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Asymmetric catalysis enabling divergent control of multiple stereocenters remains challenging in synthetic 

organic chemistry. While machine learning-based optimization of molecular catalysis is an emerging 

approach, data-driven catalyst design to achieve stereodivergent asymmetric synthesis producing multiple 

reaction outcomes, such as constitutional selectivity, diastereoselectivity, and enantioselectivity, is 

unprecedented. Here, we report the straightforward identification of asymmetric two-component 

iridium/boron hybrid catalyst systems for -C-allylation of carboxylic acids. Structural optimization of the 

chiral ligands for iridium catalysts was driven by molecular field-based regression analysis with a dataset 

containing overall 32 molecular structures. The catalyst systems enabled selective access to all the possible 

isomers of chiral carboxylic acids bearing contiguous stereocenters. This stereodivergent asymmetric 

catalysis is applicable to late-stage structural modifications of drugs and their derivatives.   

 

The design and development of functional molecules rely heavily on a researcher’s intuition and time- and labor-

intensive experimental trials and errors. A data-driven approach is an emerging tool to facilitate these processes. 

Typical data-driven molecular design approaches use a large number of dataset molecules for machine learning 

and/or virtual libraries to conduct in silico screening1. Exploration of chemical space on the basis of mathematical 
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models constructed by machine learning techniques facilitates the identification of molecules exhibiting the 

desired properties. These approaches are applied to predict catalytic reactions using several hundred to more than 

10 million pieces of compound/reaction data2-8. Another useful data science approach for exploring chemical space 

in molecular catalysis is linear regression analysis based on free energy relationships9 developed by Sigman and 

coworkers10-13. By analyzing a relatively small amount of data (typically less than 100 samples), this method 

extracts important information about how molecular properties (so-called descriptors), such as electronic and steric 

properties, influence the reaction outcomes. The information obtained by the regression analysis is useful to search 

for desired molecules in chemical space. Fujita and Winkler highlighted such two types of supervised learning 

using molecular descriptors to predict molecular properties; i.e., models generated for predictive purposes relying 

on machine learning methods using large, chemically diverse datasets, and for mechanistic interpretation using 

small sets of chemically similar molecules14. Regression-based data-driven design of molecular catalysis, 

particularly asymmetric catalysis, is a rapidly growing research field10-11,15-17. Denmark’s group recently reported 

a machine learning-based workflow for predicting chiral catalysts showing remarkably higher enantioselectivity 

than those in the training set4. Sigman’s group demonstrated the construction of a regression model for predicting 

enantioselectivity in a range of transformations that proceeds through similar mechanisms13. The above two recent 

milestones in this area focused on predicting the enantioselectivity of products with one stereocenter. Because the 

stereochemistry of organic compounds can drastically influence important properties such as the biological activity 

and physical characteristics, however, precise catalyst control over the selectivity of products bearing multiple 

stereocenters is a critical issue in modern synthetic chemistry18. Therefore, the application of data science to the 

design and optimization of chiral catalysts to control multiple reaction outcomes, such as constitutional selectivity, 

diastereoselectivity, and enantioselectivity, for stereodivergent synthesis of all desired stereoisomers is highly 

important, but also extremely challenging. To achieve stereodivergent synthesis, at least four reaction outcomes 

(enantioselectivity and diastereoselectivity in both diastereomers) must be controlled by optimizing the catalyst 

structures. 

 

Results and Discussion 

Target reaction. Asymmetric dual catalysis comprising two independent asymmetric catalysts to promote carbon–

carbon bond-forming reactions is one of the most useful strategies for stereodivergent asymmetric synthesis19,20. 

