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Abstract 23 

The exposome has been recognized as an important dimension in understanding human 24 

disease and complementing the genome but remains largely uncharacterized. We analyzed 295 25 

matched maternal and cord blood samples using non-targeted high-resolution mass spectrometry and 26 

characterized exposome features. We compared the chemical enrichment of the maternal and cord 27 

blood samples using a similarity network analysis and examined the interactions between the 28 

exogenous and the endogenous chemical features using a molecular interaction networks approach. 29 

We detected over 700 chemical features in the maternal and cord pairs and we found that maternal 30 

samples are more similar in terms of chemical enrichment to their corresponding cord samples 31 

compared to other maternal samples or other cord samples. We observed significant associations 32 

between 3 poly/perfluoroalkyl substances (PFAS) and endogenous fatty acids in both the maternal and 33 

cord samples indicating important interactions between PFAS and fatty acid regulating proteins. To our 34 

knowledge, this is the first non-targeted analysis study that uses such large cohort to characterize the 35 

prenatal exposome. 36 
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1. Introduction 47 

The exposome is recognized as a critical dimension in understanding human disease by 48 

complementing genetic predisposition with environmental influences. The exposome describes the sum 49 

of all our exposures, both external and internal, throughout our lives from conception and onwards.1,2 50 

Humans are exposed to multiple and variable environmental contaminants in both the indoor and 51 

outdoor environments through inhalation, ingestion, and dermal absorption. Environmental exposures 52 

have been shown to play an important role in the development of human disease along with exposures 53 

to endogenous chemicals and genetic predisposition.1,2  54 

 Exposures to environmental contaminants during pregnancy are of critical importance due to the 55 

increased risk for adverse health outcomes that occur during periods of critical and unique susceptibility 56 

to biological perturbations, which can increase the risk of both maternal and child adverse health 57 

outcomes3. Prenatal exposures to industrial chemicals have been shown to increase the risk of 58 

complications during pregnancy, such as pregnancy-related hypertension, adverse birth outcomes, 59 

developmental and neurodevelopmental problems during infancy, and disease during adulthood.4–6 60 

 Approximately 40,000 chemicals are registered on the inventory of the Toxic Substances 61 

Control Act (TSCA) as actively used chemicals in the U.S.7,8 This number does not include chemicals 62 

that are regulated by other U.S. statutes, such as pesticides, foods and food additives, drugs, 63 

cosmetics, tobacco and tobacco products, and nuclear materials and munitions.7,8 The actual number 64 

of all chemicals used in the U.S. remains unclear but exceeds 40,000. 65 

 Conventional biomonitoring and human exposure research rely on targeted analytical chemistry 66 

techniques, in which one measures chemicals selected prior to the analysis. Up to now, with targeted 67 

techniques, only about 350 chemicals are biomonitored regularly via U.S. NHANES, constituting less 68 

than 1% of the chemicals used in the US. This limited number of measured targeted chemicals hinders 69 

our understanding of human exposure to chemicals and how they may impact human health. 70 



Considering the large number of chemicals that are not covered by these approaches, there is a need 71 

to develop more high-throughput approaches that cover a broader spectrum of human exposure to 72 

environmental contaminants.9 73 

 Recent advances in high-resolution mass spectrometry have brought non-targeted analysis 74 

(NTA) and suspect screening to the forefront of analytical chemistry. Non-targeted analysis techniques 75 

offer the possibility to screen biological and environmental samples for nearly all chemicals present in a 76 

sample. Such high-throughput analytical techniques enable a more holistic characterization of the 77 

exposome incorporating both internal (endogenous) and external (exogenous) exposures. However, 78 

previous studies have indicated that only a small number of the detected features in a sample can be 79 

confirmed with analytical standards.10–12 The vast majority of the detected chemical features remain as 80 

either detected masses or assigned formulas without information about their underlying chemical 81 

structures. This obstacle significantly limits the ability of non-targeted analysis techniques to inform 82 

biomonitoring studies and thus human exposures. Combining non-targeted analysis datasets with in 83 

silico screening of databases for structures that correspond to detected formulas and prioritization of 84 

hazardous chemicals can help enhance our ability to utilize NTA approaches.  85 

We have developed an NTA method and workflow that screens human biological samples for a 86 

broad spectrum of chemicals that can be identified or tentatively identified, and we apply this approach 87 

to study exogenous and endogenous chemical exposures in a large racially and socioeconomically 88 

diverse population of pregnant women. Our goal was three-fold: 1) to analyze 590 matched maternal 89 

and cord blood samples (total 295 matched pairs) using NTA to characterize the maternal/fetal 90 

exposome; 2) examine the differences in chemical feature enrichment between maternal and cord 91 

blood samples; and 3) examine the interactions between exogenous chemicals and endogenous 92 

metabolites in an attempt to understand the interplay between the exposome and the metabolome. 93 



2. Materials and Methods 94 

2.1 Study population 95 

 The study population consisted of 295 pregnant women recruited during the UCSF Chemicals in 96 

Our Bodies (CIOB) study. The CIOB study consists of about 700 (recruitment is ongoing) English or 97 

Spanish-speaking pregnant women, aged 18 to 40 years old and with singleton pregnancies, recruited 98 

between March 1, 2014 and June 30, 2017 from the Mission Bay and San Francisco General Hospital 99 

(SFGH) hospitals at UCSF that serve a racially and socioeconomically diverse population. Our study 100 

population consists of 31.5% Non-Hispanic White women, 20.7% Hispanic/Latinx women and 33.6% 101 

earns less than $100,000/year. 102 

 103 
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Table 1: Demographics of the CIOB chemisome cohort (N = 295) 118 
 

Population 

Baseline demographic, n (%) 295 (100) 

