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Abstract

To detect multiple gases in a mixture, one must employ an electronic nose or sensor

array, composed of several materials as a single material cannot resolve all the gases

in a mixture accurately. Given the many candidate materials, choosing the right com-

bination of materials to be used in an array is a challenging task. In a sensor whose

sensing mechanism depends on a change in mass upon gas adsorption, both the equi-

librium and kinetic characteristics of the gas-material system dictate the performance

of the array. The overarching goal of this work is two-fold. First, we aim to highlight

the impact of thermodynamic characteristics of gas-material combination on array per-

formance and to develop a graphical approach to rapidly screen materials. Second, we

aim to highlight the need to incorporate the gas sorption kinetic characteristics to pro-

vide an accurate picture of the performance of a sensor array. To address these goals,

we have developed a computational test bench that incorporates a sensor model and

a gas composition estimator. To provide a generic study, we have chosen, as candi-

date materials, hypothetical materials that exhibit equilibrium characteristics similar
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to metal organic frameworks (MOFs). Our computational studies led to key learnings,

namely: (1) exploit the shape of the sensor response as a function of gas composition

for material screening purposes for gravimetric arrays; (2) incorporate both equilibrium

and kinetics for gas composition estimation in a dynamic system; and (3) engineer the

array by accounting for the kinetics of the materials, the feed gas flow rate, and the

size of the device.

1 Introduction1

The global gas sensor market has been expanding rapidly over the years due to the in-2

creased use of sensors in industrial, medical, and automotive sectors.1 Major focus has3

been on sensing carbon dioxide (CO2), methane (CH4), water vapor (H2O), nitrogen ox-4

ides (NOx), and volatile organic compounds (VOCs), most of which constitute greenhouse5

gases (GHG). Gas sensing devices can be classified into methods that rely on electrical vari-6

ation and methods that rely on other property changes. The former group encompasses7

impedance sensors, chemicapacitive sensors, chemiresistive sensors, and electrochemical sen-8

sors.2 The latter group encompasses optical sensors (absorption/transmission spectroscopy9

sensor, photo ionization detector sensor, luminescence sensor), gravimetric sensors (quartz10

crystal microbalance (QCM) sensors, surface acoustic wave (SAW) sensors, microcantilever11

sensors), and acoustic sensors.2–8 The most important characteristics for any gas sensor are12

its selectivity , chemical and thermal stability, sensitivity, reusability, and response time.13

Apart from these, factors like portability, cost, and energy requirement to operate the sensor14

can play a role in the suitability and application of a particular sensor. The active sensing15

component of most commercial sensors are either organic-polymers or inorganic-metal ox-16

ides. They exploit some form of electrical variation for monitoring the change, which requires17

the active sensitive material to exhibit electrical conductivity. Polymeric sensors often suffer18

from poor selectivity and poor long term stability.2,9 Metal oxide sensors must be usually19

operated at temperatures exceeding 200 °C. This unfavorable feature hinders their usage for20
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ambient temperature gas sensing. These sensors also exhibit high cross-selectivity in the21

presence of multiple gases.2,3,922

Porous materials like zeolites and metal-organic frameworks (MOFs) have shown great23

promise for gas storage and separation processes.10–12 This is largely attributed to the ability24

to tune their structure, composed of metallic ions or clusters and organic linkers, which25

leads to an infinite number of possible structures. Due to these features, MOFs can exhibit26

a high selectivity toward a desired target gas. MOFs have been used as active sensing27

materials to detect vapors and VOCs,13–19 water vapor,20,21 CO2,
9,22,23 O2,

24 and sulfur28

containing gases25,26 (SO2 and H2S). A priori, MOFs are suitable candidates for active sensing29

material owing to their tunable selectivity toward a target gas, ability to be coated onto30

miniature sensors, and ability to function under both room and elevated temperatures. Yet,31

the focus of research so far has been on either sensing of or increasing the selectivity for a32

particular gas. Quantification of a wide range of gases has not been proven. The integration33

of MOF into actual sensor devices is even less explored. In short, although very promising,34

the development of MOF-based portable gas sensors is at its infancy and several technical35

challenges related to their implementation remain to be overcome.36

Gravimetric sensors provide an excellent platform for gas sensing due to their simple37

miniature construction, commercial availability, low cost, and ability to provide online38

data.8,27,28 In these sensors the gas uptake, on an active sensing surface (porous materi-39

als, e.g. MOFs), is inferred by changes in physical quantities like resonance frequency (for40

QCM) or modulation of surface acoustic waves (for SAW). The mass detection limit of these41

devices are usually in the order of nanograms.4,5,8 As explained previously, MOFs show a42

great potential for gas sensing applications and can be used in a gravimetric sensor.29 Yet, a43

single magic MOF material can hardly ever be used to detect multiple gases in a gas stream.44

An array of sensors (also known as electronic nose, analogous to human olfactory system)45

has been proposed to overcome the issue of multigas sensing.15,30–35 An array of sensor is46

composed of multiple sensor elements coated with different materials exhibiting varying se-47
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lectivity toward a particular gas. There exists only a handful of experimental studies of such48

an array using MOFs.15,3649

Given the large number of experimental and hypothetical MOFs reported in the liter-50

ature, there is a necessity to select materials from the 1000s of possible candidates in a51

smart fashion that guarantees excellent sensing performance in a sensor array. To this aim,52

Wilmer and coworkers and Simon and coworkers have recently provided excellent screen-53

ing frameworks.37–42 The former comprises of computational studies aimed at providing a54

probabilistic metric to quantify sensing performance of an array and at efficiently screening55

several materials using an evolutionary optimization algorithm for CH4 and CO2 sensing.56

