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ABSTRACT 

The Brazilian Compound Library (BraCoLi) is a novel virtual library of manually curated 

compounds developed by Brazilian research groups to support further computer-aided 

drug design works. Herein, the first version of the database is described comprising 

1,176 compounds. Also, the chemical diversity and drug-like profile of BraCoLi were 

defined to analyze its chemical space. A significant amount of the compounds fitted 

Lipinski and Veber’s rules, alongside other drug-likeness properties. Principal 

component analysis showed that BraCoLi is similar to other databases (FDA-approved 

drugs and NuBBEDB) regarding structural and physicochemical patterns. Finally, a 

scaffold analysis showed that BraCoLi presents several privileged chemical skeletons 

with great diversity.  

 

Keywords: drug design, database, chemical library, medicinal chemistry, 

cheminformatics. 

 

INTRODUCTION  

The application of computational tools as an ally in drug design was an important 

milestone in medicinal chemistry. This approach is known as computer-aided drug 

design (CADD) and it is extensively used in several studies to optimize the discovery 

and design of new drug candidates1,2. Molecular docking, structure-activity relationship 
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(SAR) studies, and virtual screening are a few examples of available computational 

techniques that are widely employed in drug design3.  

 

Currently, CADD data comes from several individual works available in the literature or 

in some websites. These strategies demand a large amount of chemical information to 

automatize the screening of novel bioactive compounds. Therefore, chemical databases 

were built as a resource to obtain this type of data4,5. They were architected to store, 

organize, and enable the search for readily available and quantitative information of 

biological application, physicochemical, and molecular properties of ligands and 

targets6,7. There are some examples of free-to-access virtual chemical libraries that are 

extensively used on CAAD nowadays that could be highlighted (Table 1). 

 

Table 1. Open-access databases containing information about small molecules and their 

biological activities useful for CADD. The databases are shown in descending order of 

number of compounds. Reported numbers were obtained in March 2021. 

Database Entries Link Reference 

ZINC 230 M http://zinc20.docking.org/  [8] 

PubChem 100 M https://pubchem.ncbi.nlm.nih.gov/  [9] 

ChEMBL 2.1 M https://www.ebi.ac.uk/chembl/  [10,11] 

BindingDB 971 K https://www.bindingdb.org/bind/index.jsp  [12] 

TCM Database 37 K http://tcm.cmu.edu.tw/about01.php?menuid=1  [13] 

DrugBank 15 K https://go.drugbank.com/  [14] 

Drug Repurposing Hub 6.9 K https://clue.io/repurposing  [15] 

NuBBEDB 2.2 K https://nubbe.iq.unesp.br/  [16,17] 

AntibioticDB 1 K https://www.antibioticdb.com/  [18] 

AfroDB 954 http://zinc.docking.org/catalogs/afronp/  [19] 

BIOFACQUIM 421 https://biofacquim.herokuapp.com/  [20] 

 

Thus, the process of building libraries is critical since the data must be diverse and 

reliable to enable safe chemoinformatic experiments, being crucial in the scenario of 

designing new drugs21. It is important to emphasize that in silico approaches help and 

speed up the search for new bioactive compounds. This can reduce the amount  of 

compounds to be tested in in vitro and in vivo assays, anticipating adequate 

pharmacokinetic profiles, high selectivity, and low toxicity predictions22,23. In this way, 

virtual libraries contribute to increase the success rate in the process of selecting new 

leads, gathering information with parsimony, ensuring the quality, variety, and 

consistency of the curated data2,21,24. 

