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The strongly attractive noncovalent interactions of charged atoms or molecules with π-systems are
important binding motifs in many chemical and biological systems. These so-called ion-π interac-
tions play a major role in enzymes, molecular recognition, and for the structure of proteins. In this
work, a molecular test set termed IONPI19 is compiled for inter- and intramolecular ion-π inter-
actions, which is well balanced between anionic and cationic systems. The IONPI19 set includes
interaction energies of significantly larger molecules (up to 133 atoms) than in other ion-π test sets
and covers a broad range of binding motifs. Accurate (local) coupled cluster values are provided
as reference. Overall, 19 density functional approximations, including seven (meta-)GGAs, eight hy-
brid functionals, and four double-hybrid functionals combined with three different London dispersion
corrections, are benchmarked for interaction energies. DFT results are further compared to wave
function based methods such as MP2 and dispersion corrected Hartree–Fock. Also, the performance
of semiempirical QM methods such as the GFNn-xTB and PMx family of methods is tested. It is
shown that dispersion-uncorrected DFT underestimates ion-π interactions significantly, even though
electrostatic interactions dominate the overall binding. Accordingly, the new charge dependent D4
dispersion model is found to be consistently better than the standard D3 correction. Furthermore,
the functional performance trend along Jacob’s ladder is generally obeyed and the reduction of the
self-interaction error leads to an improvement of (double) hybrid functionals over (meta-)GGAs, even
though the effect of the SIE is smaller than expected. Overall, the double-hybrids PWPB95-D4/QZ
and revDSD-PBEP86-D4/QZ turned out to be the most reliable among all assessed methods in
predicting ion-π interactions, which opens up new perspectives for systems where coupled cluster
calculations are no longer computationally feasible.

1 Introduction
Ion-π interactions refer to strongly attractive noncovalent interac-
tions (NCI) between ions and mostly organic π-systems.1,2 They
are of crucial importance for many processes in chemistry and bi-
ology, such as controlling the regio- and stereoselectivity in or-
ganic reactions,3,4 enabling important biological processes,5–9

and determining the structures of molecules and proteins.10–13

The application of quantum mechanical (QM) methods in the de-
scription of such ion-π systems is desirable for an in depth under-
standing. Kohn–Sham Density Functional Theory (DFT), with its
vast number of density functional approximations (DFA), is one of
the most promising electronic structure methods for this purpose
regarding accuracy and computational efficiency.14,15 Neverthe-
less, DFT methods have well-known weaknesses, like the one-
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and many-electron self-interaction error (SIE),16–18 errors due to
nondynamical correlation effects,19,20 and the lack of long-range
electronic correlation, so-called London dispersion (LD) interac-
tions.21 The effect on ion-π interactions is shown in this work.

The SIE affects even modern DFAs and may lead to severe
SCF convergence problems,22 artificial charge-transfer (CT),23,24

and inaccurate NCI energies for larger inter-fragment distances.
This is in contrast to Hartree–Fock (HF) theory and second-order
Møller-Plesset perturbation theory (MP2), which are SIE free be-
cause the exchange integrals exactly cancel the self-interaction
contributions from the Coulomb integrals. This behavior is ex-
ploited by hybrid DFAs where a fraction of exact exchange (also
called Fock exchange) is mixed in, partially canceling the SIE.
While large amounts of Fock exchange reduce the SIE, the re-
sulting hybrid DFAs also inherit general shortcomings of HF, e.g.,
a lacking description of Coulomb interactions by overestimating
ionic contributions in the wave function. For a more general dis-
cussion on the one-electron SIE in DFT see, e.g., Ref. 25, and for
the related many-electron SIE see, e.g., Ref. 17.

Mean-field electronic structure methods like HF do not describe
long-range electronic correlation effects and hence cannot ac-
count for LD interactions. This drawback of HF is also present
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in DFT. The absence of LD interactions is long known26 and vari-
ous solutions have been developed in the context of LD-corrected
DFT methods.21,27–30 One strategy to fix the dispersion problem
of conventional DFT has been the development of additive cor-
rections. A popular and frequently used additive scheme is the
“DFT-D3” correction, where the majority of the missing disper-
sion energy is accounted for by summing up the dispersion con-
tributions of each atom pair.21,31,32 Another approach is to add
the nonlocal (NL) correlation energy effects as a function of the
electron density to standard exchange-correlation DFAs, which is
known as van der Waals density functional theory (vdW-DFT),33

or approximations thereof (VV10).34

For the development and testing of state-of-the-art DFT meth-
ods, ion-π interactions as a class of NCIs are of special inter-
est. Symmetry adapted perturbation theory35–37 (SAPT) stud-
ies, which allow the separation into different energy components
namely electrostatics, Pauli repulsion, induction, and LD, re-
vealed that ion-π systems incorporate strong electrostatic and in-
ductive components.38 For highly polarizable systems, however,
also LD were identified as a crucial part of the ion-π interaction.39

For this reason, ion-π interactions present a challenge for the den-
sity functional itself as well as for the added dispersion correc-
tion. In this work we introduce a benchmark set composed of 19
molecules with strong ion-π interactions. It is termed IONPI19
and contains significantly larger molecules than in existing com-
pilations and is well balanced between anionic and cationic sys-
tems. Various common “real-life” binding situations are covered
as they occur in protein structures, molecular recognition, and
supramolecular receptors. Intramolecular ion-π interactions are
included as well. Hence, the IONPI19 set is an interesting test
case for DFT and an important addition to the pool of available
benchmark sets.

As has been shown in previous studies,40,41 well performing
LD-corrected DFAs are able to reproduce coupled cluster refer-
ence interaction energies for cation-anion complexes, represent-
ing the building blocks of ionic liquids. These chemically often
rather saturated systems are less prone to the SIE. Good results
for small charged systems could also be obtained with DFT-D
methods in Refs. 37 and 42, even though the benchmark sets
discussed in these studies are composed of rather small ion-π sys-
tems. In this work, we want to find out if previous trends and
findings also hold true for the IONPI19 set and we want to inves-
tigate the general importance of LD corrections for prototypical
systems composed of cations/anions and π-systems. The com-
mon believe is that ion-π systems are dominated by electrostatic
and inductive interactions39 but little attention has been paid so
far to the importance of LD in this context. In the present work,
we will put a particularly focus on the latter in the framework of
LD-corrected DFT. Also MP2 (see e.g., Refs. 43,44) and variants
thereof45 are common methods for modeling ion-π interactions,
although there are severe and well-known problems such as the
overestimation of NCIs involving π-systems, particularly for π-π
interactions.46–50 Furthermore, similar to other post-HF correla-
tion methods, MP2 is highly susceptible to the basis set superpo-
sition error51,52 (BSSE), which leads to systematic overbinding
with small and medium sized atom-centered basis sets. Due to

persisting popularity of MP2 in NCI studies (see e.g., Refs. 53,54),
it is evaluated here as a competitor method.

