph.

The  final  output  molecular  graph  is  a  chemically  valid  molecular  graph.  Therefore,  the

argmax function was used to break the weak bonds in the complete graph. The output of this

operation on the adjacency matrix ~A  is the adjacency matrix A binarized at [0,1]. The node

feature matrix ~X  was also binarized using the same process. Finally, a new molecular graph

with the correct valence was generated through the optimized molecular generation process.

However, this adversarial generation process only generates molecular species similar to the

training set. Moreover, it is necessary to introduce methods to improve the properties of the

generated molecules such as reinforcement learning, which uses a deterministic policy in the

process  of  molecule  generation.  We  incorporated  the  deep  deterministic  policy  gradient

method [19]  into  a  generative  model  to  optimize  the  non-differentiable  chemical  indices
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based on the literature.  The stochastic  policy is  expressed asπ (a∨s ;θ).  This denotes the

policy πθ that probabilistically selects action a for state s. In this case, θ is a parameter used

when the policy is being modeled. The deterministic policy μθ is the policy a=μθ(s), where

action a is uniquely determined for a certain state s. This policy is optimized by updating θ to

maximize the behavioral value function for this behavior. In this study, the policy was G, and

state s was represented as a random number z. Thus, for a random number z, the molecular

graph is uniquely generated according to the deterministic policy. In the deep deterministic

policy  gradient  method,  the  deterministic  policy  and  action  value  functions  were

approximated using a deep neural network. Therefore, a property prediction neural network,

which  can  be  trained  using  gradients,  was  introduced  into  the  action  value  function  for

calculating  rewards.  The  rewards  can  then  be  used  to  generate  molecules  with

indistinguishable chemical  properties.  These properties  can  be maximized by varying the

policy parameters in the direction of the approximated action value gradient.

By formulating these series of processes, we trained the generator such that the objective

function  L(θ) in Equation 2 was minimized. A molecular graph with the desired chemical

properties similar to the training data was generated by minimizing the linear combination of

the GAN loss, LGAN, and the reinforcement learning loss, LRL:

L (θ )=λ ∙ LRL+(1− λ)∙ LGAN
, (2)
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where  λ is  a  hyperparameter  that  balances  between  adversarial  learning  and  property

optimization. This tunable parameter takes values in the range of λ∈[0,1].

2.2.4 Discriminator and Reward network

The  architecture  of  these  two  neural  networks,  discriminator  and  reward  network,  were

implemented  by  a  simple  MLP with  three  layers. The  three  hidden  layers  of  both  the

discriminator  and the reward network had 512, 256,  and 2 units,  respectively. The input

molecules were discriminated by the discriminator as the training set or molecules sampled

by the generator. The chemical properties of the input molecules were predicted using the

reward network. In the generation process, the discriminator outputs the discrimination rate

of authenticity based on the feature vector of the entire molecular graph, and the reward

network outputs the predicted score of the chemical property. The generator can be optimized

by feeding back the outputs.

However, a simple MLP cannot directly handle the graph structure data. Therefore, it would

be necessary to develop a graph convolution operation specific to the graph structure data

before inputting molecular graphs into the two models. The type of bond between atoms must

be considered when convoluting the molecular graph. Therefore, based on the literature, we

used a relational graph convolution operation that considers the attributes of the edges on a

graph [20, 21]. This operation uses the adjacency matrix to convolute the node information
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for each edge attribute as follows:

hi
(l+1)

=σ (∑
r ∈R

❑

∑
j∈N i

r

❑ 1

|N i|
W r

(l ) h j
(l)
+W 0

(l)hi
(l)
) (3)

where hi
l is the feature representation of node vi in the lth layer, R is the set of relations, and

N i
r is the set of nodes connected by the relation r in node vi. Thus, a linear transformation was

performed by extracting the neighboring node information for each relation. The self-loop

was convolved similarly.