Carreira reported pioneering work on stereodivergent dual catalysis in the -C-allylation of aldehydes by 

combining iridium (Ir) and amine catalyst (Fig. 1a)19. This approach allowed access to all the possible 
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stereoisomers from the same starting materials under identical reaction conditions, except for the chirality of each 

asymmetric catalyst (Fig. 1a). Following this pioneering work, stereodivergent Ir-catalyzed allylic substitutions 

with prochiral enolates derived from ketones21-23, esters24-29 and amides30 were reported. As a target reaction of 

our data-driven catalyst optimization, we chose the catalytic asymmetric migratory -C-allylation of allyl esters 1 

to afford -allyl carboxylic acids 2, using a combination of a chiral Ir complex catalyst31-33 and a chiral boron (B) 

complex catalyst34 (Fig. 1b). Previously, we developed asymmetric Pd/B hybrid catalysis for synthesis of linear 

-C-allyl carboxylic acids containing an -quaternary stereocenter (Fig. 1b, dotted square). We anticipated that 

use of an Ir catalyst instead of the Pd catalyst would afford branched carboxylic acid 2 containing contiguous -

quaternary–-tertiary stereocenters19,20,35,36 (Fig. 1b), which are difficult to synthesize themselves, but versatile for 

synthesizing various important molecules. The boron complex catalyst generates chiral boron enolate species 

through the chemoselective activation of carboxylate, which is formed by Ir-catalyzed ionization of 1. The chiral 

boron enolate attacks the chiral Ir--allyl complex to stereodivergently afford products 2. Despite recent significant 

progress, previous stereodivergent -C-allylation of carbonyl compounds was limited to reactions affording -

aryl-substituted products (R3 = Ar in Fig. 1a )20-30. Indeed, when Carreira’s conditions were applied to an aliphatic 

allylic alcohol (R3 = Pr), desired β-aliphatic-substituted product was not obtained at all (see Supplementary 

Information section 9). Thus, the development of an asymmetric Ir/B dual catalytic system that can produce β-

aliphatic-substituted carboxylic acids is suitable for testing our strategy.  

As the first attempt, we used phosphoramidite ligand L1 for the Ir catalyst31,32. Reactions from 1Et using 

boron ligands S and R provided (2R,3R)-2Et and (2S,3R)-2Et as the major isomers, respectively (Fig. 1c). 

Although the reactions exhibited excellent enantioselectivity (97% ee), the constitutional selectivity (branch 

(b)/linear (l) [b/l]) and diastereomer ratio (dr) were not satisfactory in reactions using ligands S (1.7/1 b/l, 1.9/1 

dr) and R (2.0/1 b/l, 5.2/1 dr). Thus, we performed a data-driven optimization of the Ir-catalyst structures to 

improve the four reaction outcomes (b/l and dr in reactions using ligand S or R), while retaining high 

enantioselectivity. 



 4 

  

Fig. 1 | Molecular field analysis of Ir/B hybrid catalysis for stereodivergent asymmetric migratory -C-

allylation. a, Carreira’s stereodivergent asymmetric Ir/organo dual catalysis19. Inverting the chirality of a catalyst 

allowed for the access to each stereoisomer of product aldehydes. b, Asymmetric Ir/B dual hybrid catalysis 

developed in this study, providing branched carboxylic acids stereodivergently. Previous Pd/B dual catalysis (17) 

afforded linear products shown in dotted square. c, The initial results for the catalytic asymmetric -C-allylation 

using a combination of a chiral iridium complex catalyst (cat. Ir*) and a chiral enolate-forming boron catalyst (cat. 

B*). Reaction conditions: cat. Ir* ([Ir(cod)Cl]2 (2.5 mol%)–L1 (5 mol%)) and cat. B* ((AcO)4B2O (10 mol%)–S 

or R (20 mol%)) were mixed with 1Et in the presence of DBU (1.5 equiv) and LiCl (1.0 equiv) in THF for 12 h at 

50 °C. d, Outline of MFA-based data-driven optimization of the Ir catalysts. 1. Calculations of 0,1 vectors (steric 

indicator fields) from the structures of Ir--allyl complexes. Indicator fields are calculated at each unit cell of a 

grid space. The unit cells that include the van der Waals radii of any atoms are counted as 1, or are otherwise 

counted as 0 (see Supplementary fig. S1). An Ir--allyl complex comprising L1 (R3 = Et) is shown in a CPK 

model: the cod ligand, the allyl (propenyl) group, and the bis(1-phenylethyl)amine moiety are shown in green, 

purple, and brown, respectively. 2. Correlating the molecular fields and G‡ values (kcal/mol) using a machine 

learning technique to generate 4 regression models. Logarithms of constitutional and diastereomeric ratios (b/l and 

dr) (G‡ = –RTlog(b/l or dr)) were employed as target variables, which correspond to energy differences between 

the transition states that lead to each isomer (Curtin-Hammett principle56). p denotes the number of descriptors. 3. 

