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ABSTRACT:  We combined our generalized energy-based fragmentation (GEBF) approach and transfer learning technique to con-

struct machine learning force field (MLFF) for proteins only with quantum mechanics (QM) calculations of small subsystems. To 

facilitate the construction of MLFF for various proteins, a protein’s data library is created to store all data of subsystems generated 

from trained proteins. With this data library, for a new protein only its subsystems with new topological types are required for the 

construction of the corresponding MLFF. With two polypeptides, 4ZNN and 1XQ8 segment, as examples, the energies and forces 

predicted by MLFF are in good agreement with those from QM calculations, and dihedral angle distributions from GEBF-MLFF 

molecular dynamics (MD) simulations can also well reproduce those from ab initio MD simulations. Therefore, the present work 

provides an efficient and systematic way to build force fields for biological systems like proteins with QM accuracy.

Molecular dynamics (MD) simulation has emerged as an import 

tool to understand how the structure of a protein molecule de-

termines its function in a cell. Currently, MD simulations with 

the classical force fields1-6 have been widely applied for large 

biomolecules including proteins.7,8 However, the accuracy of 

classical force fields is still insufficient for reliable descriptions 

of some proteins. For example, the α-helical propensity is un-

derestimated by the AMBER99SB force field compared to the 

corresponding experimental values.9 The classical force fields 

cannot accurately describe temperature-dependent fold-

ing.10Nowadays, the machine learning (ML) method has been 

increasingly applied to develop more accurate atomistic poten-

tials with very general functional forms than the conventional 

force fields with physically inspired functional forms.11-19 The 

resulting machine learning potentials, also called as ML force 

fields (MLFFs), have been demonstrated to be quite successful 

for a variety of different systems.20-27 By “learning” from refer-

ence data sets obtained from QM calculations for a given system 

or a type of systems, MLFFs may reach similar accuracy as QM 

methods at a cost which is orders of magnitude less than that 

required for QM calculations of the same system.  

Due to the chemical complexities of proteins and high com-

putational costs of QM methods for large systems, building 

MLFFs for proteins remains a great challenge. Energy-based 

fragmentation (EBF) approaches28-38 provide a practical and at-

tractive solution to overcome these two difficulties. With this 

approach, the ground-state MLFF of a large system can be ob-

tained as the linear combination of MLFF trained from small 

subsystems, which are representation of different local regions 

of a large system. In previous studies, a residue-based neural 

work (NN) approach39,40 was proposed to construct NN poten-

tials for 20 types of amino acid capped with acetyl group (ACE) 

and N-methyl amid group (NME) and 1 type of ACE-NME, as 

shown in Figure 1. Then, the MLFFs of a protein is expressed 

as the linear combination of these NN potentials. The resulting 

ML potentials represent the first step towards ab initio quality 

protein force fields. However, the local regions on these subsys-

tems are not same with the target system. Thus, these potentials 

are not yet accurate enough, with the root-mean-square errors 

(RMSEs) for the energy and forces of (Ala)9 being 0.15 

kcal/(mol·atom) and 4.75 kcal/(mol·Å), respectively, with re-

spect to reference density functional theory (DFT) data.39  

In this work, we propose a protocol to construct MLFFs for 

proteins with full QM accuracy only from QM calculations on 

small subsystems. To circumvent the difficulty of MLFFs con-

struction for enormous types of subsystems in previous frag-

ment-based ML scheme,39,40 a new strategy is adopted here by 

fitting the energy (or forces) of a given protein as the summation 

of atomic contributions from QM calculations of various sub-

systems. To facilitate the construction of MLFF for various pro-

teins, a protein’s data library is created to store all data of sub-

systems generated from trained proteins. With this protein’s 

data library, for a new protein only its subsystems with new top-

ological types are required for the construction of the corre-

sponding MLFF. Thus, structure optimization and MD simula-

tions on complex proteins can be performed with high QM ac-

curacy and low computational costs.  