Maternal age, y (std) 33.2 (5.1) 

Gravidity, n (std) 2.4 (1.6) 

Ethnicity group 1 (%)  

   African American or Black 3.7 

   American Indian or Alaskan Native 1.4 

   Asian or Asian American 11.2 

   White 31.5 

   Other 15.6 

   Missing 36.6 

Ethnicity group 2 (%) 
 

   Hispanic/Latino 20.7 

   Non-Hispanic 50.5 

   Missing 28.8 

Income (%) 
 

   < $40,000 21.4 

   $40,000-$99,999 12.2 

   > $100,000 65.1 

   Missing 1.3 

 119 

2.2 Non-targeted analysis workflow 120 

 Our non-targeted analysis workflow consisted of four main steps: i) chemical analysis, ii) 121 

database searching and annotations, iii) data clean-up and processing, and iv) data analysis (Fig. 1). 122 

Briefly, we analyzed serum samples with high resolution mass spectrometry and deduced chemical 123 

formulas from the detected molecular masses. We selected a subset of chemicals for MS/MS 124 

fragmentation and confirmed the presence of a chemical by matching the experimental spectrum to 125 

database spectra, including experimental and in silico predicted spectra. The feature selection and 126 

prioritization for MS/MS fragmentation is described in our previous study of Wang et al.10 We examined 127 

the presence of the chemicals in chemical databases to search for potential matches to industrial uses. 128 

The details of the analytical method are described in the sections below. 129 

 130 



 131 

Figure 1: Flowchart describing the individual steps of analyzing the maternal and cord samples and 132 

processing the collected data from our LC/QTOF nontargeted analysis. 133 

 134 

2.3 Sample preparation 135 

 The blood samples were stored in the freezer at -80 oC at the University of California, San 136 

Francisco (UCSF). The serum samples were transported on dry ice to the Environmental Chemistry 137 

Laboratory (ECL) of the Department of Toxic Substances Control (DTSC) of California, in Berkeley, CA. 138 

Samples were centrifuged (3000 rpm) to separate the serum from the red platelets and the serum was 139 



extracted by protein precipitation using a variation of a method described previously.13,14 Aliquots of 250 140 

uL from each sample were spiked with 25 uL 100 ng/L surrogate standard mixture during extraction. 141 

The samples were mixed and stored at 4 oC until they were analyzed with liquid chromatography – 142 

quadrupole time-of-flight / mass spectrometry (LC-QTOF/MS). 143 

2.4 Instrumental analysis 144 

 The extracts were analyzed with an Agilent UPLC coupled to an Agilent 6550 QTOF (Agilent 145 

Technologies, Santa Clara, CA) operated in both positive and negative electrospray ionization modes 146 

(ESI+ and ESI-). Full scan accurate mass spectra (MS) were acquired in the range of 100-1000 Da with 147 

resolving power of 40,000 and a mass accuracy of <5 ppm. The and MS/MS fragmentation ion spectra 148 

(MS/MS) were collected at 10, 20 and 40 eV collision energies and a mass accuracy of 10 ppm. The 149 

QTOF was calibrated before each batch and the mass accuracy was regularly corrected with reference 150 

standards of reference masses 112.985587 and 1033.988109. The UPLC was operated with an Agilent 151 

Zorbax Extend-C18 column (2.1 x 50 mm, 1.8 μm) and a gradient solvent program of 0.3 mL/min with 5 152 

mM ammonium acetate in 90% methanol/water increasing the organic phase from 10% to 100% over 153 

15 min, following a 4 min equilibration at 100%.  154 

 The collected data from the total ion chromatograms (TIC) were processed with Agilent 155 

MassHunter Profinder for feature extraction. The features were then aligned using Mass Profiler 156 

Professional (MPP) across all batches and the features found in blanks were subtracted from the 157 

samples. The features were matched to formulas via screening with an in-house database of 2,420 158 

unique formulas. The database was originally compiled to contain 3,535 structures of exogenous 159 

chemicals of interest based on a literature search and expert curation. The compilation process is 160 

described in our previous study.10 However, in this study, we expanded our database by including all 161 

isomers found in the EPA’s Dashboard corresponding to the 2,420 formulas, which resulted in 65,535 162 

compounds (Supporting Information Spreadsheets). The updated version of the database contains both 163 



endogenous and exogenous compounds. Matched features were evaluated based on mass accuracy 164 

and isotopic pattern. Features of interests were prioritized for validation of identification with targeted 165 

MS/MS spectrometry. The MS/MS spectra of the prioritized features were reviewed by empirical check 166 

of possible fragmentation peaks, comparison with spectra in online experimental MS/MS databases, 167 

and support from in-silico fragmentation tools. Matched formulas were further compared with purchased 168 

reference standards for confirmation. 169 

2.5 Quality assurance / Quality control 170 

Extraction blanks, spike blanks and matrix spike blanks were included with each set of 20 171 

extracted samples. Every batch analyzed with LC-QTOF/MS was accompanied by a water blank, a 172 

matrix blank and a matrix spike analyzed in the same sequence. 173 

2.6 Database searching for feature annotation 174 

We used a suspect screening approach for annotation. First, we searched the HUMANBLOOD 175 

database in EPA’s Chemistry Dashboard15, which contains chemicals that are endogenous and have 176 

been previously detected in human blood. The database is an aggregate from public resources, 177 

including the Human Metabolome Database (HMDB)16, WikiPathways17, Wikipedia18 and literature 178 

articles15. The database excludes metals, metal ions, gases, drugs and drug metabolites. Screening 179 

this database allowed us to distinguish between features that are more likely to be endogenous and 180 

features that are more likely to be exogenous. To do that, we searched every formula in the database 181 

and marked the ones that had a hit in the database. Then, we labeled all features corresponding to 182 

these formulas as endogenous and the remaining as exogenous. The rationale behind this approach is 183 

that since we know we are analyzing blood samples and HUMANBLOOD is an extensive database 184 

about all endogenous compounds that have been previously detected in blood, if a detected feature in 185 

our samples has a formula that is present in the HUMANBLOOD database, then that feature is most 186 

likely an endogenous compound. We then searched the HUMANBLOOD database for all isomers 187 



corresponding to our endogenous formulas and the remaining databases in EPA’s Chemistry 188 