Finally,  a nonlinear transformation was performed over the input signal by the activation

function σ , and the feature representation hi
(l+1) of the l+1st layer was output. The convolution

of a node uses its own information as well as information from its neighboring nodes. The

output of the hidden layer was recursively used same as in a neural network by accumulating

the  convolutions.  Finally,  each  convolved node information was aggregated into  a  single

feature representation. Each time the convolution operation was repeated, the neighboring

node information was convolved; thus, a global feature representation revealing the entire

graph was obtained from the local features.

The  generator  and  discriminator  were  used  to  facilitate  the  adversarial  learning  of  the

molecular generation model.  The discriminator  was trained to maximize Equation 1.  The

parameters of the generator was updated via backpropagation through the discriminator to the
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generator.   The  generator  and  the  reward  network  were  used to  optimize  the  chemical

properties of molecules. The generator used the reward network output as a reward, and the

parameters  of  the two models  were updated  using  the deep deterministic  policy gradient

method. In addition, the reward network was trained by back-propagating the error between

the  output  of  the  reward  network  and  the  estimated  property  using  RDKit  [22],  a

chemoinformatics  tool.  Reinforcement  learning  for  chemical  properties  optimization  was

performed  once  for  every  three  iterations  of  adversarial  learning.  The  parameters  of  the

reward  network  were  fixed  in  adversarial  learning,  whereas  the  parameters  of  the

discriminator are fixed in the chemical properties optimization.

2.2.5 Molecular graph generation using the trained MolGAN

The optimized generator was extracted from the trained MolGAN model and used to generate

new molecules by inputting random numbers sampled from the standard normal distribution

into the generator.  Changes in these numbers resulted in different molecular graphs.  This

allowed the generator to generate not only known molecules but also unknown ones included

in the training dataset.

2.3 L-MolGAN and Molecular Graph Expansion Mechanism

According to the literature [7, 8], the number of nodes in the generated molecular graph is

small, which is the problem we aim to solve. Earlier studies evaluated the MolGAN under the

condition that  only nine heavy atoms can be used to produce a  molecular  graph without
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disconnection.  However, this limit is not practical in drug discovery,  especially for larger

molecules because the  more  the  atoms,  the  more  the  disconnected  graphs.  To solve  this

problem, we propose modifications to the MolGAN.

We  suppress the generation of disconnected graphs by penalizing them during the model

training  process.  The  detailed  algorithm  is  as  follows:  1)  for  each  generated  graph,  its

connectivity is checked by depth-first search (DFS) and 2) if the graph is disconnected, its

chemical property score is set to zero as a penalty; otherwise, its score is predicted by the

reward  network.  This  is  similar  to  the  general  training  process.  DFS is  a  recursive  and

exhaustive algorithm used to search all nodes of a graph or a tree. With DFS, the entire graph

is traversed by starting at a certain node in the molecular graph and following the edges. If all

the  nodes  in  the  graph  can  be  reached,  the  graph  is  considered  connected.  Repeated

penalizations to a disconnected graph will suppress its generation and increase the number of

connected  graphs  generated.  We  refer  to  these  modifications  as  the  “molecular  graph

expansion mechanism,” and rename the resulting improved MolGAN as L-MolGAN.

3. Experiment

We shall investigate the effectiveness of the L-MolGAN by comparing it with the baseline

MolGAN. In all experiments, we set the QED as a singular objective to derive new drug

candidates and trained two modes (i.e., the model training was performed to optimize QED

score with an RL objective). Its effectiveness was evaluated in terms of 1) how well it works
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for  large  molecular  graph  generation  and  2)  how  many  novel  drug-like  molecules  it

generates.  The general  settings  of  the  model  training  and its  evaluation  metrics  shall  be

described in Subsections  3.1 to  3.3.  Then,  three different  numerical  experiments shall  be

described in the Subsections 3.4 to 3.6.