To automatically construct the subsystems on training set, a 

fragmentation method called generalized energy-based frag-

mentation (GEBF) approach developed by our group 28 is 

adopted. The generation of subsystems for a polypeptide 4ZNN 

is also illustrated in Figure 1, we will generate various subsys-

tems, each of which contains a fragment and its neighboring 

fragments and capping hydrogen atoms if necessary (in grey 

oval). Clearly, subsystems constructed in this way are better 

representation of the local chemical environment of different re-

gions in a protein than those in residue-based NN approach. Us-

ing PM6 method as baseline, an atomic ML model called GAP12 

based on kernel ridge regression with the SOAP kernels41 (see 

details in the Sec.2 of the supporting information) is chosen to 

learn the energy difference of all primary subsystems for the 

studied protein. In GAP, the energy difference 
ML
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mth subsystem with mS atoms are described as the summation  



 

 

 

Figure 1. Fragmentation scheme utilized in the construction of MLFFs. In our GEBF method, fragments are capped with its environ-

mental fragments or hydrogen atoms if necessary. In previous residue-based method, fragments are capped with an acetyl group 

(ACE) and N-methylamide group (NME).

of atomic energy 
m

ie , 

ML DFT PM6

m

m

m m m i

i S

E E E e


 = − =                   (1) 

After training, we can easily get the energy contribution of 

each atom with different local environments in subsystems. 

Based on the similarity of atomic environments between sub-

systems and the target protein, the total energy difference of the 

target system with N atoms are obtained with the summation 

of atomic contribution ie . 
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The total energy of the target system is the combination of the 

energy difference 
MLE and the PM6 energy 

PM6E (taken as 

the baseline) 

ML PM6E E E=  +                           (3) 
The PM6 energy of the target system with M subsystems are 

evaluated with the GEBF method by linear combination of sub-

system energy mE  (
mC  is the coefficient of each subsystem)    
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Details of subsystem construction and determination of coef-

ficients are explained in the Sec.3 of supporting information. 

The long-range nonbonded interactions between each subsys-

tem and background charges on distant atoms are treated as the 

Coulomb interaction. The point charges are obtained from the 

natural population analysis (NPA) of primary subsystems, 

which are generated from the first configuration during the MD 

simulation (and assumed to be constant for all of other configu-

rations). Ar  and AQ  denote the coordinate of atom A and the 

point charge locating on atom A, respectively.  

 

 

Figure 2. Scheme diagram of the GEBF-ML method. Training 

sets are constructed from relevant sub-datasets from the pro-

tein’s data library and some subsystems from online active 

learning. 

 

Because a subset of subsystems generate from a protein may 

have the same topological structure in chemical space as those 

from another protein, we may introduce transfer learning42 to 

avoid redundant QM calculations on these subsystems. The 

flowchart of the scheme is shown in Figure 2. In our approach, 

we create a protein’s data library, which contains all data of sub-

systems generated from trained proteins. Starting from a given 

conformer of a new protein, MD simulation with NVT ensem-

ble is performed based on the GEBF-ML force fields. During 

the simulation, subsystems are generated using our GEBF ap-

proach. If the subsystem types are already in the data library 



 

 

(The details of subsystem discrimination can be found in the 

Sec.4 of the supporting information), the corresponding sub-da-

tasets are loaded to the training set. Otherwise, online active 

learning43 (see details in Sec5 of supporting information) is em-

ployed to select the representative subsystem conformers. When 

the training set is updated, the GEBF-ML force fields are also 

renewed to fit the energies and forces of conformers explored 

by online training.  

 

 
Figure 3. Optimized structures of 4ZNN and 1XQ8 segment. 

The superposition between the structure obtained with our 

MLFFs (red) and the DFT-optimized structure (green) is shown 

for both systems.   

 

As a proof of concept, MLFFs of two polypeptides, 4ZNN 

segment (ACE-GVVHGVTTVA-NME) and 1XQ8 segment 

(ACE-GVVHGVATVA-NME), are constructed by our GEBF-

ML scheme. The training set of subsystems are generated from 

a 1ns canonical (NVT) MD trajectory at 500K based on the pro-

tein library and online active learning. For 4ZNN, QM calcula-

tions are carried out for only 0.15% of generated subsystems. 