To evaluate the performance of the methods mentioned above,
reliable reference values of high accuracy are needed. For small
to medium sized systems (up to about 30 atoms) explicitly corre-
lated coupled cluster composite schemes such as the Weizmann
protocols55 (W1-F12 and W2-F12) have proven to yield highly
accurate reference values. Yet, the respective computational cost
are considerable. For larger systems (up to about 150 atoms),
domain based local pair natural orbital coupled cluster theory
(DLPNO-CCSD(T))56,57 is still computational feasible and was al-
ready successfully applied,58,59 even though the high accuracy
of the Wn-F12 protocols cannot be fully achieved. To reduce
the additional errors due to the local (DLPNO) approximations,
very tight threshold settings have to be applied60 in addition to
a proper complete basis set (CBS) extrapolation, which in turn
also makes these calculations quite computationally demanding.
The high-level reference values calculated in this work can also be
very useful in the development and validation of low-cost meth-
ods, e.g., of special force-fields (FF),61,62 since hardly any reliable
coupled-cluster reference values for ion-π interactions energies of
larger molecules exist so far63 and neither have them been calcu-
lated with such an accurate setup.64 The development of such FFs
and respective workflows is an emerging field of research, espe-
cially with respect to the efficient description of ion-π interactions
in proteins.65,66

First, a brief survey of the employed semi-classical LD-
correction schemes is given followed by a description of the com-
piled IONPI19 benchmark set. Further, the results for this test
set are presented and discussed for all employed methods. An
energy decomposition analysis (EDA) is performed for the disso-
ciation of an ion-π complex to investigate the effect of the SIE for
GGA and hybrid DFAs. Due to significant increases in efficiency,
accuracy, and related popularity, semiempiraical QM (SQM) and
FF methods are additionally tested and evaluated on the IONPI19
set. Timings are compared for all different types of methods with
regard to their accuracy. Finally, general conclusions and method
recommendations will be given.

2 Semi-classical London dispersion correc-
tions

To account for the missing LD interactions in the framework
of DFT (and also HF), we apply two closely related semi-
classical LD-correction schemes. First, the widely used DFT-
D3 method with two-body contributions (only E(2)

disp) with the

standard Becke–Johnson (BJ) rational damping.67,68 Second, we
consider the default version of the recently introduced DFT-D4
scheme69–71 including also three-body Axilrod–Teller–Muto72,73

(ATM) contributions, where the dispersion energy is given by

EDFT-D4
disp = E(2)

disp +EATM
disp . (1)

The basic formula for two-body dispersion interactions is the
same in the D3 and D4 model, where the BJ rational damping
form for the interatomic pair sum is employed,
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Fig. 1 Subset of the IONPI19 benchmark set containing small molecules (≤ 30 atoms). A Systems 1-7 include cation-π interactions. B Systems
8-13 include anion-π interactions.
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with the three fitted damping and scaling parameters a1, a2,
and s8. Here, AB labels atom pairs, and f (R0

AB) = a1R0
AB + a2 is

the BJ damping function with appropriate covalent radii.32

In both methods, the C6 (and C8) coefficients are obtained from
precalculated frequency-dependent time-dependent DFT dipole
polarizabilities.74 In addition to the coordination number depen-
dence in DFT-D3, classical atomic partial charges are included
in DFT-D4, which are calculated by a charge model based on
electronegativity equilibration of Gaussian type charge densities
(EEQ).75 According to many tests on neutral organic systems,
DFT-D3 and DFT-D4 methods provide both accurate asymptotic
dispersion energies of roughly coupled-cluster accuracy21 while
D4 is somewhat superior for ionic or metallic cases.69,76 If this
also holds for the important class of ion-π complexes is one of
the main questions of the present work. Due to the high compu-
tational efficiency of the additive DFT-D schemes, they are also
suitable for low-cost methods including force-fields.77–81

Other popular LD correction schemes exist, e.g., the exchange-
hole dipole method,82–85 the many-body dispersion model,27,86

the van der Waals family of density functionals.87, or the non-
local electron density dependent dispersion correction termed
VV10 or DFT-NL.34,88,89 For comparison, the latter is also tested
in this work. For an in-depth analysis of other LD corrections
and a more general discussion on the importance of LD effects for
chemical bonding, see, e.g., Refs. 21,30.

3 Description of the molecular test set
The composition of the test set aims at both, smaller model sys-
tems as well as experimentally investigated ion-π systems. We
arrived (after considering more than 30 candidate structures) at
a statistically balanced set containing 19 exemplary systems fea-
turing typical ion-π binding motifs. The average system size is
about 32 atoms per molecule with the largest system consisting
of 133 atoms. The test set is divided in smaller (≤ 30 atoms) and
larger (> 30 atoms) systems, of which the first subset is shown in
Figure 1 and the latter in Figure 2. For the ten cationic and nine

anionic systems the mean interaction energy is −20.9 kcal mol−1.
Reference energies and estimated errors for each system as well
as the corresponding computational reference level of theory are
listed in Table 1.

Figure 1A shows the first seven systems of the IONPI19 set
which are all cationic. Systems 1-3 show Li+, Na+, and K+ bound
to benzene. The three alkali-benzene complexes were taken from
the CHB6 benchmark set37,42 with the original reference inter-
action energies obtained at the CCSD(T)/CBS level of theory.
Cation-π interactions are of particular interest for structural bi-
ology as the DNA bases are also able to participate therein. Sys-
tems 4-6 show Na+ in complex with cytosine, Li+ coordinated
to the five-membered ring of adenine, and Na+ in complex with
the five-membered ring of guanine. The systems were taken from
Ref. 90, where reference binding energies were also computed at
the CCSD(T)/CBS level of theory. System 7 was newly added to
this benchmark and consists of anthracene and the cyclopropenyl
cation (C3H3

+). The reference interaction energy of the rigid
monomers was computed at the W1-F12 level.