3.1 Dataset

In this study, ZINC-250k [23], a renowned molecular datasets, was used in the experiments to

generate  molecular  graphs.  ZINC-250k  is  made  up  of  250 000  commercial  drug-like

molecules randomly selected from the ZINC database. The maximum number of constituent

heavy atoms of a molecule in ZINC-250k is 38. Particularly, a subset of ZINC-250k was

sampled  by  randomly  choosing  15 000  molecules  from  ZINC-250k,  with  the  maximum

number of constituent heavy atoms limited to 20, which is approximately twice the molecular

size of that used in the baseline study by De Cao et al. [7].

3.2 Evaluation metrics

We employed the generally used indices of validity, novelty, and uniqueness to evaluate the

molecular generation model. Validity is the percentage of chemically valid molecules among

the generated molecules. Note that validity is not a measure of the connectivity of molecules

but  only  the  valence  of  atoms.  Novelty  is  the  percentage  of  valid  molecules  among the

generated molecules not included in the training data. In this study, these molecules were
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defined as novel molecules. Uniqueness is the percentage of generated molecules that are

valid as well as unique. This measure indicates the degree of diversity among the molecules

generated. Furthermore, species, the number of unique and connected molecular graphs, was

introduced to clearly represent the number of unique molecules that were derived. The ideal

molecular  generation  model  should  generate  novel,  valid, and  connected  molecules.

Additionally, connectivity, which is the percentage of connected graphs, is  one of the most

important metrics introduced in this study. It indicates the percentage of valid and connected

molecular graphs among the ones generated.

Furthermore, three chemical indicators were used to evaluate the chemical properties of the

generated molecules, QED [24], solubility, and synthetic accessibility (SA) score. In QED,

drug-like  properties  were  calculated  using  a  weighted  geometric  mean  based  on  the

distribution of multiple drug-properties data. Solubility indicates the degree of hydrophilicity

of a molecule, which was quantified by the logP coefficient. This coefficient is defined as the

logarithm of the concentration ratio of different solvents [25]. The SA score indicates the ease

of  synthesis  of  a  molecule  [26].  In  this  experiment,  all  chemical-property  scores  were

manipulated to take values in the range of [0,1]. Note that the property scores of molecules

with disconnected graphs in the L-MolGAN were set to zero as a penalty.

3.3 Model training

MolGAN and L-MolGAN were trained using the Adam optimizer [27] with a learning rate of
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0.0001 to optimize  the QED for all the experiments. Mini-batch training was conducted to

stabilize the learning. The batch size was set to 100. With  an early stopping strategy, the

model training was terminated when the average change in loss during 10 epochs was less

than 1.0% or when the maximum number of epochs (300) had been reached. Mode collapse

[28], a situation where similar data are generated regardless of the arbitrariness of numbers

input to the generator, is one of the crucial issues in GANs. To circumvent this issue, we used

mini-batch training and the early stopping strategy mentioned above.

In another study [7], researchers terminated model training when the uniqueness score fell

below 2.0%. However,  this  cause  the  generated  molecules  to  become more  homogenous

because several  epochs would be  solely  dedicated  to  satisfying  the  termination  criterion.

Therefore, we focused on the average loss change in the training process to determine the

termination criterion, rather than thresholding for each property score.

3.4 Experiment I: Parameter study of learning balance

We investigated the extent to which the value of parameter  λ, which balances the chemical

properties optimization and adversarial learning, affects the characteristics of the generated

molecules.  The optimal  choice  of  λ for  the  molecular  generation  model  was  determined

through this experimental task. The value of  λ was varied from 0.0 to 1.0 in increments of

0.2, and the model was trained in five trials for each value.

As explained earlier, we optimized the QED to generate drug-like molecules. The trained
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model that maximized the sum of validity, novelty, uniqueness, and QED scores was selected

as the reference to evaluate the performance of the molecular generation model.

3.5 Experiment  II:  Performance  comparison  of  proposed

method with existing method

The  proposed  method  and  the  baseline  model  (MolGAN)  were  compared  in  terms  of

performance using the evaluation metrics  described in  Subsection  3.2.  The representative

model for each method was chosen through a parametric study of λ.