Visualization of important structural information for constitutional selectivity and diastereoselectivity on the Ir--

allyl complexes from the regression coefficients, followed by the design of chiral phosphoramidite ligands based 

on the visualized guidelines. Dark blue points indicate that substituents there increased selectivity (dr or b/l) [up 

(overlap)]. Light blue points indicate that introducing substituents there will increase selectivity [up (non-overlap)]. 

Dark red points indicate that substituents there decreased selectivity [down (overlap)]. Light red points indicate 

that introducing substituents there will decrease selectivity [down (non-overlap)]. 
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Data-driven molecular design method. For data-driven optimization of the catalyst structures in this complicated 

asymmetric catalysis, we employed a 3D-QSSR (quantitative structure-selectivity relationships) approach15, which 

was originally developed in the field of medicinal chemistry37 and introduced to the field of asymmetric catalysis 

by Lipkowitz’s38 and Kozlowski’s39 groups. Among the terms that represent 3D-QSSR, we used molecular field 

analysis (MFA). MFA is a regression analysis between the reaction outcomes and molecular fields calculated from 

three-dimensional molecular structures. From the coefficients of the constructed regression models, important 

structural information for the reaction outcomes can be visualized on the molecular structures. In our previous 

study on MFA in a relatively simple asymmetric catalysis affording one stereocenter (fluorination of a keto ester)40, 

intermediates in the enantio-determining step consisting of catalysts and substrates were employed for calculations 

of descriptors (molecular fields). Our MFA method enabled extraction and visualization of the structural 

information, leading to the design of substrate molecules with improved enantioselectivity. Here, we applied the 

MFA method to catalyst optimization in more complicated stereodivergent asymmetric synthesis. Historically, 

applications of a data analysis method for a specific molecular property to evaluations and optimizations of other 

properties have expanded the research field. For example, Hansch and Fujita et al. utilized the extended Hammett 

equation to predict biological activities41,42, which eventually led to the development of the QSAR (Quantitative 

Structure-Activity Relationships) field43,44. Our research direction is along such trends. 

Because the Ir--allyl complex (Fig. 1b and 1d) is the hub intermediate in the selectivity-determining step of 

the present Ir/B dual catalysis45 (Ir complexes and allyl groups correspond to catalysts and substrates, respectively), 

we utilized this complex for MFA. Importantly, since the Ir--allyl complex is the common intermediate in 

determining all the four reaction outcomes (b/l and dr in reactions using ligand S or R)46-48, one set of molecular 

fields calculated from the complex can be used to analyze four sets of the target variables as shown in Fig. 1d. 

This characteristic enables facile comparison of constitutional selectivity- and diastereoselectivity-determining 

factors visualized on an identical intermediate structure (Fig. 1d). Although our data analysis does not employ B-

enolates for descriptor calculations, the experimental selectivity data involve the information how chiral B-

enolates and Ir--allyl complexes interact each other when the reactions proceed. Therefore, the structural 

information visualized on Ir--allyl complexes (see below) include the information of B-enolates. It is worth noting 

that we can use this MFA without knowing structural details of chiral B-enolates. The obtained guidelines will 

lead to the efficient design of new catalysts that will simultaneously improve multiple reaction outcomes. 

Furthermore, the information affords insights into selectivity induction mechanisms without performing transition 

state density functional theory calculations (see Supplementary figs. S19 and S20)46-48.  
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Data-driven catalyst optimization. When collecting training samples, mathematical indices are useful for 

selecting catalysts from a large number of candidate molecules as demonstrated by Denmark's group4. Typically, 

however, available catalysts are limited due to cost, synthetic accessibility, and catalytic activity. Thus, to construct 

the initial training datasets, phosphoramidite ligands for the Ir catalyst were selected based on their availability 

and catalytic activity (Fig. 2a). We employed 1Et and 1Pr as model substrates (Fig. 1c). Screening the reactions 

by combinations of 12 phosphoramidite ligands and two substrates afforded 4 sets of 24 target variables (b/l and 

dr using either the S or R ligand for the B catalyst, see Fig. 2a and see Supplementary Table S1–S4). We then 

performed MFA using the datasets (for details of the MFA, see Supplementary Information section 11). As the 

molecular fields, indicator fields (steric fields represented by the 0,1 vector as shown in Fig. 1d and see 