The latter comprises of computational studies aimed at using elegant mathematical concepts57

to screen materials under dilute conditions for a two- and three-gas system and to evaluate58

the fitness of combinations of materials in a sensor array for a two-gas system.59

The overarching goal of this work is two-fold. We aim to systematically highlight the60

impact of thermodynamics of the gas-material system on gas sensing and to provide a simple61

graphical approach to screen porous materials that can be used in a gravimetric sensor. This62

aspect would be an addition to what was covered in the aforementioned computational stud-63

ies. Once the equilibrium characteristics of a material is available, the graphical approach64

would provide a quick check to determine whether the material will be a suitable candidate65

for a given gas sensing application. If the material is not a suitable candidate, the same66

approach can be used to mix and match different materials to get a good sensing accuracy.67

Given the sheer number of MOFs reported in the literature, a simple tool like the one pro-68

posed in this work can be handy. This approach relies only on the thermodynamics of the69

system and is aimed to be qualitative. For a more rigorous approach, the computational70

studies from the previous subsection can be used.38,41 The second goal of our study is to71

systematically highlight the importance of incorporating adsorption kinetics for gravimetric72

sensors in the screening process. The computational studies from the previous subsection73

were all performed under equilibrium conditions. However, adsorption is driven by both74
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equilibrium and kinetics. Within the context of gas sensing, the amount of gas adsorbed75

will determine the changes in the sensor response and the kinetics will determine the sensor76

response time. The kinetic aspects of gas sensing have often been overlooked and not been77

studied in detail. Our work does not pertain to any specific mixture(s) of gas. The method-78

ology, results, and conclusions from this study can be easily transferred to any gravimetric79

sensor with porous materials as active sensing surface.80

The article is organized as follows. In Section 2, we give an overview of the modeling81

framework used in this study. In Section 3, we present cases studies on the impact of82

thermodynamics and the graphical approach to screen porous materials. In Section 4, we83

highlight the importance of incorporating kinetic models on gas sensing. Finally, in Section 5,84

we summarize the key outcomes and share thoughts on the way forward.85

2 Methodology86

The studies presented in this work are purely computational in nature. A simple schematic87

of the problem statement and the workflow of the computational test bench developed in88

this work is shown in Figure 1. This test bench is comprised of two components, namely,89

a sensor array simulator and a composition estimator. The former serves as a proxy to an90

experimental sensor array and provides what we refer to as the ‘true’ (or experimental) sensor91

response. In this work, the sensor response is equivalent to the amount of gas adsorbed on92

the active sensing surface (i.e., the porous material). Upon the availability of the amount93

of gas adsorbed, the composition estimator provides the composition of the gas that was94

exposed to the porous material that led to the given sensor response. These two components95

of the computational test bench are discussed in the following subsections.96

5



Figure 1: A visual schematic of the problem addressed in this work. The problem tack-
led here is the real-time quantitative sensing of gases (WHAT?) using an array of sen-
sors/electronic nose (OUTCOME?) with porous materials (Mi) as the active sensing ma-
terial (HOW?). The schematic here indicates a Quartz Crystal Microbalance (QCM) based
transduction mechanism. However, this could be any other technique based on gravimetry.
The bottom panel indicates the workflow of the computational test bench developed in this
work that incorporates a sensor model (either incorporating pure equilibrium or combined
equilibrium and kinetics) and the composition estimator. The input to the test bench is the
real gas composition yin to be sensed and the output is the estimated gas composition ŷ.

2.1 Sensor Array Simulator97

To simulate the sensor array, it is necessary to first identify the gases that will be sensed and98

the materials that will form the array. Subsequently, the thermodynamics (i.e. adsorption99

equilibria) and the kinetics of the gas-material combination must be defined. If the kinetics100

are not considered, the sensor response can be obtained by estimating the gas uptake in a101
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given material at a given partial pressure (i.e. composition). If kinetics are considered, the102

thermodynamics of the system is coupled with the kinetics. This is done by integrating the103

mass balance equations for the gas and the solid phases that define the evolution of the gas104

uptake of the sensor array as function of time. The following subsections provide details105

regarding how these cases are handled in the computational framework.106

2.1.1 Definition of the Gas-Material System107

To keep the study as general as possible, we consider hypothetical materials instead of108

real materials. The equilibrium properties of these materials are chosen such that their109

adsorption capacities and heats of adsorption resemble the ones of common porous materials110

(e.g. MOFs, Zeolites). The adsorption equilibria of these materials are defined using the111

single-site Langmuir isotherm (a Type I isotherm). Further, the competition between the112

gases is defined using the extended single-site Langmuir isotherm, retaining the parameters113

of the pure gases, as follows114

q∗j (P, T, yj) =
qsat,jbjcj

1 +
g∑

k=1

bkck

bj = b0,jexp

(
−∆Uj

RT

)
cj =

Pyj
RT

(1)

where q∗j [mol m−3] is the equilibrium adsorption capacity of gas j at pressure P [Pa] and115

temperature T [K], qsat,j [mol m−3] is the saturation adsorption capacity, cj is the concen-116

tration of the gas, yj [-] is the corresponding mole fraction, g is the total number of gases117

in the mixture, bj is the temperature dependent adsorption equilibrium constant, and ∆Uj118

[J mol−1] is the internal energy.119

For a two-gas system, the molecular weights of these gases are M [g mol−1] = [44.01 28.01].120
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For the three-gas system, the corresponding molecular weights are M = [44.01 28.01 15.99].121

