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Abstract 

We have demonstrated the utility of a 3D shape and pharmacophore similarity scoring component in 

molecular design with a deep generative model trained with reinforcement learning. Using Dopamine 

receptor type 2 (DRD2) as an example and its antagonist haloperidol 1 as a starting point in a ligand 

based design context, we have shown in a retrospective study that a 3D similarity enabled generative 

model can discover new leads in the absence of any other information.  It can be efficiently used for 

scaffold hopping and generation of novel series. 3D similarity based models were compared against 

2D QSAR based, indicating a significant degree of orthogonality of the generated outputs and with the 

former having a more diverse output. In addition, when the two scoring components are combined 

together for training of the generative model, it results in more efficient exploration of desirable 

chemical space compared to the individual components.  
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1. Introduction 

The generation of new promising lead compounds and their subsequent optimisation towards 

potential drug candidates is crucial for success in drug discovery. Virtual screening (VS) of large 

compound collections is one of the main computational methods to identify novel lead molecules [1]. 

While the number of compounds as well as the amount of computational resources available for VS 

make it possible to screen libraries with sizes in the magnitude of 1010 [2], they still fall far too short of 

the size of the available drug-like chemical space, estimated to be in the range of 1030 to 1060 [3], 

making any brute force approach infeasible. De novo generation of molecules provides an alternative 

solution where in principle there should be no restriction to the (implied) chemical space that is 

accessible. Deep generative models, building on the ground-breaking advances in deep learning [4], 

have demonstrated promising results in the past few years [5][6] including the successful case of 

delivery of novel bioactive compounds as discoidin domain receptor 1 (DDR1) inhibitors in 21 days 

from idea generation, to synthesis and biological testing [7]. 

Optimisation in medicinal chemistry is inherently multiobjective [8], [9] and one of the most successful 

ways so far for deep generative models to achieve multiobjective optimisation (MOO) has been 

through Reinforcement learning (RL) [10]. In this artificial intelligence (AI) approach, an agent is trained 

by acquiring rewards for different states and actions when interacting with its environment. In the 

context of molecular generation, ‘states’ can correspond to molecular structures either complete or 

not, and ‘actions’ to ways of building a structure depending on molecular representation. For example, 

possible actions to build a molecule would be adding a bond, or an atom, as in [11]. To build a molecule 

represented as a SMILES string, actions can be the addition of valid SMILES characters as in 

[12][13][14]. More abstract representations of molecules have also been used, for example in [7], as 

vectors in a latent space learned by a variational autoencoder (VAE) where actions were manipulations 

of these vectors in continuous space. In any case, the reward can be calculated by a scoring function 

where multiple scoring components that encode the desired optimisation objectives are combined, in 

a linear or non-linear way. It is also possible to differentiate the importance of the objectives by 

applying weights. See for example Eq. (1) in Section 2.5 for a specific formulation of a scoring function.  

QSAR/QSPR predictive models are routinely used as scoring components to bias the generative output 

toward compounds of desired predicted activity or other property of interest. Multiple predictive 

models as scoring components can be used in cases of more complex objectives, for example to 

maximise selective target potency against one or more off-targets or when activity and ADMET 

properties such as solubility, metabolism, hERG inhibition [15] etc. need to be optimised together. 

Recent advances in property prediction [16] driven by progress in machine learning and deep neural 

networks (DNN) can lead to more efficient data-driven predictive models as scoring components. 



However there are many issues with their use in the context of molecular generation. The fact that 

predictive models are data driven, means that they are dependent on the size and quality of available 

data. It is very common for drug discovery projects, especially in the early stages, that small amounts 

of data or noisy data (e.g. from HTS) are available. Even with larger training datasets, the resulting 

models fail to make low error predictions outside their applicability domain [17]. This is a general 

problem [18] not restricted to the prediction of molecular properties. It can be detrimental for 

molecular generation since the chemical space that generative models can explore is restricted by the 

applicability domain of the predictive model scoring component. This has been demonstrated in [19] 

where it was shown that molecule generation was biased towards the training set of the predictive 

model. A further complication that can affect the prediction error in QSAR/QSPR models is that activity 

/ property spaces are not smooth but contain discontinuities also known as ‘activity cliffs’ [20] where 

a pair of highly similar molecules can have very different activity. Since QSAR models most commonly 

employ 2D descriptors or fingerprints representations of molecules, they fail to capture activity related 

molecular patterns in three dimensions. Another criticism of data driven models is that they generally 

provide low interpretability which although it does not directly affect the efficiency of molecule 

generation, it offers little justification and thus confidence on the validity of the generated ideas. 

Whilst QSAR models might have their place in exploitation scenarios akin to the lead optimisation 

problem, they do not provide a valid solution to the diverse exploration of chemical space in a new 

series generation scenario. 

For these reasons, the use of physics-based [21] methods as scoring components could be investigated. 

In principle, these methods should not suffer from the issues of data availability and model applicability 

domain where, depending on the method, it can be possible to incorporate three-dimensional 

information and also provide higher interpretability of the results. Of course there is a good reason 

that they are not widely used and this has to do mainly with computational cost. Most methods require 

lengthy molecular dynamics (MD) simulations, or high cost quantum mechanics (QM) calculations in 

order to generate useful results. This makes them unsuitable for RL based optimisation by deep 

generative models which typically have to go through many iterations (e.g. 3000 in this work) of 

training.  Still, the increasing availability of more computational power and the development of smarter 

algorithms opens up a space of physics-based methods that are computationally efficient to be used 

in RL based molecule generation. There are recent reports of using a docking scoring component such 

as in [11] where novel and diverse compounds were generated with predicted activity against two 

different targets, the domain receptor 1 kinase (DDR1) and the D4 dopamine receptor (DRD4).  

