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ABSTRACT. Readily available from esters and kektones, cyclopropanols are inclined to undergo 

diverse ring-opening reactions. Their one-electron oxidation is a conventional way to β-carbonyl 

radicals. However, despite this fact, their application as a coupling partner in dual photoredox and 

nickel-catalyzed reactions with organic halides remains underdeveloped. Here, we report that 

Ti(OiPr)4 additive enables this elusive cross-coupling with aryl and alkenyl bromides affording β-

substituted ketones. 
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Nickel-catalyzed coupling of the photochemically generated alkyl radicals1 with aryl, alkenyl or 

alkyl halides has recently emerged as a powerful tool for the C-C bond construction (Scheme 1A).2 

Proceeding under mild conditions, these reactions generally tolerate sensitive functional groups 

and moreover, can be deployed for the formation of an asymmetric setereocenter.3  The scope of 

the radical precursors used in the coupling is exceptionally broad. After the pioneering reports on 

the arylation  of organotrifluoroborates, aliphatic carboxylic acids and N,N-dimethylaniline by 

Molander4 and  MacMillan and Doyle,5 various alternative coupling partners were utilized 

including alkylsylicates,6 monoalkyl oxalates,7 dihydropyridines,8,9 alkyl halides,10 alkanes,11 

oxiranes,12 aziridines,13 cycloalkanone oxyme-carboxylates,14 N-hydroxyphthalimide esters,15 

Katritzky salts,16 alkylsulfinate salts,17 xanthate esters,18 boracene-based alkyl borates,19 linear20 

and cyclic alcohols.21 Being a source of β-ketoradicals 3,22 cyclopropanols 1 can also undergo the 

photoredox/nickel dual catalyzed reaction to provide β-substituted ketones (Scheme 1B).21  

However, scope of cyclopropanols that can be engaged in this coupling is rather narrow. Shenvi 

reported arylation and alkenylation of tricyclic silyloxycyclopropanes 4 promoted by an iridium 

photocatalyst and a nickel complex.21a One of the obtained β-substituted ketones 5 was further 

efficiently applied in a concise synthesis of natural alkaloid GB-22.21a  Another example of the 

photoredox initiated ring-opening arylation was described by Rueping.21b The presence of PMP 

group in 6 was crucial because the formation of alkoxy radical 2 was initiated by the one-electron 

oxidation of this moiety. Here, we report that limitations in the scope of photoredox and nickel 

dual-catalyzed cyclopropanol arylation and alkenylation can be overcome when the reaction is 

carried out in the presence of Ti(OiPr)4 as an additive. Under these conditions, β-substituted 

ketones 10 can be obtained from cyclopropanols 8 and aryl- or vinyl- bromides 9. 
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Scheme 1. Reactions of cyclopropanols under dual photoredox and nickel catalysis 

Transformation of cyclopropanol 1 (Eox = +1.66 V)23 to oxycyclopropyl radical 2 require a 

relatively strong oxidant. For comparison, the reduction potential of the excited photocatalysts 

commonly used in the cooperative photoredox and nickel catalysis lays between +0.77 and +1.35 

V.2c Thus, either a photocatalyst with a stronger oxidative properties or an alternative way of 

oxycyclopropyl radical 2 genertion was required.  Recently we found that cyclopropanols undergo 
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one-electron oxidation by the photoexcited acridimium salts (E1/2 (P*/P-) = +2.08 V),24 but our 

attempts to use them in the ring-opening arylation of 8 with 9 were unsuccessful. Nevertheless, we 

found that addition of Ti(OiPr)4 to the reaction mixture enables the reaction even when 4CzIPN 

(E1/2 (P*/P-) = +1.35 V)25 is employed as a photocatalyst. The highest yield in the arylation of 11a 

with p-bromoanisol (12a) was achieved when the reaction was run in acetone in the presence of 

the photocatalyst, nickel chloride bipyridine complex, potassium carbonate as a base and titanium 

isopropoxide as an additive. Changing the solvent with acetonitrile and DMA resulted in a slight 

drop in yield, but in THF, the arylation was significantly less efficient. When di-tert-

butylbipyridine, batophenanthrolin, neocuproine or dimethoxybipyridine were used as alternative 

ligands, the yield of 13a diminished. While inorganic salt K3PO4 can be employed as a base of 

choice, the reaction in the presence of 2,6-lutidine proceeded giving the product in a low 23% 

yield. The yield of 10a in the reaction promoted by Ti(OtBu)4 additive with bulk tert-butoxide 

ligands was slightly lower than that under the standard conditions. Trimethyl borate also promoted 

the cross-coupling, though, significantly less efficiently. No reaction was observed when 

aluminum isopropoxide was used as an additive or when the arylation was carried out in the 

absence of Ti(OiPr)4 or a photocatalyst.   