http://zinc20.docking.org/
https://pubchem.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/chembl/
https://www.bindingdb.org/bind/index.jsp
http://tcm.cmu.edu.tw/about01.php?menuid=1
https://go.drugbank.com/
https://clue.io/repurposing
https://nubbe.iq.unesp.br/
https://www.antibioticdb.com/
http://zinc.docking.org/catalogs/afronp/
https://biofacquim.herokuapp.com/
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Inspired by these examples, the Brazilian Compound Library (BraCoLi) was built as a 

manually curated and open-access database containing biological and chemical 

information of synthetic and natural semisynthetic molecules from Brazilian research 

groups. In this work, a description and a cheminformatic characterization of BraCoLi 

based on chemical features and drug-like profiling, comparing with other databases is 

presented. The comparison was based on molecular, pharmaceutical, and 

physicochemical properties of interest in drug design. The data was initially compilated 

from our research group on Pharmaceutical and Medicinal Chemistry from the 

Universidade Federal de Minas Gerais (UFMG, the Federal University of Minas Gerais), 

encouraging us to provide the dataset to the scientific community. 

 

RESULTS AND DISCUSSION 

Description of BraCoLi database and biological applications 

To compose the first version of the BraCoLi database, 31 peer-reviewed thesis and 

papers that evaluated any biological activity of pure and characterized compounds from 

our research group were analyzed. In this sense, 1,176 unique compounds derived from 

natural scaffolds and completely synthetic compounds were gathered. For each entry, 

the molecular formula, molecular weight, melting points and, when available, biological 

information were reported. The structures are displayed in 3D lowest energy conformers 

and are available in mol2 and SDF file formats. In addition, XLSX and PDF files with 

chemical and biological information regarding the compounds are also provided. All files 

are available for download at https://www.farmacia.ufmg.br/qf/downloads/. 

 

The substances showed a broad range of activity, with reported antibacterial, antifungal, 

antileishmanial, antimalarial, antioxidant, antitrypanosomal, antiviral, and cytotoxic 

activities. From BraCoLi database, two classes of compounds with great advance in drug 

development could be highlighted. Firstly, 2-thiazolylhydrazone derivatives (Figure 1) 

such as RN104 and RI76 have shown promising in vitro and in vivo antifungal potential 

against both standard strains and clinical isolates of Candida and Cryptococcus species, 

25–32. Anti-diabetes and antioxidant activities were also reported for these analogs. These 

compounds have been evaluated in preclinical assays, including (i) analytical 

characterization33, (ii) in vivo, in vitro and in silico pharmacokinetic and toxicity 

profiles34,35, (iii) stability studies36, and (iv) tests with different formulations to improve 

solubility37.  

 

https://www.farmacia.ufmg.br/qf/downloads/
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Figure 1. Structures of prominent bioactive compounds from BraCoLi database. 

Compounds RS11 and Thac-m were selected by Asse Junior et al. (2020)38 and 

presented MIC values of 125-250 µM against S. aureus and MRSA strains. 2j, a 1,3-

bis(aryloxy)propan-2-amine derivative, presented fungicidal activity against Candida 

spp. in infected Drosophila melanogaster flies. RI17 and RN104 are potent 2-

thiazolylhydrazone antifungal agents that were evaluated in the beforehand preclinical 

assays.  

 

Other important set of substances includes the 1,3-bis(aryloxy)propan-2-amines and 1,3-

bis(aryloxy)propan-2-ols derivatives such as compound 2j (Figure 1) with a broad 

spectrum of activities. There are reports describing their in vitro antibacterial39, 

antifungal40, antileishmanial41,42 and antitrypanosomal43 activities, as well as a 

pharmacokinetic and pharmacodynamic characterization in D. melanogaster model of 

candidiasis44 and a patent deposited in Brazil45.  

 

In addition, a preliminary unpublished version of the database has been applied to 

develop new antibacterial leads, exemplifying the application of BraCoLi in 

cheminformatics. Asse Junior and co-workers (2020) carried out a virtual screening to 

select potential Enoyl-ACP reductase (FabI) inhibitors. The authors carried out a ligand-

based virtual screening via chemical similarity models using the in-house dataset 

alongside ZINC, FDA-approved drugs, TCM, and NuBBEDB databases. Four compounds 

were selected from BraCoLi and 2 of them (Figure 1, RS11 and Thac-m) presented 

antibacterial activity against standard strains of Staphylococcus aureus and MRSA as 

well as clinical isolates38.  
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Chemical space and drug-like profiling of BraCoLi 