3.6 Experiment  III:  Generation  and  evaluation  of  novel

molecules

The proposed method was evaluated in terms of the number of novel drug-like molecules that

can  be  derived.  Here,  new  molecules  were  generated  by  inputting  into  the  pretrained

generator random numbers sampled 5000 times from the standard normal distribution. The

chemical  properties  of  the  generated  molecules  were  evaluated  using  RDKit.  Novel

molecules with the desired chemical properties were identified from the generated molecules.

The 20 molecules with the highest QED scores were chosen, and their chemical properties

were examined in terms of novelty and ease of synthesis.
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In addition, in drug discovery and materials design, the generated molecules should not only

satisfy  a  single  property  (such  as  the  QED)  but  also  possess  other  properties  such  as

synthesizability. Therefore, SA and logP were chosen in addition to the QED to evaluate the

molecules generated in this experiment. However, there is a tradeoff between QED and logP

[29].  There is  no single best  molecule but several  ‘good’ molecules that  exist  within the

envelope of all the generated molecules. Here, we refer to them as ‘dominant molecules’ and

chose  them  in  terms  of  the  three  chemical  properties,  QED,  SA,  and  logP,  for  each

combination of two of the three properties. Furthermore, we classified them into hydrophiles

and lipophiles based on the logP score and verified if the dominant molecules possessed both

the properties. Both hydrophilicity and lipophilicity are important properties considered in

drug design.

4. Results and Discussion

4.1 Experiment I: Parametric study of learning balance λ

The effect of  λ on the molecules generated by the L-MolGAN are summarized in  Table 1.

The table indicates that the mean value of validity increases with an increase in λ, while its

standard deviation decreases. The same tendency was observed for the connectivity and QED

scores. In contrast, the uniqueness decreased as λ increased. We believe this could have been

caused  by  the  occurrence  of  mode  collapse  in  the  model  training,  as  reported  by  a
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conventional study [7]. Consequently, as  λ increases, the generative model becomes more

susceptible to mode collapse. This would also affect the diversity of the generated molecules,

as evidenced by the decrease in the standard deviation of every molecular property index with

an increase in λ.

Table 1 Comparison of properties of molecules generated at different λ by the proposed

method.  Each value indicates the mean and the standard deviation of each metric for five

trials.

λ

Validity

[%]

Uniquen

ess [%]

Novelty

[%]

Connecti

vity [%]

QED SA logP Species

0.0 28.62 ±

6.43

19.66 ±

6.53

100.00 ±

0.00

59.82 ±

15.5

0.62 ±

0.03

0.29 ±

0.05

0.54 ±

0.05

72.60 ±

41.67

0.2 80.72 ±

2.71

8.46 ±

2.40

100.00 ±

0.00

85.57 ±

9.10

0.77 ±

0.04

0.21 ±

0.11

0.59 ±

0.06

138.00 ±

41.74

0.4 94.70 ±

3.34

4.10 ±

4.92

100.00 ±

0.00

95.26 ±

4.92

0.82 ±

0.02

0.12 ±

0.05

0.60 ±

0.04

72.60 ±

41.67

0.6 95.00 ±

3.31

3.21 ±

1.09

100.00 ±

0.00

94.85 ±

5.58

0.85 ±

0.03

0.16 ±

0.07

0.62 ±

0.03

76.80 ±

20.98

0.8 98.79 ±

1.88

0.30 ±

0.11

100.00 ±

0.00

99.81 ±

0.24

0.82 ±

0.05

0.10 ±

0.06

0.55 ±

0.08

10.20 ±

5.12

1.0 96.79 ±

0.21

0.04 ±

0.02

100.00 ±

0.00

100.00 ±

0.0

0.86 ±

0.05

0.16 ±

0.09

0.55 ±

0.11

1.60 ±

0.89
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The average QED score from the training data was 0.76± 0.12. The QED score of the newly

generated molecules for λ = 0.0 was smaller than the average. The scores with other λ values

were greater than the average. Validity, connectivity, and QED for λ = 0.0 were remarkably

smaller than those of the other settings. The generator should be trained not only to improve

the chemical property score, but also to suppress the generation of invalid molecules during

the optimization. However, at  λ = 0.0, the model training was completely dedicated to the

adversarial learning of the generative model, rather than the chemical properties optimization.