In this work, we investigate the use of a 3D shape and pharmacophore similarity scoring component 

using ROCS [22]. We have chosen a ligand-based design case study and the dopamine receptor D2 



(DRD2) as the biological target of interest. This target has been widely used in de novo generation case 

studies by us [12], [23]–[25] and other groups [26]–[28]. As the generative model, we used REINVENT 

2.0 [29] which is publicly available as open access software [30]. 3D similarity together with 2D 

similarity scoring are routinely employed in VS and there is evidence of complementarity in the 

generated hit-lists either when the scoring is applied sequentially or in parallel [31]–[33]. We 

attempted to determine the degree of complementarity in RL based molecular generation between a 

3D similarity component and a QSAR scoring component by evaluating them either together or as 

single components of the RL scoring function. In the same time we were interested to compare the 

two scoring modes against various generative model performance metrics under the hypothesis that 

the 3D similarity scoring component should result in a more diverse output of molecules compared to 

QSAR scoring, based on the distinction between physics-based and data-driven models. 

Additionally we describe three use cases very close to medicinal chemistry optimisation practice and 

with retrospective evaluation of the generated molecules: 

1. A ligand-based design case where only a single DRD2 active ligand is known (we use 

haloperidol 1) but no further information is available about the bioactive conformation of 1 

and of any additional molecules with DRD2 activity. 

2. Based on the same case as above but with availability of DRD2 activity labelled data, which 

means that training a QSAR model is possible, we assess the synergistic effect of using both 3D 

similarity and QSAR scoring for training of the generative model as opposed to using only 3D 

similarity scoring. 

3. We demonstrate the potential of a 3D similarity scoring component for scaffold hopping. 

The use of a ROCS scoring component in RL based generative models has been reported before [34] 

with the authors suggesting that both QSAR and 3D-shape based similarity approaches produce 

significantly different design ensembles compared to 2D-similarity scoring components, however they 

do not explicitly compare 3D-shape against QSAR scoring nor do they provide further implementation 

details of both components. Molecular generation with a 3D shape and pharmacophore similarity 

optimisation objective has been reported in [35] but with a completely different architecture based on 

a 3D convolutional neural network (CNN) coupled with a shape variational autoencoder and without 

reinforcement learning (as in our case) or any other algorithm to enable multiobjective optimisation. 

In addition, molecules are generated by decoding a latent representation of a reference 3D shape in a 

data-driven fashion where in our case we obtain 3D shapes for generated molecules by applying a 

physics based method using a conformer generator with sampling of the conformational space and 

subsequently ranking these molecules by similarity to the reference shape.  



Our study provides a comprehensive evaluation of a 3D similarity scoring component in the context of 

reinforcement learning with the RNN based generative model REINVENT in comparison to 2D QSAR 

scoring while highlighting its utility in ligand based design and notably as a tool for scaffold hopping. 

2. Methods 

2.1. Datasets 

A set of DRD2 active compounds D2ACTIVE (N=4791) was extracted from ChEMBL 25 [36] as follows: 

Molecules with activity against the dopamine DRD2 receptor (CHEMBL217) were retrieved from a local 

copy of the ChEMBL database, filtered for standard types IC50, Ki and EC50, standard relation ‘=’, 

grouped by ‘Molecule CHEMBL ID’ and aggregated by median ‘pChEMBL value’. Only molecules with 

pChEMBL>=6.0 were selected with further filtration by molecular weight < 750 to afford the final set. 

A decoy set of inactive compounds, D2INACTIVE was created after retrieving 2000 DRD2 inactive 

compounds from ExCAPE-DB [37] by random selection and with pXC50<5 since the activity threshold 

in ExCAPE and the DRD2 target is pXC50=5. 

Generative models were pre-trained using two different datasets: i. the STD dataset obtained from the 

ChEMBL 25 dataset following filtration rules as in [12] with a size of N=1,435,546 and ii. To investigate 

a scenario where fewer task-relevant molecules where included in the prior, we formed the AGN 

dataset (N=1,431,348), obtained from STD by removing (a) all molecules (N=401) that contain 

substructure 2 derived from haloperidol 1 and (b) all (D2 active) molecules in common with D2ACTIVE 

(N=3857). We constructed the dataset prior 100K by random selection of 100,000 molecules from STD 

as a more computationally accessible representative subset of STD. 

The dataset for modelling activity prediction D2QSAR (N=347,079) was obtained as the union of the 

D2ACTIVE set with a set of  DRD2 inactive compounds that were retrieved from ExCAPE-DB [37] by 

random selection of 342288 inactive compounds (pXC50<5). Molecules were stripped from 

stereochemical information and duplicates were removed by considering only the highest activity. 

Molecular representations were created using RDKit [38] Morgan fingerprints of radius 3 as 2048-

dimensional bit vectors. They were labelled from {0, 1} as 0=inactive, 1=active. 

We constructed the validation set D2TEST from known DRD2 active (pChEMBL>=6, N=1164) derived 

from STD and inactive compounds (pXC50<5, N=237) from ExCAPE-DB. The molecules were scored i. 

with the QSAR scoring function (Section 2.2) and labelled ‘higher’: QSAR score>=0.8 or ‘lower’: QSAR 

score<0.5 and ii. with the ROCS scoring function (Section 2.4) and labelled as ‘higher’: ROCS score>=0.7 

or ‘lower’: ROCS score<0.5 



For the generation of the reference query for 3D similarity scoring we used a collection of known DRD2 

agonists as their SMILES representations including the following: chlorprothixene, olanzapine, 

eticlopride, dopamine, apomorphine, nemonapride, risperidone, haloperidol and chlorpromazine. 

OpenEye’s QUACPAC v.1.7.0.2 was used to assign tautomeric forms and protonation states at pH 7.4, 

followed by OMEGA v.3.0.1.2 to generate 3D conformations for the molecules in the set, using the 

default parameters in ‘classic’ mode with a maximum number of 200 conformers for each molecule 

resulting into 3024 conformers in total as the D2ROCS dataset. 

Descriptions of all datasets used in the text can be found in Table S1 and Venn diagrams in Figure S1. 

2.2. Conventions and notation 

In this text we use ‘ROCS’, ‘QSAR’ in capitals to refer either to the scores obtained by the respective 

methods or to the scoring components as parts of a Reinforcement Learning (RL) training scoring 

function. We use ‘rocs’, ‘qsar’ in small letters to refer to the generative models trained with a ROCS or 

a QSAR scoring component respectively. We also use the notation ‘rocs+qsar’ for the generative model 

trained with both ROCS and QSAR scoring components. Generative models that have only been pre-

trained with prior data (e.g. from STD or AGN) and have not been subjected to RL training (or transfer 

learning [29]) are referred to as priors or prior agents. STD and AGN are used interchangeably to refer 

either to the datasets themselves or to the priors resulting from pre-training with the respective 

dataset. 