 

Table 1. Optimization of the reaction conditions. a 

 

entry reaction conditions yield of 13a (%)b 

1 standard conditions 60% 

2 THF instead of acetone 28% 
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3 MeCN instead of acetone 49% 

4 DMA instead of acetone 51% 

5 NiCl2∙DME and dtbbpy instead of NiCl2∙bpy 47% 

6 BPhen∙NiCl2∙2DMF instead of NiCl2∙bpy 47% 

7 NiCl2∙DME and neocuproine instead of NiCl2∙bpy 21% 

8 NiCl2∙DME and dMeObpy instead of NiCl2∙bpy 30% 

9 K3PO4 instead of K2CO3 56% 

10 2,6-lutidine instead of K2CO3 23% 

11 Ti(OtBu)4 instead of Ti(OiPr)4 47% 

12 B(OMe)3 instead of Ti(OiPr)4 19% 

13 Al(OiPr)3 instead of Ti(OiPr)4 or no Ti(OiPr)4 or no 4CzIPN 0% 

aReaction conditions: 11a (0.1 mmol), 12a (0.2 mmol), photocatalyst (0.005 mmol), NiCl2
.bpy 

(0.005 mmol) or NiCl2
.DME (0.005 mmol), ligand (0.005 mmol), additive (0.2 mmol), base (0.3 

mmol) and solvent (1 mL), blue LEDs, 15h. bCrude 1H NMR yield with CH2Br2 as internal 

standard; 4CzIPN = 2,4,5,6-Tetra(9H-carbazol-9-yl)isophthalonitrile; bpy = 2,2'-bipyridine; 

dtbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine; BPhen = 4,4'-diphenyl-2,2'-bipyridine; DME = 1,2-

dimethoxyethane; DMA = N,N-dimethylacetamide; dMeObpy = 4,4'-dimethoxy-2,2'-bipyridine. 

Having optimized the reaction conditions, we next investigated the scope of the reaction. Aryl 

bromides with donor or acceptor functional groups, as well as an ortho-substituent reacted with 

11a giving desired β-arylketones 13a-f. Silylated hydroxyl group, alkenyl and diethylacetal units 

in the cyclopropanol substrate were tolerated but formation of 13h and 13i was slightly less 

efficient. The reaction of the 1,2-disubstituted cyclopropanol afforded arylketone 13j as a single 

β-branched regioisomer. In contrast to the palladium-catalysed arylation which leads to α-branched 

products,26 the investigated radical reaction proceeded with cleavage of the more substituted bond 

of the three-carbon ring. 

Next, cross-coupling of cyclopropanols with vinyl halides was investigated. Generally, yields of 

the alkenylation were better when the reaction was carried out in the presence of neocuproine 

instead of bipyridine ligand. The reaction between cyclopropanol 11a and 2-bromoalkenes 
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provided ketones 14a and 14b in 84% and 55% yields, respectively. Alkenylation of 11a with 

vinyl triflate also proceeded efficiently to produce β-cyclohexenylketone 14c. In synthesis of γ,δ-

unsturated ketones 14d and 14e from 2-alkylsubstituted vinyl bromides and cyclopropanol 11a, 

bipyridine ligand was more favorable than neocuproine and the products were isolated in 45% and 

46% yields, respectively. Formation of Z-alkenylketone 14e was accompanied by a little 

isomerization of the double bond, which caused drop in Z/E ratio to 8:1. Diminishing of the 

isomeric purity was more significant for the products 14g and 14h bearing the alkene unit 

conjugated with an electron-rich aromatic ring. After completion of the coupling, 14g was isolated 

as a 6:1 mixture of E/Z stereoisomers. This ratio further dropped to 1.7:1 when the reaction time 

was increased to 48h. Ketone product 14f with the unsubstituted benzene ring was obtained as a 

single E-isomer. Aryl chloride units were found to be inert under the reaction conditions and ketone 