All the simulations are performed at a temperature of 298.15 K and a pressure of 1 bar. De-122

pending on the system being studied, the molecular weights, temperature, and pressure can123

be changed in the computational framework.124

2.1.2 Sensor Response: Accounting for only Thermodynamics125

In the absence of kinetics or estimating the gas composition at equilibrium conditions, the126

response mi of a gravimetric sensor (e.g. QCM) coated with material i at pressure P and127

temperature T exposed to a gas mixture of composition y is given as128

mi(P, T,y) =

g∑
j=1

ρiq
∗
j (P, T, yj)Mj i ∈ [1, n] (2)

where ρi [kg m−3] is the density of material i, q∗j (P, T, yj) is the equilibrium adsorption129

capacity, obtained from eq 1, andMj is the molecular weight of the gas j. The sensor response130

takes the above form because the gravimetric sensor can only detect the total change in the131

mass and cannot identify the individual contribution of the constituent gases to the total132

mass uptake. If a sensor array/electronic nose, with more than one material, is used, the133

sensor response of a number of materials (n) will be used to determine the gas composition.134

2.1.3 Sensor Response: Accounting for Both Thermodynamics and Kinetics135

When accounting for kinetics, a detailed mathematical model that incorporates the resistance136

offered by a porous material to adsorb a given gas must be considered. This mathematical137

model must describe the evolution of the mass uptake over time by coupling the thermo-138

dynamics and kinetics of the porous material. The adsorption capacity and the kinetics of139

the gas on a given material constitute the so-called material constraints. In practice, if one140

uses a QCM or a SAW sensor, additional constraints exist e.g. the maximum allowable flow141

rate of the gas to be sensed, the mass/volume of the active sensing material coated on the142

sensor, and the unavoidable dead volume of the device. These factors constitute the so-called143

8



engineering constraints.144

Based on the above considerations, we formulate a mathematical model for the sensor145

coated with a given material. To this aim, we assume the combined sensor and the material146

system to be a perfectly mixed cell. This is analogous to a packed bed in chromatogra-147

phy/adsorption when the length of the column tends to zero.43 Therefore, the component148

mass balance for the gas j is written as149

F incinj − Fcj = Vg
dcj
dt

+ Vs
dqj
dt

(3)

where F in [m3 s−1] and F [m3 s−1] are the volumetric flow rate of the gas mixture at the150

inlet and the outlet, respectively, cinj and cj are the concentration of the gas j at inlet and151

outlet, respectively, qj is the amount of gas adsorbed in the porous material, Vg[m
3] is the152

dead volume of the device, and Vs [m3] is the volume of the porous material coated on the153

sensor.154

We assume the rate of uptake of gas j in the porous material to be described using the155

linear driving force (LDF) model as156

dqj
dt

= kj

(
q∗j − qj

)
(4)

where qj [mol m−3] is the amount of gas adsorbed in the material at time t, q∗j is the equilib-157

rium adsorption capacity, obtained from eq 1, and kj [s−1] is the lumped kinetic rate constant158

for a given gas j that describes the resistance to mass transfer from the gas phase to the159

solid phase.160

Finally, to close the system of equations, we impose a mass conservation constraint using161

162

g∑
j=1

yj = 1 (5)

Additionally, if the pressure drop in the sensor is assumed to be negligible, there will be163
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2g+ 1 unknowns, namely the g gas compositions (y), the g solid phase uptakes (q), and the164

volumetric flow rate at the outlet F . Equations 3 through 5 provides 2g + 1 equations to165

estimate the 2g + 1 unknowns.166

Under the assumption of negligible pressure drop and using the equation of state given

in eq 1, eqs 3 through 5 are reformulated as follows

dqj
dt

= kj

(
q∗j − qj

)
j ∈ [1, g]

F in P

RT
− F P

RT
= Vs

g∑
j=1

dqj
dt

dyj
dt

=
RT

PVg

[
F in

Pyinj
RT

− F Pyj
RT
− Vs

dqj
dt

]
j ∈ [1, g) (6)

We use a stiff solver in the solve ivp function of the scipy package in Python 3.8.5.44 to

integrate the aforementioned set of equations for time span tint [s]. These equations have to

be solved for each material that is present in the sensor array. The initial conditions for the

aforementioned problem are

yj(0) = 0 j ∈ [1, g)

qj(0) = 0 j ∈ [1, g]

F (0) = F in (7)

When performing simulations considering the kinetics of the system, apart from the gases of167

interest, an additional non-adsorbing inert gas is introduced. In reality, this will translate to168

purging the material with an inert gas to prepare the material to sense incoming feed gas.169

2.2 Composition Estimator170

The estimation of gas composition with the knowledge of the amount adsorbed is the in-171

verse problem to the traditional gas adsorption problem encountered in the porous mate-172
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rials/adsorption process community, i.e. the gas uptake in a material when exposed to a173

gas mixture of known concentration. One can compute the gas composition if the uptake is174

known either by employing a look up table or by framing an optimization problem. In this175

work, we use the latter approach. An optimization problem is framed that minimizes the176

error between the “true” measurement mexp,i and the simulated measurement msim,i obtained177

by varying the gas composition y. For a sensor array, the error is the sum of the individual178

contributions from all the materials of the array.179

Mathematically, when accounting only for the thermodynamics, the optimization problem

takes the following form

minimize
y

n∑
i=1

(
mexp,i −msim,i(y)

mexp,i

)2

subject to 0 ≤ yj ≤ 1 j ∈ [1, g]

g∑
j=1

yj = 1 (8)

where mexp and msim are obtained using eq 2.180

When accounting for both thermodynamics and kinetics, the aforementioned mathemat-

ical expression has to be reformulated to incorporate the evolution of the gas uptake. Upon

reformulation, the optimization problem takes the following form

minimize
y

n∑
i=1

(
mexp,i −msim,i(y)

mexp,i

)2

subject to 0 ≤ yj(t) ≤ 1 j ∈ [1, g]

g∑
j=1

yj(t) = 1 (9)

where m is a vector of gas uptake on a material i as a function of time obtained by solving181

the full model given by eq 6. This expression is equivalent to minimizing the error between182

the “true” gas uptake profile and the simulated gas uptake profile.183
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We use the basinhopping algorithm of the scipy package in Python 3.8.5.44 to solve the184

optimization problem. The basin hopping algorithm combines a global stepping algorithm185

and a local minimization algorithm to ensure that the entire decision variable space (y) is186

explored. We use a total of 50 iterations in the basin hopping algorithm and the minimum187

value obtained at the end of these iterations is assumed to be the global minimum.188