Dashboard for all isomers corresponding to our exogenous formulas. We then applied an algorithm 189 

developed by Dr. Abrahamsson to rank the isomers of each formula based on (i) total number of 190 

available isomers on the Dashboard, (ii) the number of data sources in the Chemistry Dashboard, (iii) 191 

number of PubChem data sources, and (iv) number of PubMed publications. We then used the top 192 

ranked isomer to annotate the chemical features that were not confirmed with MS/MS spectra matching 193 

or with analytical standards. For example, searching C8HF17O3S gives us two isomers: 194 

perfluorodecanoic acid and perfluoro-3,7-dimethyloctanoic acid. If we were to randomly select one of 195 

the isomers our probability of picking the right isomer would be 0.5. Then, making the assumption that 196 

more prevalent isomers have a higher number of literature and data sources, we can adjust that 197 

probability by taking into account that information after normalizing all numbers for (ii), (iii), and (iv) from 198 

0-1. So, while the probability of randomly picking the right isomer for C8HF17O3S is 0.5, 199 

perfluorodecanoic acid has a higher probability (0.73) of being the right isomer because it has more 200 

literature and data sources than perfluoro-3,7-dimethyloctanoic acid (0.27). It is important to 201 

acknowledge that these estimates are amenable to change as EPA’s Chemistry Dashboard is a 202 

dynamic project and keeps being updated with additional chemicals. Furthermore, these annotations 203 

may be susceptible to the Matthew effect19, where researchers prioritize chemicals to study mainly 204 

because other researchers have prioritized the same chemicals. However, since these are just 205 

annotations and serve only in providing diagnostic evidence for the identification of chemical 206 

compounds, we deemed them as sufficient for that purpose. The code for the algorithm is available on 207 

GitHub (https://github.com/dimitriabrahamsson/nontarget-maternalcord.git ). 208 

Although these are just annotations and not confirmations, in some cases they can be very 209 

informative and help compose a diagnostic picture for the underlying structure of a detected chemical 210 

feature. This is particularly helpful for certain chemicals that are more targetable than others. For 211 

instance, the presence of fluorine in a formula would indicate that this compound is an exogenous 212 



compound and it most likely belongs to the category of poly and perfluoroalkyl substances (PFAS). 213 

Another example is when a chemical formula has only a limited number of potential isomers (e.g., 5-10 214 

isomers) and all potential isomers are endogenous compounds with very similar function and properties 215 

(e.g. chenodeoxycholic acid).15 216 

2.7 Data clean-up and data processing 217 

2.7.1 Imputation of values below detection limit 218 

To impute below detection limit values, we used a computational approach which assigned 219 

missing values based on the distribution of the data points. We log transformed the data from the MS 220 

analysis for each chemical across samples and calculated the median, the minimum and the standard 221 

deviation of the distribution. We then fit a normal distribution to the data points based on the median 222 

and the standard deviation that we calculated from the experimental data. The model then generated 223 

random values between the minimum measured experimental value (~5,000) and the absolute 224 

minimum (0). The code for the imputation is available as supporting information on GitHub 225 

(https://github.com/dimitriabrahamsson/nontarget-maternalcord.git ) 226 

2.7.2 Batch correction 227 

 The samples were analyzed in two shipments of approximately 150 each and approximately 15 228 

batches within each shipment. To correct the abundances of the chemicals measured in the samples 229 

for batch effect, we employed the ComBat package for python20. ComBat uses a parametric and non-230 

parametric Bayes framework to adjust the values for batch effects. The method requires that the batch 231 

parameter is known and that the data are log transformed (method is described in detail in Johnson et 232 

al.21). For our dataset, we first applied the ComBat package to each shipment separately to correct for 233 

batch effect within shipment. Then we applied the package again to correct for batch effect between 234 

shipments. 235 



2.7.3 Combining shipments 236 

 As our samples were analyzed in two separate shipments of approximately 150 samples each, 237 

one of the challenges was to combine the two datasets, given the potential shifts in retention time and 238 

differences in peak alignment. This step was done after batch correction for within shipment variability. 239 

In order to address this issue, we grouped all chemical features by their formulas and sorted them by 240 

ascending retention times. We then created an index for each group of formulas (1, 2, 3, etc.), which 241 

we then used to create an identifier based on the formula and the position of each isomer in the index. 242 

For example, if the formula C5H13NO had three isomers, the first isomer was named C5H13NO_1, the 243 

second isomer as C5H13NO_2 and the third isomer as C5H13NO_3. We then merged the two datasets 244 

on the identifier and removed features that were present in only one of the datasets. We examined the 245 

difference in the retention time and molecular mass and removed those features for which the retention 246 

time differed by more than 0.5 min or where the mass difference was more than 15 ppm. 247 

2.7.4 Removing adducts 248 

 Electrospray ionization adducts are chemicals that are formed inside the instrument during 249 

analysis of the samples as the salts ions from the electrolytes used to enhance ionization bind to the 250 

ions of the organic molecules formed during electrospray ionization. We filtered out these chemicals by 251 

identifying the features that strongly correlate (r > 0.5) with each other and have distinct mass 252 

differences corresponding to salt ions, such as sodium (Na+), potassium (K+), formate (HCOO-), 253 

ammonium (NH4+) and acetonitrile (CH3CN). We used a mass accuracy filter of 15 ppm.  254 