2.3. QSAR scoring component 

The primary objective of the QSAR model in this work is to provide scoring feedback to the RL agent of 

REINVENT for the generation of new molecules which makes necessary to train the model on the 

maximum possible amount of data. In addition to that, the same QSAR model was used as an oracle in 

the use case described in Section 3.4.3. We employed the scikit-learn v.0.21.3 [39] implementation of 

the random forest classifier with the “out of bag” (oob) error functionality activated and with the 

parameter class_weight=’balanced’ which applies weights inversely proportional to the two 

class frequencies. The performance of the model was estimated by 10-fold stratified cross validation 

(0.95 Confidence Intervals in brackets): Accuracy: 0.992 [0.991 0.994], Matthews correlation 

coefficient: 0.70 [0.63 0.77] and ROC AUC:  0.83 [0.77 0.88]. The output of the scikit method 

predict_proba() which is an uncalibrated estimate of the probability for a given molecule to be 

active, was used as the corresponding QSAR component score during REINVENT training. 



2.4. 3D similarity query 

From D2ROCS, each of the generated conformers of haloperidol 1 was aligned and scored for 3D 

similarity against the rest of the molecules in the dataset with Tanimoto Combo scoring using 

OpenEye’s ROCS v.3.2.2.2. The best haloperidol conformer was selected on the basis of lower strain 

energy as recorded by OMEGA, higher Tanimoto Combo scores overall against all other molecules  in 

D2ROCS and visual inspection. This conformer was used to create a ROCS shape query by keeping the 

default shape feature and selecting three pharmacophoric (or else ‘colour’) features as shown in Error! 

Reference source not found.Error! Reference source not found.. We did not attempt any further 

refinement in the context of the receptor using any of the structural information available for the 

receptor and the bound ligand [40], as this work is meant to be purely a showcase of ligand based 

design. It’s useful to note that 3D similarity scoring in VS has been reported [22][41] to show robustness 

using a conformation for the reference molecule not necessarily identical to the bioactive 

conformation. 

1 2

Fig. 1.  (top) ROCS query showing colour features 
as spheres: green for ring systems, red for H-
bond acceptors and blue for cations. (bottom) 
structures haloperidol 1 and substructure 2 used 
in analysis.   



2.5. REINVENT 

REINVENT 2.0 code [30] was adapted to implement the 3D similarity scoring functionality based on the 

OpenEye python toolkit v.2019.10.2 [42]  which includes QUACPAC, OMEGA and ROCS. REINVENT 

cannot represent stereochemical information however de novo 3D structures can be obtained after 

stereoisomeric enumeration and overlay. The implementation with examples will be included in the 

upcoming release of the new version 3.0 of REINVENT. As shown in Fig. 2, SMILES strings sampled by 

the agent during  reinforcement learning (RL)  are first corrected for protonation state and tautomeric 

form with QUACPAC. Then 3D conformers are generated with OMEGA with stereoisomers 

enumeration enabled for a maximum of 3 stereocenters. Alignment to the reference query followed 

by overlay and similarity scoring with ROCS results in the selection of the best scoring 3D conformer 

(ranking by ComboScore). This pose is (optionally) saved while the ROCS score value is fed back to the 

RL agent. The ROCS score defined here as the output of the ROCS scoring component of the generative 

model scoring function, is calculated as the average of the shape and colour RefTversky similarity score 

values, obtained by the API functions oeshape.GetRefTversky() and 

oeshape.GetRefColorTversky()respectively. 

To explore the effects of the scoring function composition and the prior, all combinations of the 

respective parameters shown in  Table 1 were considered. Each run with activated diversity filter (DF) 

[23], [29] was repeated three times to evaluate the stochastic effect of the neural network training. 

Two additional runs without a DF were included: i. ROCS scoring and AGN prior ii. QSAR scoring and 

AGN prior. There were 20 REINVENT training runs in total. For each run the agent was trained for 3000 

steps with a learning rate of 0.0001 a batch size of 128 and a product type [29] scoring function, where 

the score is calculated as a weighted geometric mean of the scoring components 𝑐ଵ, . . . , 𝑐 with 

weights 𝑤ଵ, . . . , 𝑤  and a custom alerts penalty CA: 

Fig. 2. REINVENT RL training flow 
diagram 
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The CA scoring component is penalising the presence of undesired substructures defined by SMARTS 

[43] strings, contained in the generated molecules, as described in [29]. We used CA to penalise the 

following functionalities: rings of size greater than 8, peroxides, sulphides, hydrazines, thioethers, 

acetals/aminals/hemiaminals and carbocations. 

Throughout each RL training run, generated structures were collected with a total_score greater than 

0.4 and checkpoints of the RL agent state were saved every 50 steps, resulting into 60 saved 

checkpoints in total. The combined results from sampling during RL training were collected in the 

dataset SAMPLE_PRE (N=5,724,859).  

For each of the 20 runs (Table 1) and for each of the 60 checkpoints, the corresponding saved agent 

was sampled to a size of 𝑁=10000 SMILES strings, resulting in 1200 10,000-batches of SMILES strings 

that were combined into the dataset SAMPLE_POST (N=10,857,843). The structures in this set were 

evaluated for validity, uniqueness, diversity, novelty and frequency of matches with haloperidol 

derived substructure 2 (See following Section 2.6) 

Table 1. Description of REINVENT runs 

Scoring Scoring function composition Prior DFa 

qsar D2 QSAR model / MW<550; 3:1 weighting STD, AGN on/offb 

rocs ROCS RefTversky similarity, 1:1 colour-shape 
/ MW <550; 3:1 weighting 

STD, AGN on/offb 

rocs+qsar ROCS RefTversky similarity, 1:1 colour-shape 
/ DRD2 QSAR model / MW<550; 3:3:1 
weighting 

STD, AGN on 

a DF=Diversity Filter. 
b DF inactive only for the run with AGN prior 

 

2.6. Evaluation 

To evaluate the generative models we used the following metrics:  

Validity as the ratio 𝑁௩ௗ 𝑁⁄  where 𝑁௩ௗ is the number of sequences that are successfully parsed 

by RDKit to yield valid SMILES representations of molecules from a total of 𝑁  generated sequences. 



