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Two approximations exploiting evolutions at different time scales are usually used to

simplify rate laws in chemical kinetics.1–5 The quasi-steady-state approximation (QSSA)

is used to eliminate a chemical species which evolves faster than the others.6 The partial-

equilibrium approximation (PEA) is employed to remove a reaction step associated with

an extent evolving faster than the other extents. Both methods are examples of adiabatic

elimination of a fast variable in differential equations.7–16 The fast variable, concentration

or extent, is supposed to instantaneously adapt to the evolution of the other variables. For

this reason, the fast variable is sometimes called a slave variable.17 The fast variable is not

independent from the other variables and can be ignored in the reduced rate equations.

Quasi-steady state or partial equilibrium does not mean that the eliminated variable has

reached a steady state but that it keeps evolving at a rate imposed by the other variables.

Far from being stationary, the evolution of the eliminated variable occurs at the time scale

on which the reduced rate equations focus.

1 Simple example of quasi-steady-state approxima-

tion

The first-order reaction scheme

X
k1−→ Y

k2−→ Z (1)
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is associated with the rate equations

dX

dt
= −k1X (2)

dY

dt
= k1X − k2Y (3)

that can be easily solved leading to

X(t) = X(0) exp (−k1t) (4)

Y (t) =
k1X(0)

k2 − k1
exp (−k1t) +

(
Y (0)− k1X(0)

k2 − k1

)
exp (−k2t) (5)

If the rate constant k1 associated with the formation of species Y is much smaller than

the rate constant k2 associated with the consumption of Y, the concentration Y possesses

an exponential component exp (−k2t) evolving faster than the concentration X which

evolves as exp (−k1t). At a time scale larger than 1/k2, the fast exponential component

of Y is negligible leading to

X(t) = X(0) exp (−k1t) (6)

Y (t) ' k1X(0)

k2
exp (−k1t) (7)

where k2 − k1 ' k2 has been used. Equations (6, 7) imply

Y (t) ' k1
k2
X(t) (8)

which is straightforwardly deduced from Eq. (3) assuming dY
dt

= 0. Hence, the quasi-

steady-state approximation does not impose that Y has reached a steady-state for which
dX
dt

= 0 would be also necessary. According to Eq. (8), the approximation imposes that

Y follows the evolution of X.

The evolution of the concentration X given in Eq. (6) can be associated with the

reduced reaction scheme

X
k1−→ Z (9)

in which the fast variable Y has been eliminated. In this simple example with a reac-

tive intermediate Y, the concentration Y is smaller than X, which does not provide a

general validity condition for the elimination of Y using QSSA. The application of the

approximation requires a condition on the time scales characterizing the evolution of the

concentrations. In this simple example, the condition is k1 � k2.
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2 Simple example of partial-equilibrium approxima-

tion

The first-order reaction scheme

X
k1−−⇀↽−−
k−1

Y
k2−→ Z (10)

with rate constants obeying k1 � k2 and k−1 � k2 is associated with the following rate

equations for the extents of reaction ξ1 and ξ2 associated with the first and second steps

dξ1
dt

= k1X − k−1Y (11)

dξ2
dt

= k2Y (12)

where X and Y are the concentrations of species X and Y. The rate equations for the

concentrations are

dX

dt
= −k1X + k−1Y (13)

dY

dt
= k1X − (k−1 + k2)Y (14)

dZ

dt
= k2Y (15)

leading to

dξ1
dt

= −dX

dt
(16)

dξ2
dt

=
dZ

dt
(17)

The law of conservation of matter imposes

X + Y + Z = Ctot (18)

where Ctot is the total concentration. For vanishing extents at the steady state, (X0, Y0, Z0) =

(0, 0, Ctot), the relationships between the concentrations and the extents are deduced from

the integration of Eqs. (16, 17) leading to

ξ1 = −X (19)

ξ2 = −X − Y (20)

Eqs. (11, 12, 19, 20) are used to write the rate equations for the extents:

dξ1
dt

= − (k1 + k−1) ξ1 + k−1ξ2 (21)

dξ2
dt

= k2ξ1 − k2ξ2 (22)
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that can be solved using standard linear algebra calculations. For k1 � k2 and k−1 � k2,

it reads

ξ1(t) '
k−1√

(k1 + k−1)
2 + k2−1

A(0) exp

(
− k1k2
k1 + k−1

t

)
−B(0) exp (− (k1 + k−1) t) (23)

ξ2(t) '
k1 + k−1√

(k1 + k−1)
2 + k2−1

A(0) exp

(
− k1k2
k1 + k−1

t

)
+

k2
k1 + k−1

B(0) exp (− (k1 + k−1) t)

(24)

with

A(0) =
k2

√
(k1 + k−1)

2 + k2−1

(k1 + k−1)
2 ξ1(0) +

√
(k1 + k−1)

2 + k2−1

k1 + k−1

ξ2(0) (25)

B(0) = −ξ1(0) +
k−1

k1 + k−1

ξ2(0) (26)

where ξ1(0) and ξ2(0) are the initial values of the extents.