2.8 Data Analysis 255 

2.8.1 Abundance and frequency calculations 256 

 We examined the relationship between chemical features in maternal samples and cord 257 

samples in terms of abundances and detection frequencies. For the abundances, we used the mean 258 

log transformed abundance of each chemical in maternal samples and compared it to the 259 



corresponding feature in the cord samples using a linear regression model. For the detection 260 

frequencies, we used a universal abundance cutoff of 5,000, which is comparable to the minimum 261 

measured value in the chemical features (~5000). We compared the detection frequencies of the 262 

chemical features between maternal and cord samples both in terms of kernel density estimates and in 263 

terms of absolute numbers. We also examined the differences in detection frequencies of endogenous 264 

and exogenous chemical features. 265 

2.8.2 Unsupervised clustering 266 

 We conducted a principal component analysis (PCA) to examine the differences in the PCs 267 

between maternal and cord samples. We then conducted a correlation analysis, where we examined 268 

the relationship of the first 3 PC components with technical features and clinical covariates, i.e., batch, 269 

shipment, sample type (maternal/cord) and gestational age group (preterm/full-term). We identified the 270 

features that were differentially enriched in maternal and in cord blood samples by comparing the 271 

abundances of the chemical features in maternal samples to those of cord samples and marking the 272 

features that showed a significant trend to be higher in maternal and lower in cord and vice versa (p < 273 

0.05) after correcting for multiple hypothesis testing using the approach of Benjamini-Hochberg with a 274 

false discovery rate of 5%. We checked the cluster stability by comparing the PC1 values of the 275 

maternal samples to the PC1 values of the cord samples using a two-sided Mann-Whitney-Wilcoxon 276 

test with Bonferroni correction. 277 

2.8.3 Network analysis for maternal and cord samples 278 

 The purpose of the network analysis was to assess whether maternal samples are more similar 279 

in terms of chemical abundances to their corresponding cord samples than to other maternal samples. 280 

For this analysis, we considered two network-based approaches.  281 

For the first approach, we conducted a matrix correlation of all samples using a linear 282 

regression model and calculated the correlation coefficients and p-values. We then adjusted the p-283 



values by applying a multiple hypothesis correction using the Benjamini-Hochberg correction with a 284 

false discovery rate of 5% and we marked the maternal and cord sample pairs that remained significant 285 

after the multiple hypothesis correction. We then plotted the correlations as a correlation network using 286 

the NetworkX22 package for Python. We then divided the network into four subnetworks i) correlations 287 

between matched maternal-cord pairs only, ii) correlations between unmatched maternal cord pairs and 288 

between maternal only and cord only, iii) correlations between maternal samples only, and iv) 289 

correlations between cord samples only. We then calculated the number of connections in each 290 

subnetwork and the averages correlation coefficient for each subnetwork and compared the 291 

subnetworks to each other. 292 

For the second approach, we carried out permutation analysis randomly picking a matched pair 293 

of a maternal and cord samples (M1 and C1), and a random maternal sample (M2) 100 times. For each 294 

iteration, we then calculated the abundance ratios of all chemical features for every sample pair (M1-295 

C1, M1-M2 and M2-C1). Chemical features with ratios in the range of 0.75 – 1.25 were considered 296 

“similar” chemical features between two samples. We calculated the number of chemicals for each pair 297 

and compared them to each other. We calculated the average number of similar chemicals for every 298 

pair and compared the pairs to each other. The code is available on GitHub 299 

(https://github.com/dimitriabrahamsson/nontarget-maternalcord.git ). 300 

2.8.4 Partitioning of chemical features between maternal and cord 301 

We examined the partitioning of the detected chemical features between maternal and cord by 302 

calculating the maternal/cord abundance ratio as: 303 

𝑀𝐶!"#$% =
𝐴&
𝐴'

 304 

where, Am is the mean abundance of a chemical feature across maternal samples and Ac is the mean 305 

abundance of a chemical feature across cord samples. We then used a linear regression model to 306 



assess the relationship of the maternal/cord ratio to molecular mass and retention time of the chemical 307 

features. 308 

2.8.5 Associations between endogenous and exogenous compounds 309 

 After we calculated the number of exogenous and endogenous chemicals, as described 310 

previously in the section for database searching, we examined the associations between endogenous 311 

and exogenous compounds using a molecular interaction network. First, we applied a matrix correlation 312 

and calculated the correlation coefficients and p-values between all endogenous and all exogenous 313 

chemical features after adjusting the p-values for multiple hypothesis testing using the Benjamini-314 

Hochberg approach and a false discovery rate of 5%. We applied the approach of molecular interaction 315 

networks to visualize the associations and examine the relationships between endogenous and 316 

exogenous compound for the significant correlations between endogenous and exogenous chemical 317 

features separately for maternal and cord samples. For the molecular interaction network, we used 318 

Cytoscape23 with Metscape24 as a plug-in. Cytoscape23 is an established tool in the field of 319 

bioinformatics and -omics research for the visualization of networks and assisting in the discovery of 320 

underlying biological mechanisms. Due to the large number of relationships and the complexity of the 321 

network, we focused our comparison on the chemical features that had an annotation score > 0.3, or 322 

confirmed with MS/MS or analytical standards, and had a Pearson r > 0.4. 323 

2.9 Statistical analyses 324 

For all the correlations mentioned in the sections above we used Pearson r and we adjusted the 325 

calculated p-values for multiple hypothesis testing using the Benjamini-Hochberg approach with a false 326 

discovery rate of 5%. When comparing two groups for statistically significant differences, such as in 327 

unsupervised clustering, we used a two-sided Mann-Whitney-Wilcoxon test with Bonferroni correction.  328 