Uniqueness, as the ratio  𝑁௨ 𝑁௩ௗ⁄  where 𝑁௨ is the number of unique compounds in a list of 

𝑁௩ௗ  valid molecules. We calculate 𝑁௨ from the canonical representation of the molecules as 

SMILES strings using the RDKit function Chem.MolToSmiles() 

As a measure of chemical diversity, for a set of 𝑁௨ molecules, we follow the definition by Li et al. 

[27] With the modifications of using 2048-bit Morgan fingerprints of radius 3 as vector representations 

{𝐱𝐢}ୀଵ
ே  and an equivalent formula to their unbiased estimator, internal diversity is calculated as: 

 
𝐷 = 1 −  ൬

𝑁௨

2
൰  𝑘்൫𝐱𝐢, 𝐱𝐣൯

ଵஸழஸேೠ

 (2) 

where 𝑘் is the Tanimoto similarity function. 

For a set of 𝑁௨ generated molecules we calculate the ratio of matches to the corresponding prior 

dataset (STD or AGN) as a measure of novelty in a similar way to the metric used in the GuacaMol 

benchmark.[44] 

Similarity to a nearest neighbour SNN as defined in MOSES [45] but calculating Tanimoto similarity 

𝑘் using  2048-bit Morgan fingerprints of radius 3 instead.  More formally, for a set ℳ of molecules 

and a reference set 𝒮 we calculate: 

 
𝑆𝑁𝑁 =

1

|ℳ|
 max

௬∈ 𝒮
𝑘்(𝑥, 𝑦)

௫∈ெ

 (3) 

Additionally, we calculate the ratio of the generated molecules that match the haloperidol 

substructure 2. By construction, the AGN prior agent has not been exposed to any molecules 

containing this substructure during pre-training, so this metric can provide an estimate of 

generalisation, the ability of the RL agent to learn beyond pre-training data. 

Synthetic accessibility is one of the most important properties for molecular generative models [46] 

but in the same time the most challenging to estimate especially in the case of large collections of 

molecules. In this work we use the retrosynthetic accessibility score (RAscore) introduced by Thakkar 

et al. [47] and its “SA score” implementation as part of REINVENT 2.0. [30] This is essentially a binary 

classification predictive model and the score is the estimated probability of finding a synthetic route 

for a given compound. 

Learning by the generative model can be assessed by how likely the model is to generate high scoring 

molecules from an external validation set and also how unlikely the generation of lower scoring 

molecules is. In general, the probability of an agent to generate a given molecule can be estimated  by 

sampling sufficiently large samples to minimize the error of estimation of this probability statistic. In 



the case of REINVENT the probability can be directly accessed from the output of the RNN for a SMILES 

sequence 𝑆 = 𝑠ଵ𝑠ଶ … 𝑠் as: 

 
𝑃(𝑆) = ෑ 𝑃ோேே

்

௧ୀଵ

(𝑠௧ାଵ|𝑠௧ , 𝑠௧ିଵ, … , 𝑠ଵ) (4) 

For each molecule 𝑚  all of its 𝑅 possible SMILES representations 𝑆  need to be considered.  For this 

purpose distinct SMILES strings representations were generated non exhaustively following a variation 

of the procedure described by J. Arús-Pous et al. [48]. In the case of the D2TEST 649,434 SMILES 

representations were obtained in total. It follows that 𝑃(𝑚) = ∑ 𝑃(𝑆ೕ
)

ோ
ୀଵ  and thus for a validation 

set of molecules 𝑀 = {𝑚}ୀଵ
ே  , the probability of the agent generating at least one molecule from the 

set is 𝑃(𝑀) = ∑ 𝑃(𝑚)ே
ୀଵ . After normalising for set size, we calculate: 
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For clustering of molecular datasets, the Bemis-Murcko (BM) scaffold [49] is calculated for each 

molecule in the set using RDKit, resulting in clusters with common BM scaffold. This approach is 

preferred for computational efficiency with large datasets and for being reasonably chemically 

meaningful (See also the discussion in Section 3.4). 

3. Results and Discussion 

3.1. Efficiency of learning by the model 

We assessed the ability of the generative models to optimise the objectives encoded in their scoring 

function throughout training. The dataset SAMPLE_PRE was used which is obtained by sampling during 

training by reinforcement learning. For all scoring modes (rocs, qsar and rocs+qsar) and with the 

diversity filter activated, there is a steady increase in total_score, faster in the first 500 steps and slower 

in later steps with no significant effect from the prior (Fig. 3A). The rocs scoring mode model converges 

to a lower total_score, which is expected given the dynamic range of the ROCS scoring function (See 

also Fig. 5A for the distribution of ROCS scores for the set of DRD2 actives). Removing the DF results in 

higher variance, especially for the qsar scoring component, although the maximum score is higher 

possibly due to favouring exploitation by not penalising excessive generation of molecules with the 

same Murcko scaffold (Figure S2). To look into the individual scoring components, we also obtained 

post hoc ROCS scores for the qsar based model generated molecules and QSAR scores for the 

molecules generated by the rocs based model. Fig. 3B shows that the rocs based models generate 

compounds with low QSAR score and thus predicted to be inactive whereas the qsar and qsar+rocs 

based model efficiently learn to generate predicted active compounds. This behaviour shows that the 



rocs models explore a different chemical space compared to qsar based models. The low predicted 

activity of the rocs derived molecules for the agent trained on QSAR could be attributed to falling 

outside the applicability domain of the QSAR predictive model, although further evidence would be 

required to support this. Interestingly, the mixed rocs+qsar models perform well in both tasks, 

optimizing for ROCS score (Fig. 3C) and QSAR score, supporting the complementarity argument. 