3 Thermodynamic Considerations189

In this section, we discuss the thermodynamic considerations, i.e. the gas uptake in a given190

material at equilibrium, within the context of gas sensing. Subsequently, we propose a simple191

graphical method used to provide a quick check on whether a given material or a combination192

of materials has the potential to resolve accurately the composition of gases being sensed. To193

this aim, we provide first a simple study that highlights the need to incorporate a combination194

of materials for good sensing performance (see Section 3.1). Second, we show that even with195

a combination of materials there is no guarantee that an optimal sensing performance can196

be obtained without introducing mathematical constraints to estimate the gas composition197

(see Section 3.1). Third, we demonstrate that even after incorporating the constraint, the198

ability of the material(s) to resolve the “true” gas composition accurately depends on the199

shape of the response curve (i.e. total gas uptake vs. partial pressure of the gas) (see200

Section 3.2). Finally, we propose a simple graphical approach to provide a qualitative region201

of gas composition where a given material or combination of materials can exhibit good202

sensing performance (see Section 3.3). This work paves way for a rapid screening of materials203

for gas sensing. The readers are directed to other works reported in the literature for a more204

quantitative approach toward material screening38,39 and for a mathematical understanding205

of why combination of materials exhibit a given performance.41,42206
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3.1 Need for Combination of Materials207

To highlight the need to combine materials with distinct equilibrium characteristics, we208

conducted a simple case study with 100 hypothetical materials. Subsequently, a sensor array209

composed of either one or two materials was exposed to a binary test gaseous stream of a210

known composition y = [0.05 0.95]. Based on this known composition, the “experimental”211

sensor response mexp was computed, using eq 2, for each material in the array. Given this212

sensor response, the optimization problem set in eq 8 was solved to obtained the estimated213

composition ŷ. This approach serves as a proxy to a real experiment using the array. If214

the materials in a given sensor array are capable of resolving the gas sensor, then ŷ =215

y. We considered two different scenarios. One in which the mass conservation constraint,216

given in eq 8, was not imposed and one in which it was imposed. Ideally, the former217

should be sufficient if the materials exhibit good sensitivity toward changes in gas phase218

composition. For example, for a two-gas system, two materials should be sufficient to resolve219

the gas composition accurately. If not, the constraint posed in the latter case would aid in220

the computation of the gas compositions by providing an additional physically consistent221

information on the system. The one- and two-material sensor arrays led to 100 and 4950222

unique combinations, respectively, using the 100 hypothetical materials. The composition223

estimates from these arrays are visualized in Figure 2 in the form of a probability distribution224

f . We draw two main observations from the results. First, as expected, moving from a225

sensor array composed of one material to two materials leads to a better resolution of the226

gas composition as evident by the narrow distribution of compositions around the “true”227

gas composition. This result highlights the strength of building a sensor array such that228

the number of materials is at least equal to the number of gases being sensed. Second, the229

incorporation of the mass conservation constraint (see eq 8) in the optimization routine also230

leads to a better resolution of the gas composition, even for the sensor array composed of231

only one material due to the reasons explained above. We exploit this finding in all the232

studies shown in the following sections by incorporating the mass conservation constraint.233
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Figure 2: Distribution of estimated gas compositions f , obtained by solving eq 8, for a
two-gas system using a sensor array composed of (a) one material (n = 1) and (b) two
materials (n = 2) without incorporating the mass conservation constraint in the optimization
routine. The corresponding distributions accounting for mass conservation constraint for (c)
one material (n = 1) and (d) two materials (n = 2). The “true” gas composition for gas 1
(red) y1 is 0.05 and gas 2 (gray) y2 is 0.95 and they are shown using the dotted vertical lines.
A bin size of 0.02 was used for all the distributions. The distributions are normalized so that
the area under the curve is one.

3.2 Effect of Shape of Sensor Response234

When a sensor array is used in practice, at each time instant, the mass change due to gas235

adsorption on each material is monitored and the optimization problem defined in eq 8 is236
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solved to obtain the gas compositions. If this operation is repeated a sufficient number of237

times, one can obtain a distribution of gas compositions. This distribution will be charac-238

terized by its mean µ̂ and standard deviation σ̂. For a good sensor array, the mean should239

be as close as possible to the “true” gas composition and the standard deviation should be240

as small as possible. The former guarantees obtaining the correct gas composition, while the241

latter guarantees a good sensitivity of the array when subjected to changes in the feed gas242

composition. In practice, these two quantities depend on the sensor response of the array.243

Under strictly equilibrium conditions, the response of a given sensor or sensor array, given244

by eq 2, is a consequence of the adsorption isotherm of a gas-material combination. To high-245

light the effect of the shape of the sensor response as a function of the gas composition which246

derives from the specific gas adsorption patterns, we constructed three hypothetical arrays,247

each with only one material (A-C). Subsequently, these arrays were exposed to eight different248