As 4ZNN and 1XQ8 segments differ from each other by only 

one amino acid residue, a large number of subsystems generated 

from 4ZNN can be reused. For 1XQ8 segment, only 0.01% of 

newly generated subsystems are needed for QM calculations 

during the online active learning. Thus, our GEBF-ML scheme 

shows high efficiency for MLFFs construction. The testing set 

of two target systems are randomly sampled from a 1ns NVT 

GEBF-ML MD trajectories at 300 K. The mean absolute errors 

(MAEs) of energies between GEBF-PM6 and PM6 on testing 

set are only 0.003 kcal/(mol·atom). The RMSEs between the 

energy and forces of MLFF and ωB97XD/6-31G* results on 

testing set are less than 0.024 kcal/(mol·atom) and 1.5 

kcal/(mol·Å), respectively. Thus, the MLFFs could predict the 

energies and forces with near-QM quality. (see details in the 

Sec.6 of the supporting information.) 

To test whether MLFFs are suitable for structure optimization. 

The conformers with the lowest energy predicted by MLFFs in 

test sets are optimized with the BFGS algorithm44 (implemented 

in ASE package45). Figure 3 shows optimized structures ob-

tained with MLFFs and ωB97XD/6-31G* for 4ZNN and 1XQ8 

segments. The root-mean-square deviation (RMSD) between 

DFT and MLFF results is 0.31 Å and 0.36 Å on 4ZNN and 

1XQ8 segment, respectively. The geometrical parameters ob-

tained with our MLFFs are very close to the corresponding val-

ues from the ωB97XD method. In addition, the geometries op-

timized with PM6 and ff14SB are also calculated for compari-

son. At respectively optimized structures, the absolute energy 

deviations predicted by MLFFs, PM6, ff14SB (relative to the 

ωB97XD/6-31G* results) are 4.14, 13.96, 21.33 kcal/mol, re-

spectively, for 4ZNN, and 0.85, 20.40, 24.60 kcal/mol, respec-

tively, for 1XQ8 segment. Among these three methods, only the 

relative energies of MLFFs at their optimized structures are in 

good agreement with those from ωB97XD.  

 

 



 

 

Figure 4.  End-to-end distance of 4ZNN and 1XQ8 segment during ML-based MD simulations. 

 

 

 

Figure 5. (a) The comparison of the absolute deviations of the MLFF, PM6, and ff14SB relative energies (relative to the ωB97XD/6-

31G* values) among 6 conformers. (b) The comparisons of correlations between the forces from MLFFs and the ωB97XD/6-31G* 

ones.  

Then, we investigate the applicability of our MLFFs on MD 

simulation. As MLFF-based MD simulations show small en-

ergy drift (less than 0.001 kcal/(mol·atom·ps)) at the microca-

nonical (NVE) ensemble for both two polypeptides (see details 

in the Sec.7 of the supporting information.), long-time MLFF-

based MD simulations using a Langevin thermostat46 are per-

formed at 300 K with a timestep of 1 fs in the canonical (NVT) 

ensemble. Staring from the chain-like structures for both two 

systems, the end-to-end distances between the Cα atoms of the 

first and the last amino acid residues during 1-ns MD simula-

tions are plotted in Figure 4. One can see that the end-to-end 

distances decrease rapidly in the first 0.2 ns and reach the min-

imum values about 4 Å during the rest of the simulation time. 

Three representative structures at different times are plotted in 

Figure 4. The results show that the conformation of the poly-

peptides gradually changes from the chain-like extended struc-

ture to the folded one, indicating a large conformational change 

during the MD simulations. 

To verify the performance of our MLFFs in all conformation 

space during the MD simulations, first, we compare the relative 

energies for six conformers randomly chosen from the MLFF-

based trajectories. Here, the energies of the six conformers are 

calculated with MLFFs, PM6, ff14SB and ωB97XD/6-31G*. 