3. Results 329 



3.1 Chemical analysis with LC-QTOF/MS 330 

 The recursive feature extraction and formula matching for the 295 pairs of maternal and cord 331 

blood samples (n total = 590 samples) resulted in 824 features in ESI- and 731 features in ESI+ for 332 

shipment 1, and 707 features in ESI- and 576 features in ESI+ for shipment 2. After combining the 333 

datasets for the two shipments, the resulting dataset for ESI- summed up to 412 features and the 334 

dataset for ESI+ to 298 features (n total = 710 features) after filtering out the features that showed a 335 

retention time difference of > 0.5 min or a mass difference of > 15 ppm. Combining the data from ESI- 336 

and ESI+, resulted in 712 features. This number is higher by 2 features compared to the total number 337 

of ESI- and ESI+ because 1 isomer from ESI- had more than 1 possible matches from ESI+ based on 338 

the criteria that we set for merging the two datasets (retention time difference of 0.5 min and mass 339 

accuracy of 15 ppm). Ten features were identified as duplicates between ESI- and ESI+ and were 340 

removed from the dataset. Seventeen features were identified as adducts and were also removed from 341 

the dataset. The complete datasets before (n = 712) and after clean-up (n = 685) are presented in the 342 

Supporting Information Spreadsheets. We confirmed 33 chemicals with MS/MS spectra match using 343 

CFM-ID and 17 chemicals with analytical standards (Table 2 and Supporting Information 344 

Spreadsheets). 345 

 346 

 347 

 348 

 349 

 350 

 351 

 352 

 353 

 354 



 355 

Table 2: Chemical structures confirmed with analytical standards for 17 chemical features detected in 356 

matched maternal (N=295) and cord samples (N=295). The table also shows some of the most 357 

common uses a for the identified chemicals as well as their presence in databases from EPA’s 358 

Chemistry Dashboard15 for endogenous, pharmaceuticals, pesticides, plastics, cosmetics, 359 

poly/perfluorinated substances (PFAS) and high production volume chemicals. 360 

 361 

Chemical Name Chemical Use a Presence in databases 
Tridecanedioic acid Fatty acid / polymers, lubricants, plastics        
Isoquinoline Dyes, paints, insecticides, antifungals         
Eicosapentanoic acid Omega-3 fatty acid       
Caffeine Beverages (e.g. coffee, soda), drugs           
Tetraethylene glycol Polyester resins, plasticizer, dyes           
Mono(2-ethylhexyl) phthalate Metabolite of DEHP        
Phenylalanylphenylalanine Human metabolite        
Theobromine Alkaloid in cacao / flavoring agent           
Tetradecanedioic acid Fatty acid        
Progesterone Hormone, drugs         
Deoxycholic acid Human metabolite, bile acid         
Cortisone Hormone, drugs         
1H-Indole-3-propanoic acid Microbial metabolite of Tryptophan         
4-Nitrophenol Air pollutant / drugs, dyes, fungicides, 

insecticides           
Octadecanoic acid Fatty acid / plastics, resins             

 362 
a The information on chemical uses was extracted from PubChem25 and EPA’s Chemistry Dashboard15. 363 

 364 

 365 

3.2 Database searching for feature annotation 366 

 We labeled 142 features as endogenous compounds and the remaining 543 features as 367 

exogenous compounds. Among the chemical compounds with the highest annotation scores, we found 368 

5 PFAS: perfluorohexanesulfonic acid (PFHxS), perfluorooctanesulfonic acid (PFOS), 369 

perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA) and perfluorononanoic acid 370 

endogenous 
pharmaceuticals 
pesticides 
plastics 

cosmetics 
poly/perfluoroalkyl substances 
high production volume chemicals 



(PFNA); and 2 cyclic volatile methylsiloxanes:  octamethylcyclotetrasiloxane (D4) and 371 

decamethylcyclopentasiloxane (D5) (annotations with the individual scores in Supporting Information 372 

Spreadsheets). PFHxS and PFOS were also confirmed with analytical standards. 373 

3.3 MS data clean-up and data processing 374 

 In the original dataset before batch correction, we observed two distinct clusters that 375 

corresponded to the two shipments (Fig. S2 A-F). Following a matrix correlation, we observed strong 376 

correlations between the first 3 PCs and the parameters corresponding to batch number, shipment, and 377 

sample type (maternal vs cord) (Fig. S2 I). In addition, we observed significant differences in the PCs 378 

between shipment 1 and shipment 2 (Fig. S2G), and significant differences in the PCs between 379 

maternal and cord samples (Fig. S2H). Batch correction with ComBat removed the largest part of the 380 

effects related to batch and shipment (Fig. 2D), while maintaining the differences between maternal and 381 

cord (Fig. 2E). The updated plots after batch correction (Fig. 2) also showed that there were two main 382 

clusters of samples (Fig. 2C and 2F) that corresponded to the maternal and cord sample groups (Fig. 383 