The anionic systems of the small molecule subset are shown
in Figure 1B. For 8 the anion-π interaction of hexafluorobenzene
(C6F6) and chloride (Cl– ) is achieved by placing strong electron
withdrawing substituents along the π-system. The reference in-
teraction energy was computed at the W1-F12 level. Systems
9-11 show chlorine anions in complex with the six-membered
ring of thymine, adenine, and guanine. These systems and their
respective reference interaction energies were taken from Ref.
90. The test systems 12-14 are newly added to this benchmark
and were taken from a study on designing receptors for molecu-
lar recognition. There, the additivity of anion-π interactions for
1:1, 1:2, and 1:3 (anion:π) complexes of trifluoro-1,3,5-triazine
(C3F3N3) with Cl– ions91 was investigated. All three systems
were newly compiled for the IONPI19 set. Reference energies for
the 1:1 complex were calculated at the W2-F12 level whereas the
1:2, and 1:3 complex were computed at the DLPNO-CCSD(T1) /
VeryTightPNO / CBS(aug-cc-pVTZ/aug-cc-pVQZ) level of theory.

The subset of larger molecules shown in Figure 2 was newly
compiled for this work. 15 and 16 show the electron-deficit
and cavity self-tunable macrocyclic host tetraoxacalix[2]arene-
[2]triazine forming 1:1 complexes with small anions (NO3

– ,
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Fig. 2 Subset of the IONPI19 benchmark containing large molecules (> 30 atoms). System 15-17 show intermolecular ion-π interaction, whereas 18
and 19 are examples for intramolecular ion-π interactions.

SCN– ) as revealed by Wang and co-workers.92 In complex, the
two opposing triazine rings of tetraoxacalix[2]arene[2]triazine
act as a pair of tweezers to interact with the included anions
through cooperative anion-π and lone-pair electron-π interac-
tions. The supramolecular cyclophane host-guest complex 17 is
another interesting test system of practical relevance. This com-
plex is able to catalyse N-alkylation to form cationic products via
the Menschutkin reaction,93 where it is assumed that the cation-
π interaction plays a central role in catalysis. Hence, it is of rel-
evance for the understanding of several biological methylation
reactions.94 For intramolecular ion-π interactions two test cases
were chosen in which cation-π interactions contribute signifi-
cantly to the stability of conformations.58 18 is based on a study
of Dougherty et al.,95 who proposed that the neurotransmitter
acetylcholine can bind to acetylcholinesterase through cation-π
interactions. A simplified system is taken from Ref. 96, where the
folded ester conformation is proposed to be more stable than the
unfolded one. For the isosteric 3,3-dimethylbutyl indole-3-acetate
(i.e., replaced ammonium nitrogen with carbon), an analogous
folding is not observed. This implies that the cationic nature of
the quaternary trimethylammonium group is responsible for this
preferable association with the indole ring through cation-π in-
teractions. Folded and unfolded conformations were generated
with the recently published CREST algorithm.97 19 contains mul-
tiple interaction motifs that are able to compete with each other.
This seesaw balance98 adopts two distinct conformations that are
either stabilized by cation-π or by π-π interactions. Experimen-
tal 1H-NMR studies54,99 in solution proposed that the cation-π
bound conformer is stabilized by about 1.5 kcal mol−1.

We are aware that intramolecular ion-π interactions introduce
difficulties for fragment based methods such as SAPT. Therefore,
full statistics are also given in the ESI† (Table S11, S12) for the
IONPI17 set, where the intramolecular test cases (18 and 19) are
excluded.

Table 1 Summary of the reference interaction and association energies
∆E and methods for the IONPI19 benchmark set. Values are given in
kcalmol−1.

System ∆ERe f . Estimated error Reference

1 -39.1 ± 0.8 (2.0 %) 37a)

2 -25.6 ± 0.5 (2.0 %) 37a)

3 -19.9 ± 0.8 (4.0 %) 37a)

4 -14.8 ± 0.2 (1.5 %) 90b)

5 -25.7 ± 0.4 (1.5 %) 90b)

6 -19.7 ± 0.3 (1.5 %) 90b)

7 -21.5 ± 0.2 (1.0 %) this workc)

8 -14.6 ± 0.2 (1.0 %) this workc)

9 -10.4 ± 0.1 (1.0 %) 90d)

10 -1.9 < 0.1 (1.0 %) 90d)

11 -5.7 ± 0.1 (1.0 %) 90d)

12 -18.6 ± 0.1 (0.5 %) this worke)

13 -33.7 ± 0.8 (2.5 %) this workf)

14 -45.0 ± 1.1 (2.5 %) this workf)

15 -29.4 ± 0.6 (2.0 %) this workg)

16 -26.3 ± 0.5 (2.0 %) this workg)

17 -37.2 ± 1.9 (5.0 %) this workh)

18 -5.0 ± 0.1 (2.5 %) this workf)

19 -2.4 ± 0.1 (2.5 %) this workf)

mean -20.9 ± 0.5 (2.2 %)

a) CCSD(T)/deltaCBS + counterpoise correction (details: see original publication).
b) CCSD(T)/deltaCBS + counterpoise correction + modified frozen core approximation, i.e.,

Li+ = 1s2 (no core) and Na+ = [He]2s22p6 ([He] core) (details: see original publication).
c) W1-F12.
d) CCSD(T)/deltaCBS + counterpoise correction (details: see original publication).
e) W2-F12.
f) DLPNO-CCSD(T1)/VeryTightPNO/CBS(aug-cc-pVTZ/aug-cc-pVQZ).
g) DLPNO-CCSD(T1)/VeryTightPNO/CBS(aug-cc-pVTZ/aug-cc-pVQZ) + counterpoise correc-

tion and deformation energy.
h) DLPNO-CCSD(’T1’)/VeryTightPNO/’CBS(def2-TZVPP/def2-QZVPP)’ + counterpoise correc-

tion and deformation energy.

4 Computational details
Typical DFAs from different classes of Jacob’s ladder combined
with the large def2-QZVPP basis set100,101 were evaluated for
the IONPI19 benchmark set. The DFA selection is based on re-
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sults for previous benchmark studies42 and on their popularity
in the computational chemistry community.102 All DFAs were as-
sessed with the D3 and D4 London dispersion correction in the
Becke–Johnson scheme and/or the nonlocal density-dependent
NL (VV10) treatment in a non self-consistent form. For M06-L103

and M06-2X104 D3 was applied with zero damping.31 D3 and D4
dispersion corrections were calculated with the dftd3 and dftd4
standalone programs.105 The ORCA106 implementation was used
for ωB97X-D3BJ and to calculate all NL corrections. A list of the
tested DFAs and dispersion correction combinations is given in
Table 2.

Table 2 Tested DFAs and dispersion correction combinations.