The generative models were also scored for synthetic accessibility using the SA score (Section 2.6). It 

needs to be emphasised that the SA score was not an optimisation objective and consequently it was 



not a scoring component for any of the generative models but was calculated post hoc. Despite this, 

the models converged to molecules that are estimated to be synthesizable with an aggregate 

probability ~0.85 (Fig. 3D). However the qsar based models show a steady drop of SA until the end 

A 

B 

C 

D 

Fig. 3. Scoring of the output from generative models during training: A. total_score, B. QSAR score 
(probability of being active), C. ROCS score and D. SA score (synthetic accessibility, see Section 2.6). 
Score values refer to molecules that were collected during training. SA score, ROCS score for qsar 
based models and QSAR score for rocs based models were calculated post hoc and were not part of 
the respective scoring function for RL training. The diversity filter was activated for all runs described 
here. Individual line plots depict mean and 95% CI over the values calculated for generated molecules 
in each step. 



compared to the rocs based models indicating that the former generate increasingly more complex 

structures to optimise the QSAR score but within the constraint of its applicability domain whereas in 

the latter models, ROCS scoring is more permissive allowing the rocs models to explore and optimise 

without increased complexity cost. The mixed rocs+qsar based models show a behaviour very close to 

qsar based models. 

It is also useful to examine the distributions of the ROCS and QSAR score values for the generated 

molecules. It needs to be stressed that these distributions as shown in Fig. 5A describe molecules 

generated throughout the training run and so include molecules generated in earlier steps which are 

potentially suboptimal. As references for comparison, the D2ACTIVE, D2INACTIVE and prior 100K 

datasets were used (Section 2.1) and the ROCS and QSAR scores were calculated. In the case of ROCS 

score values,  (Fig. 5A) the rocs based generative model shows clear enrichment compared to prior 

100K and with a bimodal distribution whose lower mode aligns with the mode in prior 100K and 

includes early-step suboptimal structures closet to the (pre-)training set. It is worth noting that the 

D2ACTIVE set contains many DRD2 active molecules that do not match the ROCS reference query 

(Error! Reference source not found.A) explaining the higher spread of the distribution towards lower 

values. The qsar based model also shows enrichment in higher ROCS score molecules even though it 

did not include ROCS score as an optimisation objective. However the rocs-based models do not follow 

the same pattern (Fig. 5B) with the majority of generated molecules populating the low end of the 

QSAR score scale. We hypothesise that due to the applicability domain (AD) of the QSAR model being 

a fraction of the one for ROCS scoring, it is expected that a large amount of ROCS optimised molecules 

will fall outside the AD of the QSAR model. These molecules would receive an even lower QSAR score 

because of using an unbalanced training set skewed towards inactives and/or because of uncalibrated 

A B 

Fig. 4. Distributions of ROCS (A) and QSAR (B) scores for generated molecules compared 
to reference dataset molecules 



probabilities produced by the training algorithm. However this was not investigated any further in this 

study. 

Finally, one of the main observations from examining the score distributions in Fig. 4 is that the 

combined rocs+qsar based model shows top performance for both objectives (ROCS or QSAR score), 

exploring an optimal chemical subspace which is not identical to the subspaces of each one of the 

single components, supporting the hypotheses of: a) the ROCS scoring component working efficiently 

in the context of multiobjective optimisation with REINVENT and b) orthogonality with QSAR scoring 

in the generated output. 

3.2. Evaluation of performance of the generative models 

We evaluated a number of performance metrics that were calculated on the SAMPLE_POST dataset 

which contains multiple 10K batches sampled post hoc from saved checkpoints (60) of the models 

every 50 steps (Fig. 5). Validity (A) is high for all models, with higher values for those with no DF (A2). 

However the performance of no DF models collapses when evaluated for uniqueness (B2) and internal 

diversity (C2) with a steep drop in the early stages of training, presumably when the model discovers 

a high scoring solution and then generates identical or very similar molecules, a state also known as 

mode collapse. The drop is slightly less sharp but still significant for the rocs based models showing the 

rocs scoring component to be more resilient to mode collapse, most likely due to its intrinsic ability for 

exploration. DF activation successfully circumvents the problem in agreement with the results from 

[23]. The rocs based models generate significantly more diverse sets of molecules. Diversity drops for 

all models after the earlier stage of training around step 500 which reflects the transition from a 

generic untrained to a specialised trained model. The same ranking of models but with less significant 

differences, at least after the earlier stage of training, can be seen for uniqueness. Novelty shows a 

steady increase from the early untrained prior-like state towards the trained late stage for all models 

with activated DF (D1). Removing the DF results in lower novelty with a decreasing trend on further 

training (D2). 

We have measured the frequency of generating molecules that contain substructure 2 (Fig. 5E). As 

mentioned before, compounds with this substructure do not appear in the AGN prior dataset. 

Considering that 2 is part of the ROCS reference query, molecules that contain 2 are very likely to score 

highly with the ROCS and the QSAR scoring functions and thus this frequency metric can help, in some 

part at least, to evaluate the ability of a generative model to generalise and produce output beyond 

the data (prior) used for pre-training. Indeed the rocs based model with AGN prior seems to learn the 

substructure later than the STD pre-trained rocs model with the latter achieving significantly higher 

frequency values earlier but which tend to decrease in later stages possibly because of engagement of 



the Diversity Filter. Remarkably, qsar based models seem to fail to learn substructure 2 although all 

DRD2 active molecules containing 2 were part of the training set of the QSAR model.   

Fig. 5. Performance metrics with progression during training, including (A) validity, (B) uniqueness, 
(C) internal diversity, (D) novelty and (E) frequency of matching substructure 2. Both cases of models 
with activated DF (A1-E1) and no DF (A2-E2) are shown. Metrics evaluated on molecules from the 
SAMPLE_POST dataset. Mean values and CI at 0.95 over 3 re-runs are displayed for the models with 
activated DF only. DF=Diversity Filter. 