2E). 384 

 385 



 386 

Figure 2: Results of the data analysis after batch correction with ComBat for the two shipments and the 387 

batches within each shipment. The samples were first corrected for the batches within shipment and 388 

then for the two shipments. (A): PCA features and the variance explained (%); (B) PC1 and PC2 as a 389 

scatterplot; (C) approximation of the optimal number of clusters in the dataset; (D) PC1 and PC2 color-390 

coded by shipment; (E) PC1 and PC2 color-coded by sample type – maternal vs cord blood; (F) 391 

agnostically derived clusters using a k-means algorithm; (G) boxplot for PC1 by shipment (the error 392 

bars show the 10th and 90th percentiles, the boxes show the 25th and 75th percentiles and the middle 393 

line shows the median); (H) Pearson r values and p-values (I) for matrix correlation for PC1-3, batch, 394 

shipment, sample type maternal vs cord and full term vs preterm birth.  395 

 396 

 397 

 398 



3.4 MS data analysis 399 

3.4.1 Differences between maternal and cord 400 

The maternal and cord samples showed similar profiles of detection frequency with the largest 401 

cluster of chemical features appearing at 80-100% frequency (Fig. 3B-C). We observed an overall good 402 

agreement (r = 0.93) between the mean log abundances of the chemical features in the maternal 403 

samples and the chemical features in the cord samples with some chemical features deviating from the 404 

regression line (Fig. 3A). In addition, in both maternal and cord samples the number of exogenous 405 

compounds was about 3 times higher than that of endogenous. 406 

We observed significant differences in PC1 between maternal and cord samples both before 407 

(Fig. S2E and S2H) and after batch correction (Fig. 2E and 2H). Removing the batch effect accentuated 408 

the differences between maternal and cord samples (Fig. 2E and 2H). 409 

 410 

 411 

Figure 3: Correlation between maternal and cord abundances (A) (in log scale) and detection frequency 412 

calculations with kernel density curves for chemicals in maternal (B) and cord (C) blood samples 413 

(N=295 chord/maternal). The figure also displays the detection frequency for maternal (D) and cord (E) 414 

color-coded as endogenous and exogenous compounds. 415 



 416 

 417 

Out of 685 chemical features detected in MS analysis, 450 showed a significant difference 418 

between maternal and cord samples (Fig. 4). We observed clear clustering between maternal and cord 419 

blood samples indicating a sufficient difference in the chemical composition between maternal and cord 420 

samples for them to be classified as two distinct clusters (p-value for PC1 between maternal and cord 421 

<= 0.0001; Fig. 4B).  422 

 423 

 424 

Figure 4: Clustering heatmap for maternal and cord blood samples and the chemical features that 425 

showed a significant trend to be higher in maternal or cord after multiple hypothesis correction 426 



(Benjamini-Hochberg test, 5% false discovery rate). Out of 685 chemical features in total, 450 showed 427 

a significant difference. The samples are color-coded by sample type (maternal vs cord). The features 428 

are color-coded by chemical type (endogenous vs exogenous). The error bars in the box-plot show the 429 

10th and 90th percentiles, the boxes show the 25th and 75th percentiles and the middle line shows the 430 

median. 431 

 432 

 433 



 434 

Figure 5: Similarity network analysis for matched maternal and cord samples (N = 590). Correlations for 435 

85 maternal-cord pairs that remained significant after multiple hypothesis correction (Benjamini-436 

Hochberg, 5% false discovery rate) as correlation networks in random positions and in bipartite graphs. 437 

(A): Showing correlations only between paired maternal and cord; (B): Showing remaining correlations 438 



between maternal-maternal, cord-cord and unpaired maternal-cord; (C) Showing correlations between 439 

maternal samples only; (D) showing correlations between cord samples only. 440 

 441 

 442 

Figure 6: Similarity network analysis using a permutation approach randomly selecting maternal and 443 

cord samples to compare the similarity between paired maternal and cord samples (M1-C1) compared 444 

to maternal – maternal (M1-M2) and unpaired maternal and cord (M2-C1). The numbers on the left side 445 

of the figure show the number of chemicals, for which the ratio of their abundance in the various pairs 446 

(M1-C1, M1-M2 and M2-C1) ranged from 0.75 to 1.25, with ratio = 1 indicating complete agreement. 447 

The numbers on the right show the average of these number after 100 iterations and their standard 448 

deviations. 449 

 450 

 Our similarity network analysis using a correlation network showed that paired maternal and 451 

cord samples had a higher number of significant correlations (N = 170; Fig. 5A) compared to unpaired 452 

maternal and cord samples (N = 84; Fig. 5B) and compared to maternal only (N=41; Fig. 5C) and cord 453 

only (N=41; Fig. 5D). No significant differences were observed in the average | r | values between the 454 



four groups. Our similarity network analysis using a permutation approach showed a very similar trend 455 

(Fig. 6). The average of 100 iterations showed that paired maternal and cord samples (M1-C1) shared 456 

more similar chemical features compared to maternal – maternal pairs (M1-M2) and unmatched 457 

maternal – cord samples (M2-C1) (Fig. 6). 458 

 459 

  460 

 461 

Figure 7: Maternal /cord abundance ratios (log MC ratio) for the chemical features detected in the 462 

maternal blood (N=295) and in the cord blood (N=295) samples in linear (A) and logarithmic scale (B), 463 

and its relationship to molecular mass (C) and retention time (D). (E): Retention time and its 464 

relationship to molecular mass. 465 

  466 

 We observed that the majority of the maternal/cord abundance ratios are concentrated around 1 467 

indicating an even partitioning between maternal and cord blood (Fig. 7A and 7B). The maternal/cord 468 



abundance ratios showed a weak but significant positive correlation with retention time (7D). No 469 

significant correlation was found for maternal/cord abundance ratio and molecular mass (7C). 470 

 471 

3.4.2 Correlations between endogenous and exogenous compounds 472 

 We observed 21,522 significant relationships between endogenous and exogenous features in 473 

maternal samples and 19,846 in cord samples after multiple hypothesis correction (n total relationships 474 