Functional D3 D4 NL Reference

composite (3c)
PBEh-3c 3 5 5 107
B97-3c 3 5 5 59
r2SCAN-3c 5 3 5 108

(meta-)GGA
PBE 3 3 3 109
M06-L 3 3 5 103
TPSS 3 3 3 110
r2SCAN 3 3 3 111,112
B97M 3 3 3 113

hybrid
M06-2X 3 5 5 104
MN15 5 5 5 114
PBE0 3 3 3 115
PW6B95 3 3 3 116
B3LYP 3 3 3 117,118
ωB97M 3 3 3 119
ωB97X 3 3 3 120

double-hybrid
B2PLYP 3 3 3 121
revDSD-PBEP86 5 3 5 122
revDSD-BLYP 5 3 5 122
PWPB95 3 3 3 123

All composite (“3c”) DFT and r2SCAN calculations were per-
formed using the TURBOMOLE 7.5.1 program package.124,125

Computations of energies and geometry optimizations were con-
ducted using the ridft and jobex programs of TURBOMOLE, re-
spectively. The resolution-of-identity (RI) approximation for the
Coulomb integrals was always applied using matching default
auxiliary basis sets.126,127 For the integration of the exchange-
correlation contribution, the numerical quadrature grid m4 was
employed. The default convergence criteria (10−7 Eh for energies
and 10−5 Eh/bohr for gradients) were used throughout.

All other DFT, HF, MP2, and local coupled cluster calcu-
lations were carried out with the ORCA 4.2.1 program pack-
age.106,128 The frozen core and RI approximations for the cor-
relation part as well as TightSCF convergence criteria for the
HF energy was employed for all double-hybrids, MP2, and CC
methods. The domain based pair natural orbital local cou-
pled cluster method56 in its sparse maps57 iterative triples129

implementation (DLPNO-CCSD(T1)) employing VeryTightPNO60

threshold settings was applied. An aug-cc-pVTZ/aug-cc-pVQZ130

and def2-TZVPP/def2-QZVPP CBS extrapolation according to the
schemes proposed by Helgaker/Klopper131 (aug-cc basis sets) or
Neese/Valeev132 (def2 basis sets) was carried out for DLPNO-

CCSD(T1). Matching auxiliary basis sets were applied for the
density fitting.133 DLPNO-CCSD(T1)/VeryTightPNO/CBS(aug-cc-
pVTZ/aug-cc-pVQZ) values were in general counterpoise (CP)
corrected unless for the 1:2 (13) and 1:3 (14) complexes of
C3F3N3 with Cl– , as the corresponding calculations with and
without CP correction for the 1:1 complex (12) revealed a negli-
gible residual BSSE of only 0.01 kcal mol−1. Detailed information
about the reference calculation for each system are shown in Ta-
ble 1. To validate the accuracy of the DLPNO-CCSD(T) reference
values and to determine if some of the systems show multiref-
erence character, a T1 diagnostic according to Ref. 134 was per-
formed (see ESI† Table S10). Empirically, a value larger than 0.02
may indicate significant nondynamical correlation.135 This is not
the case for the systems in the IONPI19 set, where the largest
value is 0.017 for adenine in system 4. The small to moderate
values of the maximum T2 amplitudes (largest value 0.067 for
anthracene in 7) further indicates that no problematic systems in
terms of nondynamical correlation are included in the IONPI19
benchmark.136

CBS extrapolation was also performed for MP2. The MP2/CBS
schemes correspond to the DLPNO-CCSD(T1) extrapolations
for the individual systems. For 1,2, and 6 MP2/CBS(aug-
cc-pCVTZ/aug-cc-pCVQZ) was employed without RI since the
AutoAux133 basis showed linear dependencies. For 3 RI-
MP2/CBS(aug-cc-pVTZ/aug-cc-pVQZ) was employed for C6H6

and RI-MP2/CBS(def2-TZVPPD/def2-QZVPPD) for K+ as no non-
relativistic “aug basis” was available. Corresponding auxiliary
basis sets were employed. RI-MP2/CBS(aug-cc-pCVTZ/aug-cc-
pCVQZ) (AutoAux133 option in ORCA 4.2.1) was employed for
4 and 5. For all systems 1-6, the Boys-Bernadi CP correction
was applied. The interaction energy of systems 7-16 was cal-
culated without CP correction by RI-MP2/CBS(aug-cc-pVTZ/aug-
cc-pVQZ) including the corresponding auxiliary basis sets. For 17,
RI-MP2/CBS(def2-TZVPP/def2-QZVPP) was employed including
the corresponding auxiliary basis sets, the CP correction, and de-
formation energy. RI-MP2/CBS(aug-cc-pVTZ/aug-cc-pVQZ) with
the corresponding aux basis sets but without CP correction was
employed for 18 and 19. In general, the CP correction was ap-
plied only when basis set size or CBS extrapolation were not suf-
ficient enough to minimize the BSSE.

For the largest test system 17, a slightly more approximate CBS
extrapolation scheme was employed for the local coupled clus-
ter correlation energy since the full def2-QZVPP calculation was
computationally unfeasible with the latter method. It is labelled
as CBS/’def2-TZVPP/def2-QZVPP’ in the following and refers to a
multiplicative scaling of the DLPNO-CCSD(’T1’) correlation en-
ergy by the quotient of the respective CBS(def2-TZVPP/def2-
QZVPP) and def2-TZVPP MP2 correlation energies. A similar CBS
protocol was already successfully employed in Ref. 58. Note that
the iterative correction to the triples correlation energy was cal-
culated with the def2-TZVPP101 basis set (labeled as ’T1’) for this
test system. The fact that the iterative triples could only be cal-
culated with the def2-TZVPP basis set introduces a small addi-
tional error in the difference between iterative and non-iterative
triples, but this is not significant since this correction amounts to
0.5 kcal mol−1 only and given that the estimated total error of
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Fig. 3 Comparison of the performance of the D3(BJ), D4(BJ)-ATM, and NL dispersion corrections for different DFAs and HF on the IONPI19
benchmark set.

the total association energy is ≈1.9 kcal mol−1. The high-level
composite explicitly correlated coupled cluster protocols W1-F12
and W2-F1255 were applied with the Molpro program package V.
2015.1.137,138

For systems 1-6 the Boys-Bernardi counterpoise correction139

was applied for HF and all non-"3c" DFAs, which do not feature
a fixed, composite basis set. This was because the alkali metal
ion complexes showed a systematic overestimation of the inter-
action energy for all assessed DFT methods, which was not ob-
served for the other 13 systems of the IONPI19 set. The CP cor-
rection reduced this BSSE on average by 0.3 kcal mol−1. The CP
uncorrected values, are given in the ESI† in Table S14. Struc-
tures that were newly generated for the IONPI19 benchmark set
(7, 8, 12-19) were all optimized at the PBEh-3c107 level of the-
ory. Lowest energy molecular conformers were obtained from
the advanced conformer rotamer ensemble sampling tool97,140

(crest) in its default settings at the GFN2-xTB141,142 level fol-
lowed by DFT geometry re-optimizations at the PBEh-3c level of
theory. All SQM and FF calculations were performed with the
xtb 6.3.2143 (GFN1-xTB,144 GFN2-xTB, GFN-FF77), and MOPAC
2016145 (PM6-D3H4X,146 PM7147) program packages.