14h was prepared from the corresponding vinyl bromide in a good 61% yield. Then, diverse 1-

mono and 1,2-disubstituted cyclopropanols were tested in the reaction with 2-bromopropene. The 

substrate bearing two hydroxycyclopropyl groups underwent smooth coupling giving diketone 14i 

in 51% yield. Silylated and unprotected hydroxyl groups, alkenyl unit and acetal protecting groups 

were tolerated and corresponding products 14j-n were isolated in 41-75% yields. The reaction 

conditions were mild enough for the preparation of enantiomerically pure alkenylketones 14o-p 

that contain sensitive α-stereocenters. Alkenylation of 1,2-disubstituted cyclopropanols provided 

regioisomerically pure β-branched products 14q-s in 41-64% yields. These reactions proceeded 

more efficiently in the presence of bipyridine ligand instead of neocuproine. Finally, β-

isopropenylcycloheptanone 14t was obtained from the bicyclic cyclopropanol in 57% yield. 
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Table 2. The scope of the reaction a,b 

 

 

aReaction conditions A: 11 (0.25 mmol), 12 (0.5 mmol), 4CzIPN (0.0125 mmol), NiCl2
.bpy 

(0.0125 mmol), Ti(OiPr)4 (0.5 mmol), K2CO3 (0.75 mmol), acetone (2.5 mL), blue LEDs, 15h; 
bReaction conditions B: the same as reaction conditions A, but NiCl2

.DME (0.00625 mmol) and 

neocuproine (0.00625 mmol) were used instead of NiCl2
.bpy (0.0125 mmol). 
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To get insight into the role of Ti(OiPr)4 in the ring-opening cross-coupling, additional control 

experiments were carried out (Scheme 2A). First, the reaction between cyclopropane 11a and 

Ti(OiPr)4 in acetone-d6 was investigated. We observed a fast exchange between the isopropoxyde 

and cyclopropyloxy ligands leading to 1:3 mixture of 11a and 15. Initially, we assumed that the 

formed titanium cyclopropoxide complex 15 could undergo one-electron oxidation by the 

photoexcited 4CzIPN* more efficiently than free cyclopropanol 11a. However, voltamperograms 

of 11a and its 1:1 mixture with Ti(OiPr)4 were nearly identical suggesting that the additive played 

another role in the reaction. Alternatively, Ti(OiPr)4 could serve as a co-catalyst that assists 

formation of cyclopropyloxy nickel(III)  complexes.27  Homolytic cleavage of RO-NiIII bond could 

provide cyclopropyloxy radicals, which could further undergo the ring-opening and cross-

coupling.28,29,30. Bering in mind that formation of RO-NiIII intermediates is possible even in the 

absence of a photocatalyst and this reaction proceeds more efficiently under the irradiation with 

390-395 nm LEDs,27e we carried out additional control experiments without 4CzIPN. When blue 

LEDs were used as a source of light, the alkenylation of 11a by 2-bromopropene gave product 14a 

in 10% yield, while no reaction was observed in the absence of Ti(OiPr)4. Under the irradiation 

with purple LEDs, the yield increased significantly to 38% and 1% of the product was formed in 

the absence of Ti(OiPr)4. Based on these experiments, we proposed a catalytic cycle in which 

4CzIPN* oxidizes the nickel complex rather than cyclopropanol or its titanium alkoxide while 

Ti(OiPr)4 assists the formation of RO-NiIII intermedates (Scheme 2B). After the oxidative addition 

of aryl or vinyl bromide to 16, aryl nickel complex 17 would undergo oxidation by the 

photoexcited 4CzIPN* and ligand exchange with titanium alkoxide 18 to provide NiIII complex 

19. Next, NiIII-O bond in 19 would break providing NiII complex 20 and oxycyclopropyl radical 

21. Ring-opening of 21 would give β-ketoradical 22 which would further react with 20 affording 
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NiIII complex 23. Reductive elimination from 23 would lead to coupling product 24 and NiI species 

25, reduction of which would close the catalytic cycle. 

 

Scheme 2. Control experiments and plausible catalytic cycle 

In conclusion, we have developed a general approach to β-aryl and β-alkenylketones from 

cyclopropanols and aryl or alkenyl bromides or triflates. We found, that this photoredox and nickel 

dual catalyzed reaction becomes general for a broad scope of 1-mono- and 1,2-disubstituted 
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cyclopropanols when carried out in the presence of Ti(OiPr)4 additive. The cross-coupling is 

compatible with functional groups including unprotected hydroxyl and proceeds under conditions 

mild enough for the preparation of enantiomerically pure ketones bearing a sensitive α-

stereocenter. 
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