“true” gas compositions (a two-gas mixture). Their composition estimation was repeated249

a 1000 times to obtain the distribution of gas compositions. The sensor performance was250

gauged using two metrics, namely, the relative error of the estimated mean gas composition251

ψ and the coefficient of variation χ. The former is defined as the relative error of mean µ̂ of252

the estimated distribution with respect to the mean of the “true” gas composition µ. The253

latter is defined as the ratio of the standard deviation σ̂ to the mean µ̂ of the estimated254

distribution.255

The equilibrium sensor response m for the three hypothetical sensor arrays as a function256

of the gas composition y1 is illustrated in Figure 3a. The three arrays exhibit different257

adsorption behaviors. For arrays A and C, gas 1 is preferentially adsorbed over gas 2, while258

for array B, gas 2 is preferentially adsorbed over gas 1. In other words, we observe differences259

in the shape of the sensor response. Additionally, the sensor response for arrays A and B260

are extremely nonlinear with respect to the gas composition, while for array B it is closer261

to being linear. As discussed below, the shape of the response has major implications on262

estimating the composition accurately.263

15



The relative error of the estimated mean gas composition ψ and the coefficient of variation264

χ for the three arrays at different gas compositions is shown in Figure 3b and Figure 3c,265

respectively. Two observations can be made based on the outcome of the simulations. First,266

array C performs the best over a wide range of gas composition, as indicated by the lower267

value of ψ and χ over almost the entire range of composition. Second, array A and B268

exhibit contrasting behaviors in line with the shape of their response. Array A shows higher269

nonlinearity at lower compositions and therefore has a lower value of ψ and χ at lower270

gas compositions, while array B has a lower value for both the quantities at higher gas271

compositions. For array A, when y1 > 0.10, the sensor response barely changes thereby272

leading to an incorrect mean value and a broader distribution of compositions around the273

mean. In the next subsection, hypothetical arrays with more than one material will be274

constructed to mitigate the high errors and further reinforce the observations seen here. If275

measurement noise is incorporated, the performance of the arrays can change depending276

on the shape of the response. However, this aspect is not discussed here and the reader is277

directed toward literature that looks into measurement noise in detail.38,41,42278

To conclude, based on the above observations, one can easily confirm if a sensor array279

possesses the ability to resolve a gas mixture accurately at a given gas composition. This ap-280

proach is beneficial as it can help screen unsuitable candidates at a fraction of computational281

cost when compared to rigorous screening approaches, which are often time consuming.282

3.3 Evaluating Array Performance using the Sensor Response Shape283

In the previous subsection, we show that the accuracy in predicting the actual gas compo-284

sition with little deviation from the mean value depends heavily on the shape of the sensor285

(material) response. Additionally, a nonlinear sensor response leads to a better accuracy to286

resolve a gas mixture whose composition falls in the nonlinear region. Based on these two287

observations, we developed a simple graphical tool to identify regions of gas composition288

to which a given sensor array will have the best performance in terms of resolving the gas289
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Figure 3: (a) Sensor response m, obtained using eq 2, for the three hypothetical arrays,
each composed of one material for a two-gas system, as a function of the gas composition y1.
(b) The relative error of the estimated mean gas compositions ψ for the three hypothetical
arrays as a function of the true gas composition. (c) The coefficient of variation χ for
the three hypothetical arrays as a function of the true gas composition. Here, ψ and χ is
computed by repeating the composition estimation for a 1000 iterations without accounting
for measurement noise. Panel (b) and (c) is a semilog plot.

mixture. To this aim, the knee/elbow of the sensor response is found using an algorithm290

previously reported (Kneedle algorithm).45 Here, the knee/elbow of the sensor response cor-291

responds to the gas composition where the transition from a linear or nonlinear response to292

a saturated response or vice-versa occurs. This approach is qualitative and aims to rapidly293

eliminate materials or combination of materials that cannot resolve a gas mixture at a given294

composition. This method can also serve as a pre-screening step to reduce the number of295

materials that must be screened rigorously for constructing a sensor array (e.g. using the296

optimization methodology proposed previously39).297

3.3.1 Two-Material Array298

To illustrate the performance of the proposed methodology, we constructed two hypothetical299

arrays, D and E, using two materials each (α through δ). The sensor response for these two300

arrays are shown in Figure 4a,c. Using the Kneedle algorithm, the corresponding knee/elbow301
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was found. The algorithm provides the value of the gas composition where the transition302

in the sensor response occurs. Using this tool, we identified two regions for each material,303

namely, a more sensitive and a less sensitive regions. The former will encompass gas compo-304

sitions that a material could resolve more accurately than the latter. The sensitive region for305

each material is highlighted as the shaded region (orange or green) in Figure 4a,c. For array306

D, exposure to a gas mixture with y1 below 0.4 and for array E, exposure to a gas mixture307

with either y1 below 0.1 or above 0.85 should yield a better performance when compared to308

other gas compositions.309

Further, the approach used in Section 3.2 to quantify the relative error of the estimated310

mean composition ψ and the coefficient of variation χ, was employed for the two hypothetical311

arrays. These two quantities for arrays D and E, at different gas compositions is shown in312

Figure 4b and Figure 4d, respectively. Several observations can be made on the performance313

of both the arrays. Over the entire gas composition range, array D performs better than array314

E, indicated by lower ψ and χ values. For array D, while ψ does not change significantly, χ315

varies by an order of magnitude between the low and the high gas compositions. Additionally,316

the compositions that fall in the sensitive region (shaded region) have a lower value of χ.317