The chemical space of BraCoLi database was compared to 750 FDA-approved drugs 

between 1900 and 201746 and 2,223 compounds retrieved from NuBBEDB in terms of 

chemical features and drug-like profiles. Firstly, nine molecular and physicochemical 

properties aiming to compare their drug-likeness were calculated: molecular weight 

(MW), logarithm n-octanol/water partition-coefficient calculated using the Moriguchi 

method (MLogP), number of hydrogen bond acceptors (HBA) and donors (HBD), 

topological polar surface area (TPSA), number of rotatable bonds (nRotB), hybridization 

ration (HybRatio), number of atoms (nAtoms) and the number of rings (nRings). The 

drug-like potential of the compounds was analyzed based on two drug-likeness empirical 

rules: Lipinski’s (Ro5) (MlogP ≤ 5, MW ≤ 500 Da, HBA ≤ 10, HBD ≤ 5)47 and Veber’s 

rules (TPSA ≤ 140 Å², nRotB ≤ 10)48. For the other properties, the value ranges provided 

by Ghose (20 ≤ nAtoms ≤ 70)49 and Muegge’s (nRings ≤ 7)50 rules were employed as 

references for drug-likeness. These rules are applied to predict oral bioavailability of 

substances according to physicochemical fitness to prior stablished ranges for each 

property. 

 

The compounds presented a remarkably similar Gaussian distribution for MW and 

MLogP (Figure 2a). These databases present both hydrophilic and hydrophobic 

compounds (1 < MLogP < 7), indicating a moderate solubility in water probability 

whereas a good absorption in TGI. Most of the molecules (980 entries or 82.98% for MW 

and 1,160 entries or 98.22% for MLogP) fitted the quartile between the maximum values 

provided by Ro5. The average values for MW and MLogP were 378.58 Da and 2.58, 

respectively. Still in Ro5 discussion, Figure 2b shows a high population in the quartile 

between the adequate ratio of hydrogen-bond acceptors and donors, where 926 

compounds (78.40%) showed no more than 10 HBA, and 1,103 (93.40%) presented no 

more than 5 HBD. Furthermore, nine hundred compounds (76.21%) fitted both 

conditions. Finally, Figure 2c represents a comparison between the two Veber’s rules: 

number of rotatable bonds and topological polar surface area. Both parameters are 

related to the flexibility and capability of penetration in the cell membrane. Most 

molecules (887 entries or 75.11% for TPSA and 924 entries or 78.24% for nRotB) fitted 

the maximum values stablished by Veber and co-workers. The mean value for TPSA 

was 106.10 Å². Also, nRotB showed an average value of 7.77. The highest densities of 

points fitted the Lipinski and Veber’s rules ranges (MW < 500 Da, 1 < MLogP < 5, HBA 

< 10, HBD < 5, nRotB < 10, TPSA < 140 Å²). At final count, 862 substances showed no 

violations and 133 showed one violation to Ro5 (totalizing 995 entries or 84.25%), 815 
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compounds (69%) fitted Veber’s parameters, and 814 compounds (68.92%) fitted both 

empirical rules, showing a proper drug-like profile of the dataset.  

 

 

Figure 2. Scatter plots of the compounds of the BraCoLi (blue), FDA-approved drugs 

(orange), and NuBBEDB (lilac) according to molecular and physicochemical properties of 

relevance for drug-like profiling. The gray dashed line shows the range of each property 

according to Lipinski’s and Veber’s rules. The visual representations are a) MlogP vs 

MW, b) HBD vs HBA, c) nRotB vs TopoPSA, d) HybRatio vs MW, and e) nRing vs 

nAtoms.  

 

Further comparisons were carried out to evaluate other physicochemical parameters. 

Figure 2d shows the comparison of the fraction of sp3 carbons (Fsp3) values to MW. 