Supplementary fig. S1) were employed, which are often used for MFA in asymmetric catalysis4,40,49-51. It has been 

recognized that weak attractive interactions, such as dispersion forces, are sometimes important for asymmetric 

catalysis52-55. Because such weak non-covalent interactions are operative when atoms are present in sufficiently 

close proximity52-55, positional information (3-dimensional coordinates) of atoms potentially functions as a 

descriptor to represent such attractive interactions. Indicator fields are calculated at each unit cell of a grid space. 

The unit cells that include the van der Waals radii of any atoms are counted as 1, or are otherwise counted as 0 

(Fig. 1d and see Supplementary fig. S1). Therefore, while these descriptors mainly represent steric effects, the 

positional information also implicitly includes intermolecular weak interactions. Specifically, it is possible that 

the visualized information shown in Fig. 1d includes attractive dispersion interactions between Ir--allyl 

complexes and B-enolates. Thus, we expect that the indicator fields will be suitable for the MFA in this catalytic 

system. As target variables, logarithms of constitutional and diastereomeric ratios (b/l and dr) (G‡ = –RTlog(b/l 

or dr)) were employed, which correspond to energy differences between the transition states that lead to each 

isomer (Curtin-Hammett principle56). By correlating the target variables and the molecular fields through LASSO57 

or Elastic Net58 using the R package, glmnet59 according to the reported procedure51, four regression models were 

generated for predicting b/l and dr in the reactions using the S or R ligand.  

Among the constructed regression models, first, we focused on the model dictating b/l ratios using the valine-

derived ligand S for the boron catalyst, which produces (2R,3R)-2 as the major isomer (1/1.2–5.0/1 b/l, 1/1.1–8.5/1 

dr for the 24 reactions). From the coefficients of the regression model, important structural information was 

visualized on the Ir--allyl complex derived from L1 and 1Pr (hereafter referred to as L1/1Pr) affording 1.2/1 b/l 

(Fig. 2d). The blue and red points represent the structural information visualized based on the regression 

coefficients, corresponding to positive and negative coefficients, respectively—i.e., if molecular structures overlap 
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with the blue/red points, selectivity increases/decreases (see the footnote of Fig. 1d for more details). A light blue 

point that did not overlap with intermediate L1/1Pr was identified between the 3- and 4-positions of the binaphthyl 

skeleton (yellow arrow), indicating that increasing the steric demand in this region should improve the b/l ratio. 

Thus, we employed (S)-3,3’-dimethyl BINOL and (S)-VANOL as the ligand skeletons, and synthesized ligands 

L13 and L15 (Fig. 2b). Similarly, L14 and L16 could be designed from the structure L3/1Pr (fig. S4). The 

intermediates L13/1Pr–L16/1Pr overlapped with the light blue points (e.g. L15/1Pr; Fig. 2d, the fused benzene 

ring of L15 overlapping with the light blue point observed in L1/1Pr is indicated by the green arrow. See also 

Supplementary fig. S4). Indeed, the reactions using ligands L13–L16 exhibited improved b/l ratios (4.3/1–>50/1) 

compared with that of L1/1Pr (1.2/1 b/l). In particular, the reactions using ligands L15 and L16 synthesized from 

(S)-VANOL exhibited a much higher b/l ratio than those in the initial training dataset (Figs. 2a and 2b, and see 

Supplementary Table S2).  

