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Abstract

Cyclic Voltammetry (CV) is an electro-chemical characterization technique used in

an initial material screening for desired properties and to extract information about

electro-chemical reactions. In some applications, to extract kinetic information of

the associated reactions (e.g., rate constants and turn over frequencies), CV curve

should have a specific shape (for example an S-shape). However, often the settings to

obtain such curve are not known a priori. In this paper, an active search framework is

defined to accelerate identification of settings that enable knowledge extraction from CV

experiments. Towards this goal, a function space representation of CV responses is used

in combination with Bayesian Model Selection (BMS) method to efficiently label the

response to be either S-shape or not S-shape. Using an active search with BMS oracle,

we report a linear target identification in a 6-dimensional design space (comprising of

thermodynamic, mass transfer and solution variables as dimensions). Our framework

has the potential to be a powerful virtual screening technique for molecular catalysts,

bi-functional fuel cell catalysts etc.
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Introduction

Cyclic Voltammetry (CV) is an electro-chemical characterization technique that measures

current generated under a cyclic voltage load between a initial and final voltage varied at

a given rate. The measured current is a highly non-linear response from various physical

phenomenon such as mass transport, kinetics, adsorption etc. In principle, it is possible to

determine the properties associated with the underlying physical phenomenon. However,

the property extraction is a non-trivial task. In a CV experiment, a steady state current

is obtained when all reactions in the mechanism have the same apparent rate constants [1].

This is because the facile reactions in the sequence are held back from their maximum rates

by the sluggish reactions called a rate determining step that also determines the magnitude of

steady state current. Extracting rate constants of the rate determining step thus requires the

CV curve to be in a S-shape [3, 21] with a clear steady state current region resolved during

measurement. Towards this goal, obtaining a S-shaped CV curve requires the experiment to be

run with a set of conditions (e.g, temperature, substrate concentration, scan rate), amenable

for S-shape CV curves which are unknown a priori. Moreover, choosing conditions where

a given electrochemical system exhibits a S-shaped CV curve is dependent on underlying

system of electrochemical reaction(s) which is(are) also unknown for novel materials. In the

absence of a known mechanism, an exhaustive search over all the possible tunable parameters

is performed [16] to narrow down the region of interest. Such exhaustive strategy comes

at a price of very high computational cost especially in a high-dimensional search space of

multiple complex reaction mechanisms.

As an alternative approach, experts define a figure of merit (FOM) [21](a performance
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measure) as a proxy signature of a physical phenomenon of interest. FOM extracted from

CV can be also used in material discovery using data-driven methods. For example, in [23,

15, 9, 24] different types of FOM have been used for catalyst discovery using data-driven

methods. With FOM defined, the goal is to find a material that produces a response with a

FOM that is better than that of known materials. For instance, in case of a high-throughput

exploration for a new catalyst, the overpotential is a common FOM [18] (or performance

measure) used in the combinatorial searches [24]. The over-potential can be thought of as the

voltage (beyond the thermodynamic requirement) required to produce a (pre-defined) target

current. This FOM has clear utility to screen for well performing materials, but misses on

the main advantage of CV - that is the capability to extract the kinetic information (such as

rate constants [25], turn-over frequencies [4, 17]).

Given the time and financial constraints, we propose to accelerate the process of extracting

kinetic information from CV curves using the active learning technique [10, 19, 6]. Rather

than relying on the selection of figure of merit, we build function space representations

of our target (S-shaped) and non-target (everything else) CV responses and use Bayesian

Model Selection (BMS) for automatic classification. We encode prior knowledge of target and

non-target CV responses using the basis functions of a function space representation using

Gaussian processes (GP). GP have been previously used to infer the kinetic parameters [8,

20] of a CV response by using a maximum likelihood estimate and GP regression. In another

work [15], a Bayesian approach is used to search for an approximate rate constant when the

reaction mechanism is known. In this work, however, we use GP as a data representation

model to distinguish S-shaped CV curves from other types of continuous CV curves. Once a

S-shaped CV curve is collected, the foot-of-the-wave analysis (FOWA) [25] can be used to

extract the rate constant of a rate determining step. When combined together with FOWA,

the proposed approach can be a robust technique that does not require any knowledge of the

actual reaction mechanism.