Fsp3 are related to the flexibility of the molecules, such as nRotB. The average value of 

Fsp3 was 0.43, meaning an approximately Csp³ ratio of 1/2.3, indicating that the dataset 

contains more rigid than flexible structures. The parameters quantity of atoms (nAtoms) 

and quantity of rings (nRings) were also compared, as shown in Figure 2e, since these 
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properties are related to the size of the molecules. As expected, the parameters 

presented high correlation to each other. The mean values calculated for nAtoms and 

nRings were 48.66 atoms and 2.45 rings, fitting the ranges predicted by the empirical 

rules, and 999 entries (84.59%) fit both rules simultaneously. It could be seen in all 

scatter plots from Figure 1, BraCoLi presented similar distributions to FDA-approved 

drugs and NuBBEDB in all comparisons.  

 

The BraCoLi database, FDA-approved drugs, and NuBBEDB were compared regarding 

their chemical and structural spaces (Figure 3). The chemical spaces were generated 

employing principal component analysis (PCA), using two major approaches: (i) drug-

like profiles in terms of the nine physicochemical properties evaluated beforehand 

(nAtoms, HBA, HBD, HybRatio, MlogP, MW, nRings, nRotB, TPSA (Figure 3a); and (ii) 

molecular fingerprints, according to PubChem fingerprints set (Figure 3b). Both plots 

are represented by the first two principal components (PC1 and PC2), where PC1 

showed most contribution to the PCA (94.3% for drug-like-based PCA and 19.2% for 

fingerprint-based PCA). All three chemical sets show a similar distribution in the PCA 

plots, as expected from the drug-likeness analysis, indicating that the compounds 

present a comparable predicted pharmacokinetic profile. This indicate that, even they 

represent different datasets, BraCoLi presents an interesting applicability to discover 

lead candidates with adequate drug-like profiles in comparison to other largely used 

databases.  

 

 

Figure 3. Chemical space visualization for the BraCoLi (blue), FDA-approved drugs 

(orange), and NuBBEDB (lilac) generated by PCA. The comparison based on a) drug-like 

profiles and b) molecular fingerprints.  
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Although these drug-likeness rules are still universally applied in the early stages of drug 

design, it is important to stress that some approved drugs violate them. Even Lipinski 

(2004) states that some scaffolds do not fit the Ro5 four parameters, especially natural 

products or derivatives and molecules that are recognized by active transport systems51. 

Pathania and Singh (2020) discuss in an editorial paper when is the ideal stage of drug 

development to take account on pharmacokinetic optimization and how empirical rules 

are helpful. According to the authors, 15 out of 26 FDA-approved small molecules in 

2020 do not fit one or more drug-likeness rules. They suggest to apply those predictions 

after the evaluation of biological activity52. Other works also accent the necessity to 

revise those empirical rules after several years and expand the chemical space to fit new 

bioactive molecules with adequate experimental drug-like profiles53–57. Obviously, it is a 

compelling starting point that two-thirds of BraCoLi database present an adequate drug-

like prediction, which can facilitate the screening of potential bioactive compounds, but it 

is necessary to balance both pharmacokinetic and pharmacodynamic profiles, since a 

molecule with a good pharmacokinetic profile does not necessarily present potent 

bioactivity and vice-versa52,55.  

 

Chemical scaffolds 

To verify the chemical diversity of the dataset, the most frequent scaffolds were analyzed 

using the DataWarrior software. The twenty most frequent scaffolds are shown in Table 

3, which most of them are heterocycles containing oxygen, nitrogen and/or sulfur in 5- 

or 6-membered rings. As discussed by Jampilek (2019), heterocycles are a very versatile 

group of structures with important applications in medicinal chemistry. Due to their 

privileged fragments, they present a broad spectrum of bioactivities as well as they can 

be easily modified or simplified to optimize pharmacodynamic and pharmacokinetic 

profiles58. For instance, the butenolide ring can be highlighted, which presents several 

biological activities59, and being present in digoxin, for example, a drug applied for heart 

disorders treatment.  
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Table 3. Top 20 most frequent chemical scaffolds presented in the BraCoLi database.   