While the b/l ratio increased after the optimization, dr had room for improvement (maximum 9.8/1 dr in the 

32 samples using ligand S). Thus, we again performed MFA on the data obtained from the 32 reactions, including 

those using ligands L13–L16. For the model from the dr data, a light blue point appeared near the Ph group at a 

phenethylamine moiety under the π-allyl group of L1/1Pr (yellow arrow in Fig. 2E). In the MFA of the b/l data 

from the 32 reactions, a light blue point again was identified around the 3- and 4-positions of the BINOL skeleton 

(Fig. 2f, yellow arrow). To increase both dr and the b/l ratio by superposing the light blue points near the Ph group 

on the amine moiety and the BINOL skeleton, we designed L17 derived from (S)-VANOL bearing a naphthyl 

group on the amine moiety (Fig. 2c). The intermediate structure L17/1Pr overlapped with the blue points (green 

arrows in Figs. 2e and 2f, and fig. S5). To our delight, the reaction using L17/1Pr and ligand S exhibited excellent 

constitutional selectivity and diastereoselectivity (>50/1 b/l, >20/1 dr). 

We next focused on the design of the Ir catalysts for the reactions using ligand R that produce the (2S,3R)-

diastereomer as the major isomer. Simply changing the ligand for the B catalyst from S to R, however, afforded 

(2S,3R)-2Pr in only 1.9/1 dr for the reaction using L17 (see Supplementary Table S2). This result was again in 

contrast to Carreira’s observation (Fig. 1a)19, and suggested that enantiofacial controls of the Ir--allyl complex 

and B-enolate were not independent in our case. Thus, we screened reactions using the above-designed ligands 

L13–L16 in addition to the initial training dataset (1/1.5–>50/1 b/l, 3.1/1–17/1 dr for the 32 reactions). Although 

L14/1Pr showed excellent b/l and high dr (>50/1 b/l, 15/1 dr), dr of L5/1Pr was higher (4.4/1 b/l, 16/1 dr). 

Therefore, we examined whether the b/l ratio could be further improved through data-driven optimization of L5. 

From the coefficients of the regression models, important structural information for b/l and dr was visualized on 
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structure L5/1Pr (Figs. 2G and 2H). In both cases, light blue points appeared near the 2-position of the fluorene 

group (yellow arrow), indicating that introducing a substituent at the 2-position would improve both b/l and dr. 

According to this information, we designed L18 bearing a tBu group on the fluorene moiety (Fig. 2c). The structure 

L18/1Pr overlapped with the dark blue points (green arrows in Figs. 2g and 2h, and see Supplementary fig. S6). 

Gratifyingly, the reaction using L18/1Pr and R showed excellent constitutional selectivity with further improved 

diastereoselectivity (>50/1 b/l, 20/1 dr). 

On the basis of the optimization studies, L17 with S and L18 with R are the optimum ligand combinations 

for the Ir/B dual catalysis to synthesize (2R,3R)-2 and (2S,3R)-2, respectively (Fig. 2c). The ligands were identified 

through iterative MFA-based molecular design starting from easily accessible ligands (Fig. 2i). While we 

demonstrated the single design pathway, the pathway can be modified depending on the researcher’s intuition and 

starting training datasets. Another design pathway is shown in fig. S14. In addition, insights into the diastereomeric 

induction mechanisms can be obtained from the visualized structural information (see Supplementary figs. S19 

and S20). While enantiomeric excess values in the initial training datasets were already high (90–99% ee in the 24 

reactions using S and 92–99% ee in the 24 reactions using R), we also performed MFA using the enantioselectivity 

data (see Supplementary figs. S26–S29). We predicted that designed ligands L13–L18 would show excellent 

enantioselectivity over 97.8% (predicted G‡ > 2.9 kcal/mol, see Supplementary Table S12). Indeed, the 

reactions using those ligands furnished 98% ee or higher (see Supplementary Tables S1 and S2). Therefore, we 

would be able to design new ligands to improve enantioselectivity if necessary. 
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Fig. 2 | Dataset and molecular design. a, An initial dataset. The phosphoramidite ligands for the Ir catalysts 

derived from BINOL or H8BINOL (H8) were employed for the reactions using substrates 1Et and 1Pr. The 

reaction conditions were identical to Fig. 1c. b–c, Ligands designed by the MFA. d–h, Important structural 

information visualized on the Ir--allyl intermediates and molecular design based on the structural information. 
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While the guidelines were visualized on the CPK models of the intermediate structures as shown in Fig. 1d, we 

show the structural information and the intermediate structures drawn by ChemDraw for clarity.  The structural 

information was extracted by LASSO. The number in parenthesis is the number of the reactions used for the MFA. 