5 Results and discussion
In section 5.1 the performance of all tested DFAs and WFT meth-
ods for the IONPI19 set is presented and discussed. The disso-
ciation curve of an ion-π complex is shown in section 5.2. SQM
and FF methods are evaluated in section 5.3 and a comparison of
computation times is given in section 5.4.

5.1 Benchmark study on IONPI19

A representative set of different DFAs including five (meta-)GGAs,
seven hybrid functionals, and four double-hybrid (DH) function-
als was assessed. In addition, HF and MP2 were tested. Further-
more, the recently developed efficient composite DFT-D methods
B97-3c (GGA), r2SCAN-3c (meta-GGA), and PBEh-3c (hybrid) are
evaluated in comparison. Moreover, three correction schemes for
capturing long-range London dispersion interactions with DFAs
were applied, the D3 correction with Becke-Johnson (BJ) or zero

(0) damping, the newly developed D4 correction with three-body
ATM contributions, and the nonlocal dispersion correction (VV10)
in its nonself-consistent implementation. First, we want to deter-
mine which combination of DFA and dispersion correction works
best for the compiled IONPI19 benchmark set. The performance
in terms of the mean absolute deviation (MAD) from the refer-
ence values of a subset of DFAs, for which all three dispersion
corrections are available, is shown in Figure 3.

With a mean MAD of 0.9 kcal mol−1 averaged over all 12 tested
methods, the recently introduced charge scaled D4 scheme out-
performs its predecessor D3, which yields a mean MAD of 1.3
kcal mol−1. Considering the mean interaction energy ∆E of -20.9
kcal mol−1, this improvement is significant. The nonlocal dis-
persion correction perform on average equally good as the D4
scheme with a mean MAD of also 0.9 kcal mol−1. Yet, this is
mostly due to the better performance of the NL correction within
the B97M-V and ωB97X-V functionals, which were developed to-
gether with the VV10 correction (see Refs. 113, 119). To further
investigate the origin of the difference in performance between
the D3 and D4 scheme, the role of three-body contributions is
taken into account. The results are shown in Figure 4. Here, the
ATM term which is default in DFT-D4 was also added to the D3
correction.

Adding the three-body ATM term to the D3 scheme on average
improves the mean MAD from 1.3 kcal mol−1 to 1.2 kcal mol−1,
which is still clearly off the accuracy of the D4-ATM approach
with a mean MAD of 0.9 kcal mol−1. As an extension to the ATM
term, the many-body dispersion (MBD) approach by Tkatchenko–
Scheffler has also been tested27 in combination with the D4
scheme. Again, the MAD is shown in comparison to respective
reference values. Exchanging the ATM term by the MBD approach
has nearly no effect, the MADs are only very slightly larger. This
proves that the three-body term in D4-ATM is not the reason
for the improvement over the D3 scheme for the IONPI19 but
the incorporation of atomic partial charges in D4 yielding charge
scaled polarizabilities. The rather negligible contribution of three-
body effects is further confirmed by the previous discussed good
performance of the NL correction, which also does not include
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Fig. 4 Comparison of the performance of D3(BJ), D3(BJ)-ATM, D4(BJ)-ATM, and D4(BJ)-MBD dispersion corrections for different DFAs on the
IONPI19 benchmark set. The LD-uncorrected results are shown for comparison.

ATM or MBD terms. Another important fact that can be taken
from Figure 4 is the general influence of the dispersion correc-
tion. It is shown that LD-uncorrected DFT underestimates ion-
π interactions significantly, even though electrostatic interactions
dominate the overall binding. The mean MAD without an LD
correction amounts to 4.0 kcal mol−1. This is in line with SAPT
studies, which revealed, that for polarizable systems also LD in-
teractions contribute a crucial part of the ion-π interaction.39 In
general, LD-corrections improve also the Minnesota-type func-
tionals (with D3(0)), although to a smaller extent, since they al-
ready capture some dispersion interactions at intermediate inter-
atomic distances by density dependent terms and their parame-
terization. Yet, on this specific ion-π benchmark no improvement
was achieved neither with the D3 nor the D4 scheme. Hence,
the LD-uncorrected functionals M06-L, M06-2X, and MN15 will
be discussed in the following.

Figure 5 shows the statistical data of the performance for the
best combinations of all tested DFA and LD corrections. The effi-
cient composite DFT methods, HF, and MP2 are also included for
comparison. The assessed DFAs perform on average as expected
according to the picture of “Jacob’s Ladder” and resemble closely
the results for the extensive GMTKN55 main group benchmark
set.42 The tested (meta-)GGA functionals yield a mean MAD of
1.0 kcal mol−1 and mean SD of 1.2 kcal mol−1. With an MAD of
0.7 kcal mol−1 the newly developed r2SCAN-D4 functional is the
best performing DFA, closely followed by the B97M-V functional
with an MAD of 0.8 kcal mol−1. TPSS-D4 and PBE-D4 perform
reasonably well at the limit of chemical accuracy (1.0 kcal mol−1)
with 1.0 kcal mol−1 and 1.1 kcal mol−1, respectively. The worst
among all tested DFAs is M06-L with an MAD of 1.5 kcal mol−1.
Also, while most (meta-)GGAs tend to systematically overbind the
IONPI19 set (MD < 0), M06-L is the only DFA thereof with a sig-
nificant positive MD of 1.4 kcal mol−1.

An improvement is obtained with hybrid DFAs. The mean
MAD and SD are reduced to 0.8 kcal mol−1 and 1.0 kcal mol−1,
respectively. The MD is negative for all hybrids, indicating a
small systematic error. Out of all tested hybrid DFAs, B3LYP-NL,
MN15, ωB97X-V, and ωB97M-D4 perform best with an MAD of

0.7 kcal mol−1, followed by PW6B95-D4 and PBE0-D4 with an
MAD of 0.8 and 0.9 kcal mol−1, respectively. The smallest SD is
obtained by B3LYP-NL (0.8 kcal mol−1). The global-hybrid MN15
is the best performing Minnesota-type hybrid functional. It clearly
improves upon M06-2X (54 % of Fock-exchange), which yields an
MAD of 1.1 kcal mol−1 and also has the largest MD and SD among
all tested hybrid DFAs with −0.9 kcal mol−1 and 1.2 kcal mol−1,
respectively. Overall, the improvement from (meta-)GGAs to hy-
brid DFAs is rather small. Hence, the SIE seems to be less severe
for the IONPI19 set since the (meta-)GGAs are able to compete
with the hybrid functionals. This observation is consistent with
the fact that the DFA with the largest amount of Fock-exchange
(M06-2X) performs worst. Tentatively it seems that at some point
around 30 to 40 % Fock-exchange contribution in the hybrid func-
tional, the results are not improved anymore.