The difference in performance at different gas compositions are clearer for array E. The array318

performance is in line with the gas compositions that fall under the sensitive region, i.e. lower319

values of ψ and χ at both lower and high gas compositions. When outside the sensitive320

region, these quantities are 3-4 orders of magnitude higher than the best case scenario,321

highlighting the inability of the array to be used under conditions that have intermediate322

gas compositions. Finally, array D performs better than array E over the entire range of gas323

composition. Indeed, both materials in array D exhibit a change in the sensor response as324

the gas composition changes. For array E, at intermediate gas compositions, neither material325

γ nor δ exhibit any changes in sensor response.326
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Figure 4: (a) Sensor response m, obtained using eq 2, for the hypothetical array D, com-
posed of materials α and β for a two-gas system, as a function of the gas composition y1.
(b) The relative error of the estimated mean gas compositions ψ (red) and the coefficient of
variation χ (gray) for the the hypothetical array D as a function of the true gas composition.
(c) Sensor response m, obtained using eq 2, for the hypothetical array E, composed of mate-
rials γ and δ for a two-gas system, as a function of the gas composition y1. (d) The relative
error of the estimated mean gas compositions ψ (red) and the coefficient of variation χ (gray)
for the hypothetical array E as a function of the true gas composition. Here, ψ and χ are
computed by repeating the composition estimation for 1000 iterations without accounting for
measurement noise. In panels (a) and (c), the shaded regions (orange and green) correspond
to the sensitive region of the sensor response that would lead to a superior array performance.
Panels (b) and (d) are semilog plots.
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3.3.2 Three-Material Array327

As shown in the previous subsection, the methodology proposed to identify the sensitive328

regions for the materials to resolve a gas mixture can describe the qualitative trends in the329

sensing performance for the two-material case. Here, we extended the methodology for a330

three-material array for two hypothetical arrays, F and G. The aim of this study is two-fold.331

First, to illustrate the ability of the methodology and explain the qualitative trends for a332

three-material array. Second, to illustrate the ability of the methodology to be used to mix333

and match materials to broaden the working range of the array.334

For this study, we first constructed a reference two-material array using materials γ and335

ζ. Subsequently, we constructed the two hypothetical three-material arrays, F and G, by336

adding α and δ, respectively, to the reference array. The sensor response for these two arrays337

are shown in Figure 5a,c. Using the Kneedle algorithm, we identified the sensitive for each338

material in the array (shaded region in Figure 5a,c). The sensitive region for the reference339

two-material array covers the gas composition y1 below 0.1. For array F, the sensitive region340

expands to y1 of around 0.4 with the addition of material α. For array G, the sensitive region341

is concentrated on the two extremities of the gas composition by the addition of material δ.342

343

Further, we employed the approach used in Section 3.2 to quantify the relative error of344

the estimated mean composition ψ and the coefficient of variation χ, for the reference array345

and the two hypothetical arrays, F and G. These two quantities are shown in Figure 5b and346

Figure 5d, for different gas compositions. The outcome from the study agrees with the two-347

material array scenario, discussed in the previous subsection. The reference two-material348

array performs best at gas compositions that fall within the sensitive region (y1 below 0.10),349

indicated by the lower value of ψ and χ. As expected, the addition of a third material to the350

reference array enhances the performance by 3-4 orders of magnitude, when the composition351

of the test gas falls within the sensitive region. For array F, the addition of material α,352

improves the performance over the entire range of gas composition. This observation is353
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Figure 5: (a) Sensor responsem, obtained using eq 2, for the hypothetical array F, composed
of three materials γ, ζ, and α for a two-gas system, as a function of the gas composition y1.
(b) The relative error of the estimated mean gas compositions ψ (red) and the coefficient of
variation χ (gray) for the the hypothetical array E and the reference array, composed of two
materials γ and ζ, as a function of the true gas composition. (c) Sensor response m, obtained
using eq 2, for the hypothetical array G, composed of three materials γ, ζ, and δ for a two gas
system, as a function of the gas composition y1. (d) The relative error of the estimated mean
gas compositions ψ (red) and the coefficient of variation χ (gray) for the the hypothetical
array G and the reference array, composed of two materials γ and ζ, as a function of the true
gas composition. Here, ψ and χ are computed by repeating the composition estimation for a
1000 iterations without accounting for measurement noise. In panels (a) and (c), the shaded
regions (green, blue, and orange) corresponds to the sensitive region of the sensor response
that would lead to a superior array performance. Panels (b) and (d) are semilog plots
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attributed to the shape of the response for material α (see discussion on array D). Array354

G performs better at both lower and higher compositions when compared to intermediate355

compositions (see discussion on array D). We attribute these observations to the shape of356

the sensor responses at the different gas compositions. Depending on the application of a357

given sensor array based on the target gas compositions, the reference array can be expanded358

by adding materials that would resolve the gas and the methodology proposed here could359

be used to rapidly evaluate if that is feasible. As a final comment, the addition of more360

materials to a sensor does not automatically guarantee an increase in performance. Instead,361

the gain in performance relies heavily on the sensitivity at a given target gas composition362

provided by the additional material.363

To conclude, the studies presented on the two-material and three-material arrays reinforce364

the observations made in Section 3.2 regarding the impact of the nonlinearity (or shape) of365

the sensor response on the array performance. The studies also demonstrate the effectiveness366

of our methodology to use the knee/elbow of the sensor response as a proxy for the expected367

array performance under equilibrium conditions. The ability of the method to mix and match368

additional materials to improve the performance of a poor performing array is also observed369

using the three-material array. Overall, the methodology shown here can satisfactorily and370

quickly gauge the qualitative performance of a sensor array and to pre-screen materials before371