     
benzene 

1164 entries 
oxane 

455 entries 
oxazolidine 
76 entries 

1,2,3-triazole 
76 entries 

1,3-thiazole 
60 entries 

 
  

 
 

benzimidazole 
50 entries 

Cyclohexanimine 
46 entries 

oxole 
44 entries 

tetrahydrofuro[2,3-
d][1,3]dioxole 

40 entries 

quinoline 
37 entries 

   

 

 

naphtalene 
36 entries 

morpholine 
32 entries 

pyridine 
32 entries 

naphtoquinone 
28 entries 

oxalane 
24 entries 

  

 

 
 

azole 
22 entries 

butenolide 
21 entries 

cardenolide steroid 
20 entries 

indole 
20 entries 

1,3-dioxane 
17 entries 

 

Also, less frequent scaffolds were also counted, but distinctive fragments presented in 

our dataset (Table 4). The scaffolds 1,3,4-oxadiazole-2-thione, containing four 

heteroatoms, a spiro heterocycle, and a seven-membered nitrogen and oxygen-

containing heterocycle can be highlighted. Finally, two tetrazole rings were found, being 

important as bioisosters for acidic groups. These results indicate a relative diversity and 

versatility of our dataset scaffolds. 

 

Table 4. Distinctive chemical scaffolds presented in the BraCoLi database.  

 
   

 

1,3,4-oxadiazole-
2-thione 
4 entries 

2H-tetrazole 
3 entries 

1H-tetrazole 
2 entries 

1-oxa-4-
azaspiro[4.4]nonane 

1 entry 

1,3,5-
dioxazepane 

1 entry 
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CONCLUSION 

After years cataloguing this information, a total of 1,176 compounds were gathered to 

build the BraCoLi database. As stablished in the cheminformatic characterization, the 

dataset present rich chemical diversity, broad spectrum of bioactivities and drug-like 

potential. More than two thirds of the compounds fitted both Lipinski’s Ro5 and Veber’s 

rules. These structures can be now explored by other medicinal chemistry groups to 

support their research. The dataset update is planned when novel substances are 

obtained to expand BraCoLi database, being a novel platform to compilate and organize 

information on bioactive compounds for computational studies and experimental assays. 

 

MATERIALS AND METHODS 

Curation and preparation of the biological and chemical data 

The compounds were curated from prior works developed in the Laboratory of 

Pharmaceutical Chemistry (Faculty of Pharmacy, Federal University of Minas Gerais). 

Their chemical formula, molecular weight, and biological assays data were annotated. 

The 2D chemical structures were generated in Marvin Sketch 16.10.3 (Chemaxon, 

2015). After, the structures were converted to a 3D format and had their conformation 

energy minimized using Discovery Studio Visualizer (BIOVIA, 2020). Also, any lacking 

hydrogen atoms were added to the structures. The most stable conformers were 

generated by OMEGA 2.5.1.460. Ionization states in physiological pH (7.4) were 

corrected using fixpka software implemented in QUACPAC 1.6.3.1 (OpenEye Scientific 

Software, 2016), in which the total energy was minimized using MMFF94 force field61. 

The 3D structures dataset is available in SDF and Mol2 file format.  

 

Drug-like profiling and cheminformatic characterization 

Molecular and physicochemical properties were calculated using PaDEL descriptor 

software62. R package was used to carry out statistical analysis. Principal component 

analysis (PCA) was carried out using prcomp function and histogram-scatter were 

generated via the function scatterhist. 

 

Chemical diversity and substructures scaffolds 

The chemical substructures were generated using the function “Analyse Scaffolds” and 

“Plain ring systems” filter criteria in software DataWarrior 5.2.163. Applying the option 

“Split multiple values row”, the most frequent and distinctive rings after the software 

counted the frequency of appearance of each substructure were manually verified. 

Ionized conjugate acids or bases were not differentiated from the non-ionized groups.  
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