The energy of the first conformer calculated with each method 

was taken as zero. The absolute deviations of relative energies 

(relative to the ωB97XD/6-31G* results) are shown in Figure 

5a. One can note that the largest deviations are less than 6 

kcal/mol for MLFF results, but are much larger (more than 18 

kcal/mol) for PM6 and ff14SB results. Then, the correlations 

between the forces from MLFFs and the ωB97XD/6-31G* one 

for 100 conformers randomly chosen form the trajectories are 

plotted in Figure 5b. The coefficient of determination (R2) be-

tween these results and ωB97XD/6-31G* results is 0.995 

(MLFFs), indicating that the forces predicted by MLFFs are al-

most the same with that from reference ωB97XD/6-31G* cal-

culations. The correlation between the forces from PM6 and 

ff14SB and the ωB97XD/6-31G* ones are also plotted in Figure 

S1, the R2 is 0.56 for PM6 and 0.67 for ff14SB, both are much 

small than the MLFFs.  

Finally, we also performed 20-ps MD simulations with 

MLFFs, ff14SB and PM6 methods, respectively. MD simula-

tions with ωB97X-D/6-31G* are also carried out for compari-

son. Figure 6 displays the dihedral angle distributions calculated 

with the MLFFs and ωB97X-D/6-31G* method. For each back-

bone dihedral φ, ψ, and ꞷ, histograms are accumulated for all 

amino acid residues except Gly. The results suggest that the dis-

tributions obtained from the MLFFs and ωB97X-D/6-31G* 

methods are very close to each other. The distributions predicted 

by the ff14SB and PM6 methods are plotted on Figure S2 and 

S3, respectively. The dihedral distributions from these two 

methods are quite different from the ωB97X-D/6-31G* results. 

For dihedrals φ and ψ, the shapes of distribution show great dif-

ference when compared with the results from ωB97X-D/6-

31G*. For dihedral angle ꞷ, the peak intensity predicted by 

ff14SB is 20 % larger than the ωB97X-D/6-31G* result, and the 

deviation of the location of peak predicted by PM6 method from 

the ωB97X-D/6-31G* one reaches 10°. One can conclude that 

the dihedral angle distributions from MLFFs are much more ac-

curate than those from the ff14SB and PM6 methods. Thus, MD 

simulations based on GEBF-MLFFs can be used to explore dif-

ferent regions of the potential energy surface with high accuracy. 



 

 

 

 

 

Figure 6. Backbone peptide dihedral distributions of 4ZNN (top) and 1XQ8 segment (bottom) obtained from 20 ps trajectories with 

reference DFT (blue solid line) and ML (red solid line). Distributions of dihedral angles, φ, ψ and ꞷ are shown from left to right, 

respectively

In summary, we developed a general GEBF-ML protocol to 

automatically construct MLFFs for proteins with QM accuracy. 

For a given protein, only QM calculations on small subsystems 

containing a few residues are required in the construction of 

MLFFs. To facilitate the construction of MLFFs for various pro-

teins, we create a protein’s data library, which contains all data 

of subsystems generated from trained proteins. With this pro-

tein’s data library, for a new protein only its subsystems with 

new topological structures are required for the construction of 

the corresponding MLFF. This protocol was tested on two pol-

ypeptides 4ZNN and 1XQ8 segment. The accuracy of the con-

structed GEBF-MLFFs for both systems is validated by com-

paring the conformational energies, optimized structure, and 

MD simulation results with those from conventional DFT re-

sults. Our results show that GEBF-MLFFs can lead to quite ac-

curate energies and forces similar to those from full QM calcu-

lations, and dihedral angle distributions from GEBF-MLFF MD 

simulations are in good agreement with those from ab initio MD 

simulations. This work provides an efficient and systematic way 

to build MLFF for proteins, we also expected GEBF-ML proto-

col could be used for polymer materials and complex biological 

systems in aqueous solution in the future.  
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