In relation to internal diversity, uniqueness and novelty, the combined rocs+qsar based models show  

performance which lies in between the individual rocs and qsar based ones however they appear to 

lean more towards a qsar-like behaviour. This bias could be the result of the QSAR component 

generating molecules that score high with both QSAR and ROCS scoring functions whereas rocs 

generated molecules tend to score very low with the QSAR model, even when they achieve high ROCS 

scores (see Fig. 4 and the score distributions of the individual components). In effect, the agent for the 

rocs+qsar based model learns that it can maximize its reward by prioritising the QSAR component over 

the ROCS one. The QSAR component is more likely to lead the agent to a chemical space with higher 

scores for both objectives. 

Molecules in the SAMPLE_PRE dataset were clustered by their Bemis-Murcko (BM) scaffold as 

described in Section 2.6. For each cluster, ROCS and QSAR scores are aggregated by the respective 

median values. Fig. 6 shows the rocs+qsar based model to perform best producing clusters in the upper 

right ‘sweet spot’ area of higher ROCS and QSAR scores. Fig. 7A shows that the rocs based models 

generate a significantly higher number of BM scaffolds confirming the higher chemical diversity for this 

Fig. 7. Number of Bemis-Murcko (BM) scaffolds for all models (A) and: for rocs (B) and qsar (C) over 3 
re-runs. All runs with STD prior and DF on. Venn circles represent sets and thus unique BM scaffolds. 
All areas correspond within some approximation error to set size. 

Fig. 6. Scatter plot of QSAR against ROCS scores. Marker sizes correspond linearly to cluster size. Only 
clusters with size greater than 10 are shown. All models were pretrained with the STD prior. Results 
after combining 3 re-runs for each model 



method and with minimal overlap with either qsar or rocs+qsar generated clusters further supporting 

complementarity between rocs and qsar models.  

To assess the effect of stochasticity in training of the generative models we compared their output 

after repeating 3 times each training run. Stochasticity can appear for example from random 

initialization of the weights of the generative deep neural network. Fig. 7B and C show small overlap 

between the 3 runs for the rocs based models which is significantly lower compared to the qsar based 

models after normalising for the number of BM scaffolds for each run. A practical implication of this 

observation is that whenever access is required to a generative output covering a larger volume of 

chemical space, then one can simply try to multiple re-runs of training the model (we only tried 3 re-

runs)  

3.3. Comparison with test set 

We calculated the metric 𝑃ത for the molecules in the reference test D2TEST using Eq. (5) from Section 

2.6. The 𝑃ത metric can be thought as the average probability for a given NN model to generate a 

molecule of a reference set. The calculation is based on the probability of formation of a molecule as 

obtained by the RNN output of REINVENT and not by statistical estimation e.g. by sampling. We used 

the D2TEST dataset and the ‘higher’, ‘lower’ ranking labels based on ROCS or QSAR scores (Section 

Fig. 8. Evaluation of the Pഥ metric for the rocs (Top) and qsar (Bottom) based models. The 
ranking labels are set as ‘higher’: ROCS score>=0.7 or QSAR score>=0.8 and ‘lower’: ROCS 
score<0.5 or QSAR score<0.5. CI at 0.95 over 3 re-runs are displayed  



2.1). We did not use their already known DRD2 activity labels since the optimisation objective is to 

generate high scoring molecules which are not necessarily DRD2 active. Fig. 8-Top shows that the rocs 

based model learns to generate ‘higher’ labelled (ROCS score>=0.7) molecules from the reference set 

at least up to around training Step 500. The subsequent drop is most likely due to engagement of the 

DF as it is not observed in the case of the rocs model with no DF. 𝑃 is strictly decreasing for the ‘lower’ 

labelled (ROCS score<0.5) molecules showing that the model learns to avoid them. 𝑃 at Step 0, 

(𝑃
തതത~10ି) corresponds to the unoptimized model that has only been pre-trained with the prior (AGN 

or STD). It can be considered as a baseline value with values 𝑃 > 𝑃  indicating learning of optimal 

molecules and 𝑃 < 𝑃 indicating “un-learning” of suboptimal molecules. In the case of the qsar based 

models (Fig. 8-Bottom) a similar behaviour is observed with rocs that shows selective learning but this 

time with the gap between the 𝑃 values of ‘higher’ (QSAR score>=0.7) and ‘lower’ (QSAR score<0.5) 

labels even more pronounced and additionally with no significant differentiation upon DF application. 

3.4. Relevance of generated structures 

3.4.1 Visual inspection 

Despite lacking in objectivity, visual inspection is a crucial step in virtual screening campaigns [32] and 

equally important in assessing the utility of molecules produced by generative models. We examine 

the output from the rocs and the combined rocs+qsar models after selecting the highest scoring 

molecules with total_score>0.8 then clustering by common BM scaffold and finally removing clusters 

with size less than 10. For each cluster ℳ we calculated the similarity metric SNN from Eq. (3) using 

D2ACTIVES as the reference set 𝒮. Fig. 9 shows representative examples of high scoring and high SNN 

similarity clusters. In many cases such as for 4, 6, 7, 8, 9 and 10 the generative model reproduces a 

known active molecule from D2ACTIVES otherwise it generates molecules very similar to their NN, a 

known DRD2 active compound. 
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Fig. 9. Representatives of clusters with highest mean similarity to D2ACTIVES for rocs and rocs+qsar 
based models.  QSAR scores for the rocs based model were calculated after generation. We used 
combined output from models with AGN or STD prior, DF on, 3 runs each. R: ROCS score and Q: QSAR 
score for the representative molecule; |S|: cluster size; SNN: mean NN similarity over the molecules 
in the cluster to their NNs in the D2ACTIVES set. CHEMBL IDs for identical molecules (ignoring 
stereochemistry) in ChEMBL 25 

While it is reassuring that the model can produce identical or close analogues to known actives, the 

expectation for a generative model is to create solutions that span the largest possible volume of 

chemical space. In practice, this translates to novel chemical series with new features to differentiate 

from already known chemical space. For example, bioisosteric replacement and scaffold hopping [50], 

[51] are used for lead optimisation or to access back-up or a new lead series whereas fast follower 

approaches aim to escape public or patent protected chemical space [52], [53]. For that reason we 

examine the high scoring and high populated BM clusters but this time with the lowest SNN similarity 

values. We consider BM clustering as an approximation to the chemical series definition by medicinal 

chemists and the SNN value as a metric of novelty of the BM derived series. Fig. 10 shows hand-picked 

BM clusters with their respective best scoring representative structures. Both the rocs and the 

rocs+qsar based models and within the restriction of the 3D query (Fig. 1) seem to be capable of 

generating complex or unusual but still reasonable substructure motifs. For example all rocs generated 

molecules in Fig. 10-Top except for 13 introduce a ring containing substructure not present in the 

D2ACTIVES set. More interestingly, substructures shown in bold for 12, 14, 16 and 18 from rocs and 

20 and 25 from rocs+qsar are not present in any molecules in the STD prior dataset and thus were not 

seen by the generative models during initial pre-training. 
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Fig. 10. As in Fig. 9 except for showing cluster representatives with lowest average similarity. Bold 
emphasis indicates substructures not present in the STD prior.  