It  is  plausible  that  the  overall  performance  at  λ =  0.0  was  the  weakest  because  of  the

generation of several invalid graphs.

From these results, we chose λ = 0.6 as the optimal value, which maximizes the total values

of all the considered evaluation metrics. Furthermore, a single representative model, which

had the largest total value among the five trials for λ = 0.6, was chosen. This setting shall be

used for all subsequent experiments with MolGAN as well as L-MolGAN.

Fig 2 Distribution of QED scores of molecules generated by the proposed method at the

different  λ.  The  black  solid  line  labeled  as  ‘ZINC subset’ indicates  the  distribution  of

molecules included in the training dataset. Kernel density estimation has been used to depict

the  QED  distribution.  Only  the  connected  molecular  graphs  are  used  for  the  density

estimation.
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Fig 2 shows the distribution of QED scores of molecules generated by the proposed method,

estimated using the best-performing generative model for each λ value. Additionally, ‘ZINC

subset’ indicates the distribution of molecules included in the training dataset.

We shall  focus on the peak of each distribution to  determine the effect of  λ. Because each

distribution has multiple peaks, we shall focus only on the highest one. As λ increases, the

peak shifts to a higher QED score. Specifically, when λ was larger than 0.4, the peak shifted

to a higher QED score than that of the training data. From the fact that the model was trained

to maximize the QED score, we confirmed that the model was well-optimized. Note that a

narrower distribution was obtained owing to the mode collapse with a larger λ.

4.2 Experiment  II:  Performance  comparison of  the  proposed

method with existing methods

Table 2 lists the results of the performance comparison between MolGAN and L-MolGAN in

generating molecules. The results confirm the validity, connectivity, and QED scores of the

L-MolGAN were better than those of the MolGAN.

Table 2 Comparison of molecules generated by MolGAN and L-MolGAN

Model Validity Uniqueness Novelty Connectivity QED SA logP Species
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[%] [%] [%] [%]

MolGAN 94.53 5.97 100.00 48.12 0.85 0.47 0.60 44.00

L-MolGAN 98.91 4.88 100.00 94.32 0.88 0.23 0.66 88.00

Particularly, connectivity of graphs saw an improvement of 1.96 times in L-MolGAN over

the existing model. However, the uniqueness and SA of L-MolGAN were worse than those of

MolGAN. This indicates that the molecules generated by MolGAN were more diverse than

L-MolGAN and are relatively easy to synthesize. However, the lower connectivity score of

MolGAN  indicates  the  presence  of  several  disconnected  molecules  in  the  generated

molecules. In this regard, the L-MolGAN is more effective in generating valid as well as

connected molecules than the MolGAN.

In  addition,  the  lower  SA score  in  the  L-MolGAN  suggests  that  the  model  generates

molecular  graphs  with  more  complex  molecular  structures  because  they  have  mostly

connected nodes. Both models generated entirely novel molecules that did not exist in the

training data;  however,  MolGAN had a connectivity score of 48.12%. In contrast,  the L-

MolGAN achieved  a  higher  connectivity  score of 94.32%. These results  suggest  that  the

proposed model  generates larger,  more novel drug-like molecules, and  has more practical

implications for drug discovery compared with the existing method.

Fig 3 Distributions of the QED score in the molecules generated by the representative

models of MolGAN and L-MolGAN. Kernel density estimation has been used to depict the
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QED distribution. Only the connected molecular graphs were used for the density estimation.

Fig 3 illustrates the distribution of QED scores estimated from the molecules generated by the

L-MolGAN  and  MolGAN.  These  distributions  only  represent  the  connected  molecular

graphs.