performing a rigorous optimization.372

4 Thermodynamic and Kinetic Considerations373

The observations from the previous section show that the thermodynamic/equilibrium char-374

acteristics of the materials in a sensor array determine its performance to accurately and375

consistently resolve a gas mixture. However, these studies were performed at equilibrium376

conditions. In practice, this assumption translates to a scenario where the kinetics of gas377

adsorption on the material is instantaneous (an equilibrium-controlled phenomenon). How-378
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ever, if gas adsorption is not instantaneous, one must incorporate the kinetics of the different379

gases in the material during the composition estimation and screening. The kinetics of the380

gas adsorption on the material will determine the response time of the sensor when subjected381

to a step-change in gas composition. A good sensor is one that has a very short response382

time, i.e. it should detect a change in gas composition, instantaneously.383

When both thermodynamics and kinetics are incorporated, the sensing problem has a384

time-resolved mathematical formulation (see Section 2.1.3). This approach is closer to reality385

when compared to assuming an equilibrium sensing process. Additionally, this approach386

facilitates incorporating engineering variables like the size of the device (in terms of the387

volume) and the flow rate of the gas to be sensed, which is not possible with the equilibrium388

studies shown in the previous section or with the studies published previously.389

In this section, we present a computational case study that highlights the need to employ390

a descriptive model incorporating adsorption kinetics, when the gas adsorption in a material391

is not instantaneous (Section 4.1). Subsequently, we simulate several scenarios to highlight392

the importance of factors like kinetics, flow rate of the gas and volume of the device on the393

sensing performance (Section 4.2).394

4.1 Need to Employ a Descriptive Model395

Here, we exposed the hypothetical array D to a binary gas mixture with inlet composition yin1396

of 0.1. The feed flow rate Fin, volume of the porous material Vs, and the dead volume of the397

device Vg were set to 5× 10−7m3 s−1, 5× 10−7m3, and 5× 10−7m3, respectively. We assumed398

the same kinetic rate constant k of 0.01 s−1 for all gases in all materials. We chose this low399

kinetic rate constant, which will lead to a very slow uptake, to highlight the necessity to400

consider kinetic effects when screening materials for sensor arrays and to reliably estimate401

the composition of the gas mixture.402

The full model incorporating both the equilibrium and the kinetics, given by eq 6, is in-403

tegrated for 1000 s to generate the “experimental” gas uptake profile mexp,i for each material404
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i in the array. This gas uptake profile for the hypothetical array D is shown in Figure 6a.405

Here, we can make two observations. First, due to the presence of adsorption kinetics, the406

sensor response m increases over time for both the materials. Second, after 750 s and 250 s,407

the response reaches a plateau for material α and β, respectively. This plateau corresponds408

to the equilibrium sensor response for both the materials. It is this equilibrium value that409

is used in all the screening studies reported in the literature. Depending on the kinetics of410

the gas in a given material, the response can plateau out sooner or later than the one shown411

here.412
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Figure 6: (a) Sensor response mexp, obtained using eq 6, for the hypothetical array D,
composed of two materials α, and β for a two-gas system, as a function of time t for a feed
gas composition yin1 of 0.1. The response is generated using the same kinetic rate constant
k = 0.01 s−1 for both the gases being sensed and both the materials used in the hypothetical
array. (b) Estimated gas composition ŷ1 as a function of time t obtained using a fully
descriptive model (gray), given by eq 9, and using an equilibrium model (red), given by eq 8.
Note: dotted lines serve only as a guide.

Given this sensor response, we considered two cases to estimate the binary mixture gas413

composition ŷ1. In the first case, we estimated the gas composition without any knowledge414

of the adsorption kinetics, i.e. at each time instant, we assumed the gas to be at equilibrium415

with the porous material. Therefore, the optimization problem given by eq 8 is used to416

estimate the gas composition. In the second case, we estimated the gas composition with the417
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knowledge of adsorption kinetics, i.e. at each time instant, we considered both equilibrium418

and kinetic characteristics of the gas irrespective of whether the gas is at equilibrium or not.419

Therefore, we used the full model given by eq 6 and the optimization problem given by eq 9420

to estimate the gas composition. The evolution of the gas compositions estimated using these421

two cases is shown in Figure 6b. Two observations can be made. First, the compositions422

estimated from the two cases differ and converge only after 750 s, in line with the plateau of423

the sensor response (see panel (a)). This is because the materials are at equilibrium with the424

feed gas at feed conditions after 750 s. Second, even though the sensor array is subjected to a425

feed gas at a constant composition, the equilibrium approach incorrectly predicts a variable426

feed gas composition. However, the full model, with the knowledge of both equilibrium and427

kinetics, resolves the composition accurately from the moment the array is exposed to the428

gas mixture.429

To conclude, this simple case study highlights the importance of adsorption kinetics430

on gas sensing, an aspect that is often overlooked. Using a purely equilibrium approach431

for material screening and/or composition estimation is reasonable if the material reaches432

equilibrium rapidly. Since in practice, this might be difficult to achieve, one should either433

focus on using materials that exhibit minimal kinetic effects or on incorporating a detailed434

model for screening and/or composition estimation purposes in an array, like the one used435

in this work. Irrespective of the approach used, one must accurately characterize the kinetic436

characteristics apart from the equilibrium characteristics of a given material.437