Going to double-hybrid functionals, the mean MAD and SD
are further reduced to 0.6 kcal mol−1 and 0.8 kcal mol−1, re-
spectively. The best performing DFAs are revDSD-PBEP86-D4
(0.4 kcal mol−1MAD, 0.5 kcal mol−1SD) and PWPB95-D4 (0.5
kcal mol−1 MAD, 0.6 kcal mol−1 SD), which both nearly approach
the accuracy of the reference values. This generally good perfor-
mance is in agreement with the conclusions of other benchmark
studies.42 revDSD-BLYP-D4 has an MAD of 0.6 kcal mol−1 and
the DH-DFA with the largest deviation from the reference values
is B2PLYP-D4 (0.7 kcal mol−1 MAD), whose performance is com-
parable to the best hybrid DFAs. It is noticeable, that B2PLYP-D4
shows the largest error range out of all DFAs discussed so far. The
reason therefore is the overestimation of the association energy
of 17 by −5.1 kcal mol−1 indicating an outlier of B2PLYP. For
17, which is the largest system from the test set, a CBS(def2-
TZVPP/def2-QZVPP) extrapolation and counterpoise correction
were employed for MP2 to correct for the BSSE and basis set in-
completeness error. To find out if this is also necessary for double-
hybrids which include perturbative correlation energy terms, the
same scheme was also applied for PWPB95-D4. The correspond-
ing correction for MP2/CBS amounts to 1.3 kcal mol−1, whereas
a correction of only 0.4 kcal mol−1 was obtained for PWPB95-
D4/CBS, which is less than the mean estimated error of the entire
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Fig. 5 Deviations of calculated ion-π interaction energies with different DFT and WFT methods for the IONPI19 set. The minimum deviation and
maximum deviation for each data set is shown as range together with the first and third quartiles as central box for each data set, the inter-quartile
range contains 50 % of the data set. Additionally, the mean and median deviation are depicted as dot and vertical bar, respectively.

IONPI19 set (± 0.5 kcal mol−1) Hence for the IONPI19 set, a CBS
extrapolation is not necessary for DH-DFAs if they are employed
together with the relatively large def2-QZVPP basis set.

The basic philosophy of “3c” composite methods is to provide
a consistent description, i.e., without systematic deviations to
as low as possible computational cost. Hence, small but well-
balanced atomic orbital (AO) basis sets are employed, while the
remaining basis set errors are corrected by a geometrical counter-
poise correction or in case of B97-3c absorbed into the DFA itself
via a slight reparameterization. DFT-3c methods are tested on the
IONPI19 set to investigate whether the electrostatics of ion-π in-
teractions are sufficiently described also without large amounts
of polarization functions as in the def2-QZVPP basis set. PBEh-
3c with its modified SVP basis yields a rather large MAD of 3.5
kcal mol−1 and SD of 4.4 kcal mol−1. B97-3c performs already
significantly better with a modified TZVP basis, yielding an MAD
of 1.4 kcal mol−1 (SD = 1.8 kcal mol−1). Best performing “3c”
method is the very recently developed r2SCAN-3c functional with
an MAD and SD of 1.3 kcal mol−1 and 1.4 kcal mol−1, respec-
tively. Compared to, e.g., the well-established TPSS-D4 meta-
GGA with the large def2-QZVPP basis set, r2SCAN-3c yields only
a 0.3 kcal mol−1 larger MAD, whilst being one order of magni-
tude faster. Due to the relatively small but well balanced mTZVP
basis set, the calculations need only a fraction of computation
time compared to the large def2-QZVPP calculations. Hence, the
performance of r2SCAN-3c is promising for large scale computa-
tional studies of this type of chemistry. A more detailed look at
computation times is given in section 5.4.

For ion-π interactions, the MP2/CBS method (2.0 kcal mol−1

MAD) can not reach the accuracy of good DFAs, despite the appli-
cation of computationally demanding CBS extrapolation schemes.
As expected, the ion-π and π-π interactions are systematically

overestimated, a trend which was not observed for DH-DFAs. The
largest deviation from the reference is obtained for 17, where
the association energy is overestimated by −15.2 kcal mol−1 with
MP2/CBS. In general, MP2/CBS can not be recommended for the
description of ion-π interactions. Here, DFT good CP corrected
DFAs offer higher accuracy at significantly lower computational
cost and without CBS extrapolation. Much better results are ob-
tained by HF-NL. The MAD of 1.1 kcal mol−1 is comparable to
good performing (meta-)GGAs. Since Hartree–Fock is SIE free,
the remaining error is mainly due to the comparably poor de-
scription of electrostatic interactions.

Fig. 6 Functional mean deviation from the reference values calculated
as the average of all tested DFAs (“3c” methods excluded).

The calculation of the functional mean deviation (MD) is
shown in Figure 6. Here, the deviation from the reference aver-
aged over all DFAs is given per system. The composite DFT meth-
ods are excluded due to the different basis set size. The functional
mean is a good indication, whether certain subsets (cation, an-
ionic, large systems) or individual systems of the IONPI19 bench-
mark are particular challenging or show systematic errors. The
largely inconspicuous course of the curve presented in Figure 6
indicates a statistically well-balanced test set, without major out-
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Table 3 Energy decomposition analyses of the C6F6· · ·Cl– complex for PBE-D4 and PBE0-D4. The total interaction energy (INT), the electrostatic
(ES), the Pauli repulsion (REP), the short-range DFA correlation (CORR), and the LD contributions are listed. All values are given in kcalmol−1.