Ligand/substrate denotes the Ir--allyl complex structure composed of the ligand and substrate or the reaction 

using the ligand and substrate. The b/l or dr determined by the experiments are shown. i, Overall design flow. 

 

Substrate scope and synthetic applications. Next, we investigated the substrate scope of these asymmetric dual 

catalyst systems (Fig. 3a). A range of allyl esters bearing alkyl, halogens, electron-withdrawing groups, electron-

donating substituents, and a heteroatom at the aromatic ring (R1) provided products (2S,3R)-2 and (2R,3R)-2 with 

high enantio-, diastereo-, and constitutional selectivity (2a–2m). The allyl groups were introduced 

chemoselectively at the -position of the carboxylic acid function in the presence of an ester (2n) or amide function 

(2o) bearing intrinsically more acidic -C–H bonds. This was due to the chemoselective activation of carboxylic 

acids by the B catalyst34. Substituent R2 can be replaced by alkyl groups other than a methyl group while 

maintaining high stereoselectivity (2p, 2q). Various functional groups at the allyl moiety were also tolerated (2r–

2x), including alkyl chloride (2u) and alkyl azide (2w). Due to the high functional group compatibility, the reaction 

was applied to late-stage modification of multifunctional molecules, including substrates derived from anti-

inflammatory drugs (ketoprofen [2y] and sulindac [2z]), an anti-malarial drug (artesunate [2aa]), a cholesterol 

(2ab), a nucleic acid (2ac) and a retinoic acid (2ad). In all entries, the reactions proceeded with catalyst-controlled 

stereoselectivity and constitutional selectivity. To demonstrate synthetic utility, we examined stereodivergent 

construction of three contiguous stereocenters (Fig. 3b). Thus, osmium-catalyzed alkene dihydroxylation of 

(2S,3R)-2a and (2R,3R)-2a afforded diastereomerically pure lactones (3S,4S,5S)-3a and (3R,4S,5S)-3a in high 

yield, respectively. Inversion of the stereochemistry at C5 proceeded through O-mesylation followed by hydrolysis, 

affording (3S,4S,5R)-3a and (3R,4S,5R)-3a, respectively. This result showcases that 8 stereoisomers (including 

enantiomers) can be divergently synthesized from a simple starting material by combining the Ir/B dual 

asymmetric catalysis with traditional methods. 
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Fig. 3 | Substrate scope of the stereodivergent asymmetric dual catalysis and transformations of the 

products. a, For the reaction conditions, see the footnote of Fig. 1C, except for reactions of 1z, 1aa, 1ac and 1ad 

[cat. Ir* ([Ir(cod)Cl]2 (5 mol%)–L17 or L18 (10 mol%)) and cat. B* ((AcO)4B2O (20 mol%)–S or R (40 mol%)). 

b, Stereodivergent construction of three contiguous stereocenters. Reaction conditions: (a) 2a (1.0 equiv), OsO4 

(10 mol%), and N-methylmorphiline (1.5 equiv) were mixed in tBuOH/H2O for 12 h at rt. (b) (3S,4S,5S)-3, MsCl 

(2.4 equiv), and triethylamine (2.0 equiv) mixed in DCM for 3 h at rt; mesylated product (1.0 equiv) and KOH 

(3.0 equiv) mixed in THF/H2O for 3 h at rt; (c) (3R,4S,5S)-3, MsCl (2.4 equiv), and triethylamine (2.0 equiv) 
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mixed in DCM for 3 h at rt; mesylated product (1.0 equiv) and tetramethylammonium hydroxide pentahydrate (3.0 

equiv) were mixed in THF for 3 h at 0 °C. 