= 77,106 in maternal and n = 77,106 in cord samples, Figure 8). From the significant relationships, 103 475 

relationships in maternal and 128 relationships in cord samples had an absolute Pearson r > 0.5, 5 476 

relationships in maternal and 4 relationships in cord samples had an absolute Pearson r > 0.7 and 1 477 

relationship in maternal and 1 relationship in cord samples had an absolute Pearson r > 0.8 (dataset 478 

with the calculated r and p-values in the Supporting Information Spreadsheets). 479 

 480 

Figure 8: Matrix correlation for endogenous (metabolites) and exogenous (industrial chemicals) in 481 

maternal and cord blood samples separately (N maternal = 295 and N cord = 295) 482 



  483 

 484 

Figure 9: Molecular interaction networks for endogenous (red) and exogenous (gray) chemical features 485 

in the maternal blood (N = 295) and cord blood samples (N = 295). The network shows the features 486 

which had an annotation score of > 0.3 or were identified with MS/MS or with analytical standards. The 487 

network shows the correlations with an absolute r > 0.4. The red lines indicate positive correlations and 488 

the blue lines indicate negative correlations. The thickness of each line indicates the strength of the 489 

correlation (0.4 – 1). 490 

The maternal and cord networks (Fig. 9) showed great overlap with most chemical compounds 491 

appearing in both networks and exhibiting similar relationships. In both the maternal and cord, two 492 

cyclic volatile methylsiloxanes (cVMS) (octamethylcyclotetrasiloxane; D4 and 493 

decamethylcyclotetrasiloxane; D5) correlated strongly with each other (r = 0.77 in maternal network and 494 

r=0.81 in cord network) and both were part of the main network. In addition, three perfluoroalkyl acids 495 

PFAAs: perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA) and perfluoroundecanoic acid 496 



(PFUnDA) correlated strongly with each other (r values in maternal: 0.66-0.74, r values in cord: 0.64-497 

0.72) while 2 perfluorinated sulfonic acids (PFSA; perfluorohexanesulfonic acid, perfluorooctanesulfonic 498 

acid) formed their own group outside the main networks. Both groups of chemicals are 499 

poly/perfluoroalkyl substances (PFAS), a group of chemicals that has recently come under scrutiny due 500 

to their persistence, bioaccumulation potential and toxicity. The group of PFAA, in both networks, 501 

showed to correlate with certain fatty acids, such as octadecanoic acid.  502 

4. Discussion 503 

 Our chemical analysis of the maternal and blood samples with HRMS and a non-target analysis 504 

workflow provided unique insights in the prenatal exposome, exposures to environmental pollutants, 505 

and their role in the development of human disease. To our knowledge, this is the largest dataset of the 506 

exposome of maternal and fetal exposures. We identified 17 chemical structures with analytical 507 

standards with mixed endogenous and exogenous sources (Table 2). 508 

 Our data analysis showed that when analyzing large sample sets with non-targeted analysis 509 

batch effects are substantial and they need to be adequately addressed before drawing any 510 

conclusions on the chemical, biological, and epidemiological importance of that collected data. 511 

ComBat20,21 was able to remove batch effects for HRMS data for exposomics and metabolomics 512 

analyses.  513 

 Maternal and cord samples showed some similarities in chemical feature enrichment (Fig. 3), 514 

but also important differences (Fig. 4) that allowed for these two groups to be classified as two distinct 515 

clusters (Fig. 4). Our similarity network analyses also showed that matched maternal and cord samples 516 

are more similar in terms of chemical feature enrichment compared to other maternal samples. These 517 

observations have important implications when studying the partitioning of chemical compounds 518 

between maternal and cord samples and when studying which chemicals show a stronger potential to 519 

cross the placenta and accumulate in the fetus. Previous studies have reported on the partitioning 520 



between maternal and cord blood,26–29 however, the mechanism by which certain chemicals cross the 521 

placenta more readily than others requires further investigation. One interesting example of chemicals 522 

from our dataset that showed preferential partitioning for the maternal side were the five PFAS we 523 

detected. The log MCratio of the five PFAS ranged from 0.037 to 0.22 (Supporting Information 524 

Spreadsheets and Fig 7B; right tale of the distribution) indicating that the transfer of these chemicals to 525 

the fetus is inhibited by the placenta. This finding is in good agreement with previous biomonitoring 526 

studies where they examined the transplacental transfer of PFAS.30,31 Due to their strong affinity for 527 

proteins, PFAS, bind to the proteins in the placenta and are inhibited from reaching the fetus.30,31 On 528 

the other hand, a compound that showed preferential partitioning for the fetal side was Triamcinolone, 529 

which had a log MCratio of -0.26. Triamcinolone is a pharmaceutical glucocorticoid used in human and 530 

veterinary applications as an anti-inflammatory drug.15,25 Triamcinolone is a highly water-soluble 531 

substance with no particular affinity for lipids or proteins (equilibrium partition ratio between octanol and 532 

water; log KOW = 0.967). These properties make it easily transferable across the placenta and 533 

preferentially partition to cord blood due to its lower lipid content compared to maternal blood.32–34 534 