CMA distance of C6F6· · ·Cl–

5 a0 6 a0 7 a0 8 a0

DFA PBE PBE0 PBE PBE0 PBE PBE0 PBE PBE0

INT -5.1 -5.6 -13.4 -13.5 -11.7 -11.5 -8.7 -8.5
EL -34.0 -33.5 -12.2 -12.4 -6.1 -6.5 46.3 -4.4
REP 55.8 53.8 13.8 12.9 3.1 2.9 -47.7 0.5
CORR -24.4 -23.5 -13.1 -12.2 -7.6 -6.7 -6.8 -3.9
LD‡ -3.3 -2.9 -2.5 -2.3 -1.7 -1.6 -1.1 -1.1

∆ref † 1.9 1.7 0.5 0.6 -0.3 0.0 -0.6 -0.3

† ∆ref = Ecalc
INT −Eref

INT. ‡ LD contribution calculated with D4.

liers. The average ratio of 1.3 of the MAD to the SD is a further
indication of a normal distributed test set.148 Neither the systems
size, nor the anions or cations induce systematic errors. Yet, it
is noticeable that the largest functional MDs occur for 3 and 17
with ±1.1, respectively. For many tested DFAs these two systems
determine the error range e.g., TPSS-D4, ωB97M-D4, B3LYP-NL,
and B2PLYP-D4. System 3 is the only K+ containing complex.
Here, the error seems to be attributed more to the def2-QZVPP
basis set than to the DFAs.37 For the largest and most complex
system of the IONPI19 set 17, a proportionally larger error can
be expected. The estimated error of the DLPNO-CCSD(T1)/CBS
reference amounts to 1.9 kcal mol−1 and hence, the functional
MD is well below this value.

5.2 Dissociation of ion-π complexes

The results presented for equilibrium geometries (vide supra) did
not suggest a major influence of the SIE on the interaction en-
ergies of the IONPI19 set. Now, we want to investigate if the
SIE becomes more severe for the GGA and meta-GGA classes of
DFAs when looking at the dissociation of an ion-π complex. Fig-
ure 7 shows the dissociation curves of C6F6 and the chloride an-
ion (system 8) computed with PBE-D4, TPSS-D4, PBE0-D4, and
MP2/CBS in comparison to the W1-F12 reference for five differ-
ent CMA distances within a range of 5 - 8 bohr.

For shorter distances (5 - 6 bohr), all tested DFAs perform sim-
ilarly and slightly underbind compared to the reference values,
whereas MP2/CBS tends to overbind. For larger distances (6 - 8
bohr), all tested methods are reasonably close to the reference.
On first sight, also for this system the SIE seems to be less severe
since the (meta-)DFAs are able to compete with the hybrid func-
tional (cf. PBE vs. PBE0) and the difference is marginal. To better
understand this observation we conducted an EDA149 for PBE-D4
and PBE0-D4 to investigate the effect of Fock exchange at four
CMA distances taken from the dissociation curve in Figure 7 from
5 to 8 bohr, see Table 3).

For all tested CMA distances, PBE0-D4 is only slightly more
accurate with an MAD of 0.7 kcal mol−1 than PBE-D4 (0.8
kcal mol−1). The EDA interaction energy (INT) is calculated
as the sum of electrostatics (EL), Pauli repulsion (REP), DFA
correlation (CORR), and LD contributions. Table 3 lists devi-
ations from W1-F12 reference interaction energies (denoted as

Fig. 7 Intermolecular potential energy curve of C6F6 and the chloride an-
ion (Cl– ) obtained with PBE-D4, TPSS-D4, PBE0-D4, and MP2/CBS.
All DFT calculations were performed in a def2-QZVPP basis set.

∆ref = Ecalc
INT − Eref

INT) for both DFAs. At CMA distances of 5, 6,
and 7 bohr no significant SIE related issues occur and the en-
ergy contributions of PBE-D4 and PBE0-D4 are on the same or-
der of magnitude. This changes, however, for the largest CMA
distance of 8 bohr, where PBE-D4 results in nonphysical contri-
butions for EL (repulsive) and REP (attractive) of 46.3 and -47.7
kcal mol−1, respectively. This error is probably due to a viola-
tion of the Perdew–Parr–Levy–Balduz condition,150–154 meaning
that the total electronic energy as a function of electron num-
ber under a fixed external potential is not interpolating straight
between integers. For GGA methods, this usually results in over-
delocalization errors16,155 and thus, the SIE becomes a problem
for dissociating ion-π systems. Yet, despite the nonphysical con-
tributions for EL and REP, an accurate PBE-D4 total interaction
energy is obtained based on fortuitously error compensation.

5.3 Performance of SQM methods
In recent years, semiempirical QM (SQM) methods have become
increasingly popular due to significant improvements in accuracy
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Fig. 8 Deviations of calculated ion-π interaction energies with SQM and
FF methods for the IONPI19 set. The minimum deviation and maximum
deviation for each data set is shown as range together with the first
and third quartiles as central box for each data set, the inter-quartile
range contains 50 % of the data set. Additionally, the mean and median
deviation are depicted as dot and vertical bar, respectively. The asterisk
indicates that systems with wrong topology assignments were excluded
for GFN-FF.

and applicability.142 Two widely used examples are the NDDO-
based PMx146,147 methods and the more recently developed ex-
tended tight-binding methods of the GFNn-xTB141,142,144 fam-
ily. The latter proved to be in general more robust and accu-
rate for structure optimization and noncovalent interactions. Re-
cently, also a partially polarizable generic FF has been introduced,
termed GFN-FF,77 which is a promising, generally applicable can-
didate for a very efficient description of noncovalent interactions.
In this section, the performance of the introduced SQM and FF
methods is tested for the IONPI19 benchmark set. The statistical
data are summarized in Figure 8.

Out of the four tested SQM methods, GFN2-xTB is the best per-
former with an MAD of 4.7 kcal mol−1, followed by GFN1-xTB
(6.8 kcal mol−1 MAD). PM6-D3H4X and PM7 show larger devia-
tions from the reference with an MAD of 7.9 and 18.8 kcal mol−1,
respectively. With GFN-FF, the topology assignment is initially
wrong for the Li+ containing systems 1 and 5, where the coordi-
nation number of Li+ is six rather than zero. Hence, these systems
are excluded from the statistical evaluation indicated in Figure 8
by the asterisk. To circumvent wrong topology assignments, the
topology file can be generated on the GFN-FF equilibrium struc-
ture. For the remaining 17 systems, an MAD of 11.9 kcal mol−1 is
achieved indicating that for the tested ion-π interactions the clas-
sical charge model in GFN-FF reaches is accuracy limits. In com-
parison to previous studies on mostly neutral NCI complexes,79

the overall trend among the tested SQM and FF methods is com-
parable, but the absolute errors are much larger. This is mainly
due to the large contribution of the electrostatics to the total in-
teraction energy of ion-π systems. Thus, it is not surprising, that
GFN2-xTB performs best out of all tested SQM methods, as it con-
tains a sophisticated multipole electrostatic model. The combina-

Fig. 9 Total wall time for the single point energy of 15 calculated by
the best performing methods of each theoretical level in parallel on ten
Intel© Xeon E5-2660 v4 @ 2.00GHz CPUs.

tion of sufficient accuracy with computational efficiency in GFN2-
xTB is promising for large scale applications of ion-π interactions
in biomacromolecular systems. Nevertheless, the description of
electrostatic/induction interactions by SQM and FF methods can
not reach the same accuracy as the tested DFAs.