 

Conclusion 

In conclusion, we successfully improved the four reaction outcomes (constitutional selectivity and 

diastereoselectivity for both diastereomers) while retaining excellent enantioselectivity, in stereodivergent 

asymmetric Ir/B dual hybrid catalysis. Our method involved MFA-based data-driven catalyst optimization with a 

relatively small dataset, based on the Ir--allyl complex intermediate structures without knowing the detailed 

structures of the reaction partner (B-enolate). The concept demonstrated herein will enable efficient optimization 

of various stereodivergent asymmetric hybrid catalysis. Our analysis employed simple steric descriptors, the 

indicator fields, and standard machine learning techniques, LASSO57 and Elastic Net58. Further examinations of 

molecular fields and machine learning techniques will expand the scope of this analysis and accelerate the 

development of data science in molecular catalysis.  
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Methods 

General procedure for Asymmetric Ir/B dual catalysis. A flame-dried 10 mL test tube A, equipped with a 

magnetic stirring bar, was charged with [Ir(cod)Cl]2 (5.0 mg, 0.0075 mmol, 0.025 equiv), ligand L17 or L18 (0.015 

mmol, 0.05 equiv), LiCl (12.8 mg, 0.3 mmol, 1 equiv), DBU (67.2 L, 0.45 mmol, 1.5 equiv), and anhydrous THF 

(125 L). Another flame-dried 10 mL test tube B, equipped with a magnetic stirring bar, was charged with 

(AcO)4B2O (8.2 mg, 0.030 mmol, 0.1 equiv), (R)- or (S)-((2,3,5,6-tetrafluoro-4-methoxyphenyl)sulfonyl)-valine 

(R or S, 21.6 mg, 0.060 mmol, 0.2 equiv), and anhydrous THF (125 L). After stirring the solution in test tube A 

for 1 h at 50 °C and stirring the solution in test tube B for 1 h at room temperature, the solution in test tube B and 

allyl ester 1 (0.30 mmol, 1 equiv) were added sequentially to the test tube A. The reaction mixture was stirred for 

12 h at 50 °C under argon atmosphere. The reaction was quenched with aq. HCl (1.0 M) and products were 

extracted with EtOAc. The organic layer was washed with aqueous HCl (1.0 M), dried over Na2SO4, filtered and 

concentrated under reduced pressure to afford the crude product. Diastereomeric ratio (dr) and branch/linear (b/l) 

selectivity were determined by 1H NMR analysis of crude mixture. The crude product was purified by column 

chromatography (hexane/EtOAc = 5/1). 

 

Calculations of the molecular fields. The protocol for calculations of molecular fields is as follows (see 

Supplementary fig. S1a). (I) A set of the Ir--allyl intermediates was optimized using the DFT method at the 

B3LYP/LANL2DZ (Ir) and 6-31G(d) level. (II) The coordinates of the set of the molecules obtained in step I were 

aligned. For alignment, first, we defined an xy plane based on the mean plane of the allyl group of L1/1Et as 

shown in fig. S1c. The central carbon atom of the allyl group was set as the origin. Then, alignment was performed 

through the least squares method by minimizing the distances between the allyl groups (the 7 atoms highlighted 

by red shown in fig. S1b) of L1/1Et and other intermediates. (III) The structures were placed in a grid space. The 

unit cell size is 1 Å per side. We used the molecular structures around the reaction center for calculations of the 

molecular fields instead of the use of the whole molecular structures to reduce dimensions of descriptors and avoid 

overfitting. The size of the grid space, which is centered at the origin, is 10 × 12 × 6 Å3. Each unit cell is regarded 

as an element of the descriptor vectors. The unit cells that included Bondi van der Waals radii of C (1.70 Å), H 

(1.20 Å), O (1.52 Å) atoms were counted as 1, or were otherwise counted as 0. Columns of all 0 and all 1 were 

removed to give the descriptor matrix.  
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LASSO and Elastic Net regression. Logarithms of constitutional selectivity (b/l) and diastereoselectivity (dr) 

were employed as target variables (see Supplementary Tables S3 and S4), which correspond to energy differences 

between the transition states that lead to each isomer (G‡ = –RTlog(b/l or dr)). R is the gas constant and T is the 

temperature of the reactions, 323.15 K. The molecular fields and G‡ values (kcal/mol) were correlated using 

LASSO (Least Absolute Shrinkage and Selection Operator) or Elastic Net to generate the regression models. The 

LASSO and Elastic Net regressions were performed using the R package, glmnet.  