The average QED values of the training data, MolGAN, and L-MolGAN were 0.76, 0.81, and

0.88, respectively. In Fig 3, the training data and MolGAN have a single peak, whereas L-

MolGAN has two. In addition, the peak positions of the training data and MolGAN were

similar. However, the distribution of MolGAN is narrower than that of the training data and

has higher QED scores than the training data. These results indicate that MolGAN has been

successful at chemical properties optimization.

A closer look at the distribution in L-MolGAN in Fig 3 reveals two large peaks; one is close

to the peak position of the MolGAN and the training data, while the other is located where

the QED score is higher. We hypothesize that the peak in MolGAN and one of the peaks in L-

MolGAN were  close  to  those  of  the  training  data  because  the  optimization  of  chemical

properties was strongly affected by the properties of  mode of the QED distribution in the

training data.

Another peak in the L-MolGAN was located where the QED score was greater than 0.9.

Notably, in this range of QED, the distributions of MolGAN and training data contained few

molecules. This indicates that the L-MolGAN can exploit molecular graphs with better QED
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scores than the MolGAN. We assumed this was so because the L-MolGAN generated many

connected molecular graphs. Improvement in connectivity would contribute to the generation

of substituents and molecular skeletons with higher QED scores. Moreover, because the QED

score is based on the physical properties of a molecular graph, it can be even calculated for

disconnected graphs. For this reason, contrary to our presupposition, the chemical properties

would  be  optimized  for  disconnected  graphs  as  well.  These  results  suggest  that  the  L-

MolGAN can overcome this issue in MolGAN.

4.3 Experiment  III:  Generation  and  evaluation  of  novel

molecules

Fig 4 illustrates a two-dimensional description of the best 20 molecules with the highest QED

scores generated by the optimized generator of L-MolGAN.

Fig  4 Two-dimensional representation of 20 molecules with the best QED scores. The

numbers at the bottom of each molecule represent the corresponding QED, logP, and SA

scores.

Most molecules contained one or two sulfur atoms in their structures. In addition, many had

QED scores of 0.9 or higher, indicating that their chemical properties were superior to those
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of  the  ZINC  dataset.  However,  because  their  SA scores  were  significantly  small,  the

molecules generated may be unrealistic. Therefore, we focused on the relationship between

the structure of the generated molecules and their synthesizability.

1,3-Thiazole was included as the common substructure of the top 20 molecules. Thiazole is a

nitrogen-containing five-membered heterocyclic compound, which is a common skeleton in

molecules used in pharmaceuticals and agrochemicals. The bicyclic ring skeleton was also

found to be a common substructure within thiazole-containing molecules with an SA of 0.0.

This skeleton is composed of five carbon or sulfur atoms bridging the carbon atoms at the 2

and  5  positions  of  the  thiazole  ring.  Nine  out  of  the  top  twenty  molecules  had  these

characteristics. The bicyclic ring skeleton is difficult to synthesize because of the high steric

strain of the molecule.

Fig 5 Three-dimensional representation of the thiazole and bicyclic skeletons.

Fig  5 represents  the  three-dimensional  model  of  the  common  thiazole  and  bicyclic  ring

skeletons included in the generated molecules. Because the thiazole ring skeleton has a planar

structure, the atoms and substituents (i.e., the two methyl groups) in the ring lie on the same

plane because the thiazole ring is aromatic. However, the planarity of the thiazole ring and its

surroundings in the bicyclic ring skeleton is broken. The planarity of the thiazole ring was not

maintained at  the 2 and 5 carbon  positions. This steric strain is affected by the number of
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atoms to be bridged. Therefore, we concluded that they were unrealistic due to  the steric

strain  caused by the  bicyclic  framework.  However,  the  L-MolGAN could  generate  these

molecules,  which  have  not  yet  been  discovered.  Therefore,  it  was  worth  an  attempt  to

synthesize them as drug candidates.