5.4 Timing comparison
The cost to accuracy ratio is evaluated for the best performing
methods of the assessed levels of theory. Computational tim-
ings for the single point (SP) calculations of 15 are shown in
Figure 9 in combination with the respective MAD of the en-
tire IONPI19 set. The wall times are given in seconds on a
logarithmic scale and were calculated in parallel on ten CPU
cores. With 42 atoms, 15 is well suited as a representa-
tive for the IONPI19 set, where the average system size is
about 32 atoms per molecule. The calculation of the refer-
ence values at the DLPNO-CCSD(T1)/VeryTightPNO/CBS(aug-cc-
pVTZ/aug-cc-pVQZ) level of theory took about three months. RI-
MP2/CBS(aug-cc-pVTZ/aug-cc-pVQZ) calculations lasted more
than six days and resulted in an MAD of 1.9 kcal mol−1. DFT
methods show significant improvements in the total wall time
compared to the MP2/CBS schemes. PWPB95-D4 and B3LYP-
NL SP calculations in the large def2-QZVPP basis set converge
within a few hours and show lower MADs than MP2/CBS. Here,
the double-hybrid PWPB95-D4 is almost as fast as B3LYP-NL, be-
cause the MP2 part employing the RI approximation takes up only
5 % of the total wall time. Also the PWPB95-D4 calculation re-
quires one SCF iteration cycle less to converge than B3LYP-NL.
The meta-GGA B97M-V SP calculation finishes within ten min-
utes and the MAD (0.8 kcal mol−1) is still within chemical accu-
racy (1.0 kcal mol−1). r2SCAN-3c reaches almost equal accuracy
whilst being one order of magnitude faster. With MADs close to
chemical accuracy, meta-GGA functionals yield in general the best
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cost to accuracy ratio. GFN2-xTB significantly reduces the compu-
tational wall time further to less than a second but the underlying
approximations increase the MAD to 4.7 kcal mol−1. GFN-FF as
the only assessed FF method is yet two orders of magnitude faster
than GFN2-xTB.

6 Conclusions
In this work, a comprehensive benchmark set was compiled for
a wide range of ion-π interactions. This IONPI19 set represents
a diverse set of (bio)chemically relevant molecules, also of larger
size and consists of 19 molecular structures that cover inter- as
well as intramolecular interactions between anions/cations and
π-conjugated systems. The IONPI19 set was used to benchmark
various DFAs as well as HF, MP2, SQM, and FF methods. For all
DFAs without fixed basis sets and HF, a large def2-QZVPP basis
set was applied. In the context of DFT, a main focus was put on
the effect of the self-interaction error and of London dispersion
interactions for ion-π interactions. Second-order Møller-Plesset
perturbation theory extrapolated to the complete basis set limit
(MP2/CBS) and Hartree–Fock were evaluated as computationally
more expensive but self-interaction error free competitors. Ref-
erence interaction and association energies were generated with
high-level coupled cluster (CCSD(T)/CBS, W1-F12, W2-F12, and
DLPNO-CCSD(T1)/VeryTightPNO/CBS) protocols.

First, the effect of different LD corrections was tested and the
performance of different DFAs in combination with the D3, D4,
and NL dispersion correction schemes were assessed. With a
mean MAD of 0.9 kcal mol−1 each, the D4 and NL dispersion
correction performed equally accurate. In comparison to its pre-
decessor D3, the newly developed D4 model performed consis-
tently better for each tested functional. The difference between
these two schemes is mainly due to the inclusion of atomic partial
charges in DFT-D4. The incorporation of three- and higher-body
dispersion terms was found to have rather small effects. In gen-
eral the application of a dispersion correction is inevitable for the
IONPI19 benchmark, as LD-uncorrected DFT underestimates ion-
π interactions significantly and the mean MAD amounts to 4.0
kcal mol−1.

For the IONPI19 set the trend along the Jacob’s ladder func-
tional classification scheme was mostly preserved among the
tested combinations of DFAs and LD correction meaning that the
average performance of (meta-)GGAs (1.0 kcal mol−1 MAD) was
improved by hybrids (0.8 kcal mol−1MAD), whereas the high-
est accuracy was reached by the double-hybrids (0.6 kcal mol−1

MAD). DH-DFAs reach in many cases an accuracy that is remark-
ably close to the high-level coupled cluster reference values but
at up to two orders of magnitude lower computational cost than
MP2/CBS. And, even more importantly, the double-hybrids are
also significantly more accurate than MP2/CBS, which system-
atically and significantly overestimates ion-π interactions (MD
= −1.9 kcal mol−1, MAD = 2.0 kcal mol−1). The best cost-to-
accuracy ratio was obtained with the newly developed r2SCAN-3c
composite method, which yielded an accuracy close to meta-GGAs
like TPSS in a much larger def2-QZVPP basis, whilst being one or-
der of magnitude faster. It was found that the SIE has a relatively
small effect on ion-π interactions. This is reflected in the fact that

hybrid DFAs, which include Fock exchange to correct for the SIE,
performed only slightly better than (meta-)GGAs. Energy decom-
position analysis for the dissociation of ion-π complex 8 further
revealed that the SIE of a GGA is rather small for the equilibrium
geometry and may become significant only at larger interatomic
distances. SQM and FF methods were additionally tested for the
IONPI19 set. The simpler description of electrostatic interactions
in comparison to DFAs resulted in generally larger errors than
obtained in previous studies on neutral systems, as electrostatic
interactions are the major contribution of ion-π interactions. The
best performing method was GFN2-xTB, which takes into account
anisotropic electronic effects by higher order multipole terms.

In conclusion, we generally recommend the use of DH-DFAs
with the D4 dispersion correction in a large def2-QZVPP basis
set for calculating reference interaction energies of larger (100-
250 atoms) ion-π systems. DH-DFAs in combination with D4 ex-
tend the possibilities for generating reliable reference values for
larger systems, which are essential for the development of low-
cost methods to describe ion-π interactions in very large systems
such as proteins. This conclusion only really becomes apparent
when larger systems are investigated with high-level references
as in the presented IONPI19 benchmark set.
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