 We observed a weak but significant positive association between maternal/cord abundance 535 

ratio and retention time (Fig. 7D). As retention time is a function of the chemicals’ hydrophobicity, with 536 

more hydrophobic chemicals exhibiting longer retention times, its relationship with the maternal/cord 537 

ratio would indicate that more hydrophobic chemicals would show a preference to partition more to the 538 

maternal blood compared to cord blood. This observation is in agreement with previous studies 539 

showing a positive correlation between the maternal/cord ratio and KOW.35 This finding suggests that 540 

retention time could be used as a criterion for prioritizing chemical features for identification in 541 

maternal/cord blood studies and could potentially also be used in prioritization of chemicals for toxicity 542 

testing. With regards to the endogenous compounds, the partitioning between maternal and cord blood 543 

is more complicated. Many of them could be originating from the maternal side, the fetal side or both. In 544 

order to draw a conclusion on the partitioning behavior of the endogenous compounds, we would need 545 



to know the production rates of these compounds on each side and adjust the calculated partition 546 

ratios. This is certainly an aspect that warrants further investigation. 547 

Our analysis of the interactions between exogenous and endogenous exposure revealed 548 

important insights into how environmental chemicals disrupt biological pathways. We observed 549 

thousands of significant relationships between exogenous and endogenous chemical features, 550 

hundreds of which showed an absolute r > 0.5. One group of chemicals that showed an interesting 551 

pattern were two cyclic volatile methylsiloxanes (cVMS), octamethylcyclotetrasiloxane (D4) and 552 

decamethylcyclopentasiloxane (D5). cVMS are organosilicon chemicals that are primarily used as 553 

carriers in personal care products, such as deodorants, and as intermediates in the production of 554 

silicone polymers. Their strong correlation indicates a common source of exposure, most likely due to 555 

use of personal care products. Their ubiquitous presence in personal care products makes it very likely 556 

that these chemicals are from such applications. However, also because of their ubiquitous presence in 557 

silicone polymers, there is a chance that these chemicals could be a result of contamination from inside 558 

the analytical instrument. There is also a possibility that these chemicals could be also coming from 559 

personal care products by people working in the lab, however, the physicochemical properties of D4 560 

and D5, specifically their equilibrium partition ratio between octanol and air (KOA), indicates that 561 

partitioning from the air to an organic solvent is very unlikely. D4 has a log KOA of 4.97 and D5 has log 562 

KOA of 3.94, which indicate a strong preference for the molecules to exist in the gas phase compared to 563 

other chemicals, such as polychlorobiphenyl 180 (PCB 180) which has a log KOA of 9.94 and a much 564 

stronger preference to partition to octanol. Finally, all the abundances in our data set were blank 565 

corrected which should minimize the potential of contamination. 566 

Another group of exogenous chemicals that showed an interesting pattern were three PFAS 567 

(PFNA, PFDA and PFUnA) that correlated strongly with endogenous fatty acids. PFAS have been 568 

shown to interfere with fatty acid metabolism in in vitro studies by binding to fatty acid binding 569 

proteins.36,37 Binding of PFAS to fatty acid binding proteins could reduce the available binding sites for 570 



endogenous fatty acids resulting in higher concentrations of fatty acids. This could explain the observed 571 

correlations between the three PFAS and endogenous fatty acids. Currently there are about 5,000 572 

PFAS registered on EPA’s Chemistry Dashboard, many of which do not have data on their toxicity 573 

potential in humans. Our study corroborates the need for further experimental and modeling studies to 574 

assess the potential of the ever-increasing chemical library of PFAS and study how they interfere with 575 

human metabolism. High-throughput protein binding studies would help to elucidate some of these 576 

effects and help prioritize PFAS for biomonitoring and regulatory action. 577 

4.1 Limitations and other considerations 578 

Our study illustrates the importance of broad screening using NTA in order to characterize the 579 

exposome and the mechanisms under which environmental exposures contribute to the development of 580 

human disease. As these techniques are powerful in detecting thousands of chemical features there 581 

are still some challenges remaining to be addressed. One of the main shortcomings of current NTA 582 

approaches is that the number of identified chemicals is very small compared to the number of detected 583 

features with only 1-5% of chemicals often being confirmed with analytical standards.11,12,38 Thus, there 584 

is a need to develop novel computational tools for structure elucidation or structure annotation without 585 

analytical standards that can help us circumvent that problem and leverage the full potential of NTA. 586 

 Another limitation of our study is that it uses only one analytical instrument, LC-QTOF/MS, 587 

which specializes in the analysis and identification of polar and involatile compounds. As a result, the 588 

chemical features that we detected are primarily from that physicochemical space. Complementing LC-589 

QTOF/MS with Gas Chromatography-QTOF/MS, which specializes in non-polar and volatile/semi-590 

volatile chemicals could help expand the spectrum of possible chemical features. 591 

 Finally, our study focuses on the differences between maternal and cord blood as a surrogate 592 

for understanding fetal exposure and adverse fetal health outcomes. However, adverse fetal health 593 

outcomes depend not only on the amount of the chemical the fetus is exposed to, but also on the 594 



toxicity of the chemical. There is thus a need to develop high-throughput toxicity screening models to 595 

screen for chemicals found in fetal blood. Using NTA data to inform toxicity testing can provide unique 596 

insights in toxicology and environmental health and assist in preventing of exposure to toxic chemicals. 597 

4.2 Future directions 598 

Non-targeted analysis can play an important role in deep phenotyping for precision medicine 599 

and advanced patient care.39 Precision medicine aims to provide the best possible patient care by 600 

categorizing and subcategorizing patients with a certain disease using computational methods that 601 

combine information from genomics, proteomics, metabolomics, and additional clinical data.39 Deep 602 

phenotyping is crucial in understanding the underlying mechanisms of adverse health outcomes in and 603 

in developing strategies for prevention and treatment.40 Finally, deep phenotyping can provide 604 

important insights on the role of environmental exposures in the development of adverse health 605 

outcomes during pregnancy. In that endeavor, we will further our studies by utilizing our high-606 

dimensional datasets to agnostically investigate the role of endogenous and exogenous exposures to 607 

the development of adverse health outcomes, such as gestational diabetes, preterm birth, birth weight, 608 

and preeclampsia, among others. 609 

Data availability 610 

All the datasets used are provided as supporting information. All the code is available on GitHub 611 

(https://github.com/dimitriabrahamsson/nontarget-maternalcord.git ) 612 
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