Fig  6 highlights  the  dominant  molecules  chosen  in  the  QED–SA space.  The dotted  line

indicates the envelope of the generated molecules. We confirmed that a tradeoff between the

QED and SA scores, and the existence of eight dominant molecules. The dominant molecules

[A] to [F] with a high QED score had a common cyclic substructure, whereas molecules [G]

and [H] with low QED scores were chain-like. This suggested the potential of heterocyclic

compounds  as oral drugs.  It is plausible that the synthesis became difficult when the ring

structure contained two or more heteroatoms. Consequently, molecules [A] to [C] exhibited

an SA of less than 0.2, and that of molecules [D] to [F] approximately 0.5.

Fig 6 Dominant molecules identified through QED and SA scores ([A] to [H]). The points

indicate  all  the  molecules  generated  by  the  L-MolGAN.  The  dotted  line  indicates  the

envelope of the generated molecules.

Subsequently, the dominant molecules were selected in SA–logP space, as shown in  Fig 7.

The molecule [H] was also chosen in the QED–SA space. We only reported molecules with

higher lipophilicity based on the logP score. The molecule [H] was also chosen in the QED–
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SA space. The dominant molecules with higher lipophilicity in the QED–logP space are also

shown in Fig 8. The molecule [B] was also chosen in the QED–SA space. Several dominant

molecules were sulfur-containing compounds.

Fig  7 Dominant  molecules  with  higher lipophilicity  identified  through SA and logP

scores ([H], [I] and [J]). The points indicate all the molecules generated by the generator of

L-MolGAN. The dotted line indicates the envelope of the generated molecules.

Fig 8. Dominant molecules with higher lipophilicity identified through QED and logP

scores ([B], [K] to [Q]). The points indicate all the molecules generated by the L-MolGAN.

The dotted line indicates the envelope of the generated molecules.

The dominant molecules with higher hydrophilicity in the QED–logP space are shown in Fig

9. Molecules [A] and [C] are also chosen in the QED–SA space. Fig 10 indicates molecules

in  the SA–logP space. Molecules [E], [G], and [H] were  already chosen in  the QED—SA

space. In addition, the molecule [R] was also chosen in the QED—logP space.

Fig 8 Dominant molecules with higher hydrophilicity identified through QED and logP

scores  ([A],  [C],  [R] to [U]).  The points indicate  all  the molecules  generated by the L-

MolGAN. The dotted line indicates the envelope of the generated molecules.
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Fig  9 Dominant molecules with higher hydrophilicity identified through SA and logP

scores ([E], [G], [H], [R] and [V]). The points indicate all the molecules generated by the L-

MolGAN. The dotted line indicates the envelope of the generated molecules.

These results revealed the generation of a variety of dominant molecules by the L-MolGAN.

Although the model was trained to optimize only the QED for drug discovery, a variety of

molecules  were  identified  among  several  combinations  of  the  three  chemical  properties.

Additionally,  there was no best single molecular graph that simultaneously optimized the

three chemical properties or their combinations. This motivated us to search for a variety of

molecular graph among conflicting optimization goals of plural chemical properties. Future

studies should apply  a  multi-objective optimization framework to the proposed method to

search  for  dominant  molecules  with  higher  chemical  property  scores  and  more  diverse

chemical structures and properties.

5. Conclusions

The performance of the MolGAN deteriorates when generating a molecular graph with a

molecular size larger than nine atoms, owing to  the  increase  of  disconnected graphs. This

introduces  challenges  in  the  design  of  drugs  with  large  molecules.  We  addressed  this
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challenge by adding to the MolGAN a molecular graph expansion mechanism that penalizes

disconnected graphs and referred to it as L-MolGAN. The L-MolGAN improved the number

of connected graphs generation on the ZINC-250k molecular dataset by a factor of 1.96,

compared with the  MolGAN. We also confirmed the generation of a variety of drug-like

molecules by the L-MolGAN, even though it was optimized for a single property, i.e., QED.

The L-MolGAN shall contribute to the efficient discovery of new molecules larger than those

generated by the MolGAN.
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