4.2 Factors that Impact Sensing Performance438

The observations from the previous subsection show that kinetics impact significantly the439

sensing performance and the composition estimates thus obtained. However, when one looks440

at the detailed sensor model, given by eq 6, apart from the equilibrium (q∗) and kinetic (k)441

characteristics of the materials in the array, three other variables can potentially influence442

the sensing performance. These variables include: inlet gas volumetric flow rate F in, dead443
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volume of the device Vg and volume of the porous material Vg coated on the sensor. The444

latter two variables can be defined using the total volume of the device VT and the dead445

voidage of the device ε, i.e. Vg = εVT and Vs = (1− ε)VT. To understand the effect of these446

variables, we conducted a parametric study by varying k, F in, VT, or ε, one at a time, using447

the detailed sensor model eq 6. We conducted the study for a one-material array, array C,448

composed of material α when exposed to a feed gas of composition yin1 = 1.0. Here, this449

simple case is considered to better highlight the interplay between the different variables.450

The impact of equilibrium characteristics has been discussed in detail in Section 3.451

The detailed sensor model is integrated for 2000 s to generate the gas uptake profile m452

for the hypothetical array C. The gas uptake profile from varying the aforementioned four453

variables is shown in Figure 7. Several observations can be made from the outcome of this454

study. First, an increase in the kinetic rate constant k of gas being adsorbed decreases the455

time to reach the saturation uptake (see Figure 7a). Therefore, a higher value of k translates456

to a faster sensor response time when subjected to a step change in gas composition. Second,457

an increase in the gas volumetric flow rate F in also decreases the time to reach the saturation458

uptake (see Figure 7b). A higher F in ensures that the change in the sensor response is459

dictated purely by the kinetics of the adsorption and not by the convection of the gas.460

Third, an increase in the total volume of the device VT at a constant dead voidage ε of the461

device increases the saturation uptake of the sensor (see Figure 7c). This is expected as an462

increase in VT translates to a higher volume of the coated porous material Vs and thereby463

to a higher gas uptake. This feature might also help increase the signal-to-noise ratio of the464

sensor response when materials with low uptake are used in the array. Finally, an increase465

in the dead voidage of the device ε at a constant total volume of the device VT, decreases466

the saturation uptake of the sensor (see Figure 7d). This is expected as an increase in ε467

translates to lower volume of coated porous material Vs.468

To summarize, desirable characteristics for gas sensing include: material with fast ki-469

netics (material constraint), a device that has a high total volume and a low dead voidage470
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Figure 7: Sensor response m, obtained using eq 6, for the hypothetical array C, composed
of material α for a two-gas system, as a function of time t for a feed gas composition yin1 of
1.0. Response obtained from a parametric study by varying (a) kinetic rate constant k of the
gases, (b) inlet gas volumetric flow rate F in, (c) total volume of the device VT (combined
solid and gas phase) and (d) dead voidage of the device ε. The direction of the arrow indicates
an increase in the variable being varied. The absolute amount absorbed is indicated in all
the plots. The reference values of the variables are k = 0.01 s−1, F in = 0.5 cm3 s−1, VT = 1
cm3 and ε = 0.5. The value of the variables being varied in the corresponding parametric
study, k [s−1], F in [cm3 s−1], VT [cm3] and ε [-] is given in each panel.

additionally guaranteeing the ability to process a high flow rate of sensing gas (engineering471

constraints). In practice, one cannot arbitrarily set the values for these material and en-472

gineering variables. Therefore, a rigorous optimization has to be performed accounting for473
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realistic bounds of the variables before finalizing the design of the electronic nose. As a final474

comment, the observations seen here can have consequences when estimating the gas com-475

positions of the gas to be sensed. If one incorporates a detailed sensor model, as discussed476

in Section 4.1, the gas composition can be estimated accurately irrespective of the choice477

of the variables. However, erroneous gas compositions are bound to be obtained when the478

composition estimation algorithm is blind to the effects of these variables, as in the case of479

the equilibrium model.480

5 Concluding Remarks481

5.1 Key Outcomes482

The work presented here provides a new perspective into material screening for gas sens-483

ing applications. We present the first study that aims to systemically evaluate the effect484

of adsorption equilibrium (thermodynamics) and kinetics of the gas-material system on the485

performance of a gravimetric sensor array. To this aim, we have developed two computa-486

tional tools. First, a sensor model, that incorporates either only the thermodynamics or a487

combination of both the thermodynamics and kinetics of the gas-material system. Second,488

a composition estimator coupled to the sensor model, to obtain the composition of the gases489

in the feed stream. The key outcomes from this work can be summarized as follows:490

• One can exploit the shape of the sensor response as a function of gas composition to491

rapidly screen materials for gravimetric sensor arrays. This can serve as a prescreening492

tool to other screening approaches presented in the literature.493

• One should incorporate both equilibrium and kinetics to accurately estimate gas com-494

positions in a dynamic system.495

• One should account for the gas flow rate, size of the device, and kinetics of the gas-496

material system, when screening materials as these variables can significantly impact497
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the sensor response.498

Finally, the modeling framework and the methodology developed in this work is universal499

and is not restricted to any material/gas combination. If the sensing mechanism is based500

on gravimetry, this framework can be used to gauge the performance of any existing or new501

material combinations for a sensor array. Even though the results presented in this work are502

for a binary system, the methodology and the outcome are transferable to more than two503

gases.504

5.2 Way forward505

The accurate characterization of adsorption thermodynamics and kinetics of the materials506

has major implications not only on gas sensing using novel porous material like MOFs, but507

also on gas separation applications. Today, there are very few reports of multi-component508

adsorption equilibrium and even fewer studies on the kinetics of adsorption. If porous ma-509

terials are to be used on scale for gas sensing applications, an accurate characterization is510

key. In our future work, we aim to address this knowledge gap by looking into sensing com-511

mon gases on prototypical MOFs and characterizing the adsorption equilibrium and kinetic512

properties of the gas-material combination.513
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