By minimizing the above loss function, we can estimate coefficients  = (1,2,…,j,…,p)T while simultaneously 

assigning unimportant coefficients for reaction outcomes to be 0 (In this study, yi is G‡. xi = (xi1, xi2,…,xij,…,xip)T 

is the indicator field. n and p denote the number of samples and descriptors, respectively.). If  is 1, this method 

corresponds to LASSO regression. If  is 0 <  < 1, this method corresponds to Elastic Net regression. In all cases 

in this study, we selected values of the hyper parameter  that minimized the mean squared error calculated from 

predicted values obtained from leave-one-out cross-validation by using glmnet. Among descriptors that are 

correlated, LASSO will select one. In contrast, Elastic Net can extract multiple correlated descriptors. We 

performed Elastic Net regression if structural information that led to molecular design could not be found through 

LASSO regression. For Elastic Net, we varied the parameter  from 0.1 to 0.9 in steps of 0.1, and for each choice 

of  we selected the parameter  according to the procedure described above using glmnet. Among the models in 

which the important structural information that led to molecular design was included, we employed the model 

showing the highest q2 (coefficient of determination calculated from predicted values of leave-one-out cross-

validation [LOOCV]). Coefficients of determination calculated from the resulting regression models (R2) and q2 

are shown in fig. S2 (24 reactions) and fig. S3 (32 reactions) along with plots of the measured and predicted values. 

The numbers of all descriptors and extracted descriptors are also shown in figs S2 and S3. The measured and 

predicted values are summarized in Table S3 and S4. We also performed 4-fold CV and y-randomization. The 

analysis was repeated 100 times for 4-fold CV and 50 times for y-randomization. The average values of the 

coefficients of determination are shown in fig. S2 and S3 (Q2 for 4-fold CV and R2
yradom for y-randomization). In 

all cases, Q2 showed good values over 0.6, indicating the models are robust. Low values of R2
yrandom close to 0 

indicate the probability of chance correlation is low.   

 

Molecular design. The workflow for the molecular design in this study is as follows.  
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(I) MFA using the sets of selectivity data and the intermediate structures is performed and the quality of the 

resulting regression models is checked. In this study, we have successfully designed the molecules based on 

structural information visualized by the MFA. All the regression models showed R2, q2, Q2 > 0.6 and R2
y-random < 

0.2. Thus, we tentatively employ these metrics (R2, q2, Q2 > 0.6 and R2
y-random < 0.2) to determine whether the 

models are used for the design.  

(II) Extracted structural information is visualized on the intermediate structures and all the intermediate structures 

in the training samples and visualized structural information are thoroughly compared. By considering synthetic 

accessibility, substituents are introduced to the intermediate structures to overlap light blue points as shown in the 

text. For the design, we basically employ the structural information that fulfills |r| > 0.3 and shows the same sign 

with correlation coefficient r (i.e. the structural information corresponding to positive regression coefficients 

should show a positive value of correlation coefficient r with the target variables). If predicted G‡ values of the 

designed molecules are higher than those of the template molecules, the designed ligands are synthesized and the 

reactions using the ligands are examined.  

(III) If the selectivity values are not satisfactory, MFA using all the sets of target variables including those in the 

reactions with the designed ligands is again performed. This workflow is repeated until designed molecules show 

high selectivity. 

 

Data availability 

All data supporting the findings of this study, including experimental procedures and compound characterization, 

NMR, and HPLC are available within the Article and its Supplementary Information. Input data for data analysis 

is found in “data” folder in Supplementary Information. Important structural information with all the 36 Ir--allyl 

intermediate structures (xyz files) obtained by running our scripts is found in “output” folder of Supplementary 

Information. All the regression coefficient values including standardized regression coefficients in the regression 

models used for the molecular design along with correlation coefficient r and coordinates of unit cell centers are 

summarized as excel files found in parameters folder of Supplementary Information. 

 

Code availability 

Scripts for the MFA are available at https://github.com/sh-yamaguchi/MFA and the brief summary about how to 

use the scripts are described in Supplementary Information.  

https://github.com/sh-yamaguchi/MFA
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