3.4.2 Scaffold hopping 

We demonstrate the utility of the rocs and rocs+qsar based generative models in scaffold hopping by 

showing that these models are capable of: 1) Generating scaffolds to replace parts of the initial query 

molecule 1 resulting into new molecules with high 3D overlay with 1. Compounds 12, 14, 16 and 18 

(rocs) and 20 and 25 (rocs+qsar) contain novel scaffolds, not present in the data used for pre-training 

of the generative models. 2) Generating scaffold replacements that result in molecules identical to 

known DRD2 actives. We show in Fig. 9 the examples of generated molecules 4 and 6 (rocs) and 8 and 

10 (rocs+qsar) which are identical to known DRD2 actives in ChEMBL 25 (CHEMBL IDs are also shown). 

We confirmed that all of them were generated by models pre-trained with the AGN prior. We remind 



that the AGN prior does not include any known DRD2 active molecules and additionally does not 

include any molecules containing substructure 2. Further evidence that the models learn to generate 

those four molecules as opposed to memorizing them during pre-training can be seen in Table 2 that 

shows significant increase in the probability of formation 𝑃(𝑚) (Section 2.6) for each one of them, 

between the states of the corresponding generative models before and after training. The overlays 

with the reference molecule 1 as were generated by the ROCS scoring component during the RL 

training stage are shown in Fig. 11. Example 4 indicates ability of the agent to learn to generalise 

beyond pre-training data by producing substructure 2 not present in the prior. Examples 4 and 6 show 

replacements of the 4-phenyl-piperidine-4-ol scaffold in 1. Structures 8 and 10 show alternative H-

bond acceptors as part of new 1,2,3-triazole or a quinazolodione scaffolds respectively and adjustment 

of the length of the alkyl chain linker to achieve the right geometry. 

Table 2. Probability of formation before and after training for 4, 6 (rocs based model) and 8, 10 
(rocs+qsar based model) 

Compound 
Probability (×10-9) 

Prior 
(AGN) 

Trained 
agent 

4 0.41 37518 

6 161.2 806435 

8 3.15 41855 

10 931 53954 

   

While the RNN in REINVENT encodes SMILES string representations of molecules, it excludes 

tokenization of stereochemistry specific SMILES characters such as ‘@’, ‘/’ and ‘\’ therefore generated 

molecules lack any stereochemistry. However during model scoring by the ROCS component, the 

SMILES strings sampled from the RNN acquire stereochemical information through the steps of stereo-

Fig. 11. Overlays with ROCS query reference 1 (grey). 4, 6, 8 and 10 are examples of scaffold hopping 
reproducing known D2 active molecules not used for pre-training of the generative model. 27 was 
generated with stereochemistry and charge information as shown. 



enumeration by OMEGA and then selection of the best overlay by ROCS as described in Section 2.5. 

Fig. 11 shows 27 as an example of a generated molecule with the optimum stereochemistry to match 

the query. Furthermore, 27 is an additional example of a known DRD2 active molecule 

(CHEMBL3281114) that was generated by the rocs based model pre-trained with AGN and thus serving 

as a showcase of a new active chemical series derived from 1.   

3.4.3 Ligand based design case 1 

We consider a use case of optimisation where only a single active ligand is known that can be used as 

a starting point to generate novel and diverse active molecules. More specifically, our starting point is 

haloperidol 1 and under a purely ligand-based design scenario there is no further information about 

the biological target or the bioactive conformation of 1. This would eliminate the possibility of training 

a QSAR model in the absence of data while the use of 2D similarity scoring would only yield molecules 

with inadequate differentiation from 1. We assess the performance of the 3D ROCS similarity scoring 

component in this scenario using the output of the rocs based generative model from the SAMPLE_PRE 

dataset. We evaluate the generated molecules utilising our QSAR model which in this case is serving 

only as an oracle considering as a ‘hit’ any molecule with QSAR score greater or equal to 0.7. Following 

the discussion so far, this is a less optimal choice of an oracle since its scoring ability is diminished 

outside its applicability domain and possibly further affected, as noted in Section 3.1, by the imbalance 

in the training set and the use of uncalibrated probabilities. While this would mean that the hit rate% 

values in Table 3 are underestimated, their relative values and thus the enrichment ratio should be 

sufficiently reliable for our purpose of showing enrichment. We observe predicted actives enrichment 

compared to the prior 100K data for rocs based generative models pre-trained with either of the STD 

or AGN prior datasets. 

Table 3. Performance of rocs based deep generative models pre-trained with STD and AGN priors using 
a QSAR predictive model as an oracle. Only considered results from models with activated DF. 

Hits=molecules with QSAR score >= 0.7. Enrichment is calculated as the ratio  
Hit rate%generative model

Hit rate%Prior 100K
 

 
rocs 
STD 

rocs 
AGN 

Prior 
100K 

Hit rate % 1.12 0.99 0.25 

Enrichment 4.50 3.99 1 

 

3.4.4 Ligand based design case 2 

In the next use case of practical value, we investigate the advantage of using a scoring function that 

combines both a ROCS and a QSAR scoring component. We consider a scenario similar to the one in 

Section 3.4.3 using 1 as a starting point but this time DRD2 activity labelled data are available allowing 



us to use the same QSAR predictive model as a scoring component for RL training. We have already 

established in Section 3.1 the increased efficiency of the combined rocs+qsar based model to optimize 

for both objectives (ROCS score and QSAR score) compared to the single component generative models 

either rocs or qsar (Fig. 4A and B). In the context of this test case, we demonstrate improvement of a 

combined rocs+qsar based generative model over a single rocs based model by comparing the 

numbers of experimentally measured DRD2 active molecules (contained in the D2ACTIVES dataset) 

recovered by the two models. While recovery of active molecules can be a poor or even misleading 

performance metric for molecular generative models [19], we consider here their ratio to be 

informative for comparing the 2 models. Table 4 shows true actives enrichment for the rocs+qsar based 

model compared to the single rocs model for both AGN and STD priors . 