The extents are given by weighted sums of two exponential components with two

different characteristic times, a short time 1/(k1+k−1) and a long time (k1+k−1)/k1k2. For

the extent ξ1, the prefactor k−1√
(k1+k−1)

2+k2−1

associated with the long characteristic time is

smaller than the absolute prefactor equal to 1 associated with the short characteristic time.

Over the short time scale t ≤ 1/(k1 + k−1) the extent ξ1 evolves as the fast exponential

component provided that the initial conditions obey

| A(0) |≤| B(0) | (27)

The extent ξ1 is considered as the fast variable.

Over the long time scale t� 1/(k1 + k−1), the fast exponential decays in Eqs. (23,24)

are negligible leading to

ξ1(t) '
k−1√

(k1 + k−1)
2 + k2−1

A(0) exp

(
− k1k2
k1 + k−1

t

)
(28)

ξ2(t) '
k1 + k−1√

(k1 + k−1)
2 + k2−1

A(0) exp

(
− k1k2
k1 + k−1

t

)
(29)

which amounts to

ξ1(t) '
k−1

k1 + k−1

ξ2(t) (30)

or, according to Eq. (21), to

dξ1
dt

= 0 (31)
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The partial-equilibrium approximation consists in considering that the fast exponential

component instantaneously relaxes which amounts to eliminating the fast extent ξ1. How-

ever the fast extent ξ1 has not reached a steady state but it keeps evolving at the rate

imposed by the extent ξ2. In other words, the reaction associated with the fast extent

ξ1 adapts to the instantaneous value of the other extent ξ2: The fast extent reaches a

pseudo-equilibrium state for each value of the slowly evolving extent as in an adiabatic

process.

The elimination of the fast extent ξ1 leads to the reduced reaction scheme

Y

k1k2
k1+k−1−−−−→ Z (32)

that needs to be supplemented by the relationship

X =
k−1

k1
Y (33)

deduced from Eqs. (11,31).

3 Elimination of a fast variable

The quasi-steady-state approximation (QSSA) and the partial-equilibrium approxima-

tion (PEA) offer well-known methods to eliminate a fast variable, a concentration or an

extent.15,18–22

These approximations are zeroth-order perturbation methods consisting in writing
dvi
dt

= 0 for a fast variable vi in a system of differential equations involving n vari-

ables.4,5, 23–27

After linearization of the system of differential equations around a stable steady state,

standard linear algebra calculations give the expression of each variable in the form of a

weighted sum of exponential decays. The weights depend on the rate constants and the

initial conditions. In particular, the characteristic times are defined as the inverse of the

absolute real part of the eigenvalues of the Jacobian matrix.

The elimination of the fast variable vi can be performed if two necessary conditions

are fulfilled.5 First, one characteristic time τs must be much smaller than the others,

leading to a fast exponential decay. Second, the weight of the fast exponential decay

exp(−t/τs) must be larger than or equal to the weight of each other exponential decay

in the expression of the variable vi. These two conditions involve the rate constants.

In addition, the approximation is valid for appropriate initial conditions such that the

variables have reached the so-called slow manifold of dimension n− 114–16 defined by

dvi
dt

= 0 (34)
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over the long time scale obeying t� τs. On the slow manifold, the variable vi adapts to

the evolution of the other variables and evolves at a rate imposed by them.

After the elimination of the fast variable vi, the system of differential equations gov-

erning the evolution of the other variables can be written as a system of dimension n− 1.

If this system of differential equations for concentrations involves polynomials compati-

ble with chemical kinetics rate laws, the evolution of the remaining chemical species can

be associated with a reduced set of reaction steps. The existence of a reduced reaction

scheme is not always guaranteed as illustrated by Michaelis-Menten kinetics which leads

to rational functions of the concentrations in the rate equations.21 If the remaining char-

acteristic times have different orders of magnitude, an analogous procedure of elimination

may be performed to further reduce the number of variables.
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