Table 4. Number of known DRD2 actives recovered by the generative models and enrichment ratio for 
the combined rocs+qsar generative model against the rocs model. Only models with activated DF are 
considered. 

 STD prior AGN prior 

 
#Activ
esa  

Enrich
ment 

#Activ
esa  

Enrich
ment 

rocs 64.7 
(12.9) 

1 39.7 
(3.5) 

1 

rocs+qsar 158.7 
(4.6) 

2.45 110.0 
(8.7) 

2.77 

a Mean value and standard deviation over 3 
identical runs 

 

4. Conclusions 

This study was designed to mimic a ligand based drug discovery project where no structural 

information about the receptor or the bioactive conformation of the reference ligand exist. We have 

shown that a 3D shape and pharmacophore similarity scoring function (ROCS) can be used as a scoring 

component to train a RL based generative model (REINVENT) resulting in enrichment of the generated 

output compared with the prior. We found this output to be more chemically diverse compared to a 

QSAR based generated output supporting our initial hypothesis based on the argument that physics-

based scoring components allow for a significantly larger coverage of the chemical space compared to 

QSAR predictive models with an applicability domain restricted by their training dataset.  The two 

scoring methods are orthogonal by construction and we have shown that there is a high degree of 

complementarity for their generated outputs. The two scoring components can be combined together 

with the resulting trained model generating molecules optimised for both objectives. 



The relevance of the structures generated by the generative models rocs and rocs+qsar was 

demonstrated by their ability to generate identical or very similar molecules to known DRD2 actives, 

not just as singletons but as members of larger clusters of common BM scaffolds. In many cases those 

molecules with high similarity or identical to known actives were generated by models that were pre-

trained with the AGN prior which does not include any known actives, highlighting the ability of the 

models to generalise. In the same time, the rocs and rocs+qsar based models showed that they can 

generate high scoring clusters of molecules with novel chemotypes, highly dissimilar to known DRD2 

actives and often times not even included in the priors. We have also shown examples (Fig. 11) where 

the definition of novelty is extended to pharmacophores (ROCS colour), for example the replacement 

of an O acceptor of a carbonyl group in 1 with a triazole N in 8. We consider these examples to conform 

to the scaffold hopping definition as scaffold hops from 1 either into known DRD2 ‘privileged’ scaffolds 

or into novel scaffolds contained in high scoring clusters of generated compounds and in both cases 

scaffolds that were not encountered by the generative model during pre-training. We thus 

demonstrated the potential of the ROCS scoring component in scaffold hopping. 

Furthermore, we considered two use cases of ligand based design with applicability in practical 

medicinal chemistry optimisation using the results obtained from our computational study and 

retrospective evaluation of the generated structures for DRD2 activity. We were able to confirm in the 

first case, starting from a single lead compound only, that a rocs based generative model achieves 

enrichment in DRD2 (predicted) actives. In the second case, with additional information in the form of 

a dataset of molecules labelled with DRD2 activity, we showed that use of a combined rocs+qsar model 

is more efficient in recovering known DRD2 active compounds compared to a single rocs model. These 

results demonstrate the ability of the rocs based model to generate new leads with minimal available 

information but also synergy between the ROCS and QSAR scoring components in the presence of 

relevant activity data.  

In summary, we have shown the utility of a 3D similarity scoring component for de novo molecular 

generation. Even if this study was designed around a ligand based design case, it should be possible to 

apply the same methods in structure based design (SBD) cases where the bioactive conformation of 

the cognate ligand can be obtained. However we can make no claims on the generalisability of the 

results of this study to other biological targets and 3D shape and pharmacophore queries. Current 

work includes investigation of a 3D electrostatic similarity scoring component as well as the use of a 

3D similarity scoring component together with a docking scoring component in a SBD scenario, either 

in the same scoring function or sequentially.  
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Supplementary Material 

Tables 

Table S1. Description of datasets used in the text. 

Dataset Size Description Use 

STD 1435546 Subset of ChEMBL25 Prior (pre-training) 

AGN 1431348 Subset of STD after removing DRD2 
actives and haloperidol analogues 

Prior (pre-training) 

D2ACTIVES 4791 D2 actives in ChEMBL25  

D2INACTIVES 2000 Random selection of DRD2 inactives 
from ExCAPE-DB 

 

prior 100K 100000 a 100K sample from STD  

D2TEST 1401 1164 actives from STD and 237 inactives 
from ExCAPE-DB 

Calculate ROCS and QSAR 
scores and probability of 
generation 

D2QSAR 347079 All DRD2ACTIVES and 342288 inactives 
from ExCAPE-DB 

Training of a DRD2 activity 
prediction QSAR model 

D2ROCS 9 3024 conformers generated with 
OMEGA 

Obtain best haloperidol 
conformation to use for 
ROCS query 

SAMPLE_PRE  5724859 Combined output during training, from 
20 REINVENT runs: 3000 training steps, 
1-3 repeats each run 

 

SAMPLE_POST  10857843 Combined output over 20 REINVENT 
runs from sampling after training: 60 
checkpoints and 1-3 repeats each run; 
10000 sized sample each checkpoint 
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Figure S1. Construction of datasets used in the main text 
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Figure S2. Scoring of the output from generative models during training: A. total_score, B. QSAR score, 
C. ROCS score and D. SA score. Score values refer to molecules that were collected during training. SA 
score, ROCS score for qsar based models and QSAR score for rocs based models were calculated post 
hoc and were not part of the respective scoring function for RL training. The diversity filter was not
activated for all runs described here. 