In this work, we focus on S-shaped CV responses due to their utility for: a) extracting
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kinetic information [3, 21]–using the foot of the wave analysis [25] that can only be applied

to a S-shaped CV curve. b) screening for bi-functional catalysts – materials that produce

CV curves similar to S-shape in two different voltage sweep ranges [2, 11]. While the two

applications are different, they can be approached under a common framework of active

search in a combinatorial space, where we are interested in finding S-shaped CV curves within

the combinatorial space.

The rest of the paper is organized as follows: (i) First we introduce Bayesian active

learning framework with a general probabilistic model. We establish a connection between

collected data at observed locations with the oracle used to classify and update the decision

model used for active learning. (ii) We then introduce the Bayesian Model Selection (BMS)

procedure that computes a classification preference for targets and non-targets based on

collected data and set of parametric models. (iii) We introduce a GP model that builds a

function space representation for collected data to use as a parametric model in BMS. (iv) We

apply our methodology on a search space of a simple EC mechanism and demonstrate the

application of the BMS oracle to classify CV responses in order of its S-shape. (v) Finally,

we use the BMS oracle in active search to address the challenges in knowledge extraction,

virtual screening of materials for electrochemical applications using cyclic voltammetry.

Methods

Our goal is to identify the measurement settings from which one can extract kinetic information

captured in a CV response. Towards this goal, we seek to identify measurement conditions for

which an S-shape CV curve is collected and registered as such by our oracle. We use an active

learning technique summarized in Figure 1 to accelerate the search for measurement settings

within fixed computational budget. Our active learning approach involves iterative collection

of data points from a search space S. The process starts with a small set of observed data

D = (S,Y) where S ∈ S are the observed locations and Y ∈ {−1, 1} are corresponding
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labels. In each iteration, the algorithm collects data and incrementally updates the decision

model p(y = +1|D) it aims to learn with y representing a label. A user-defined selector (or

policy) identifies a (or a batch of) candidate location(s) in the search space for observing the

responses. The policy typically maximizes a utility function given the decision model. For

example, given D, we can define a policy using a utility function that simply counts number

of targets in the dataset u(S) =
∑

si∈S,yi∈Y
[yi = +1]. A policy can be defined to potentially

select more targets to be added to the data pool D using:

s∗ = argmax
s

E [u(S \ S|D)] (1)

Where E[.] represents expectation. Given a location s∗ ∈ S, the corresponding experiment is

performed and a response is collected. In this work, we collect CV response curve from a CV

curve simulator and the response is then passed to an oracle. Oracle labels the response to

be either a target or non-target (for example in Figure 1, we show a non-target like CV shape

which will be assigned y∗ = −1 as a label). The next step is to augment D using the data

collected in the current iteration i.e. D∗ = D ∪ (s∗, y∗). The decision model is then updated

with D∗. This process is repeated until computational budget–defined in terms of total

number of label queries or equivalently number of simulations–is exhausted. As an oracle we

use Bayesian Model Selection (BMS) that operates on two modelsM1,M2 referred to as

null model (representing a typical CV curve) and target model (representing an S-shaped CV

curve), respectively. Moreover, we use a variation of active learning called active search [7]

which maximizes the number of targets found in contrast to traditional active learning where

the selector is defined with a goal to closely approximate p(y = +1|D).

Bayesian Model Selection

The key component of our active learning framework is the oracle. We use BMS as a tool

to identify a preferred model from a family of parametric probability distributions, each of
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Figure 1: Active learning framework as a flowchart. Active learning iterations start with a
few labelled data points in the search space S. We stop collecting data when we have selected
a pre-defined number (called budget) of locations for updating our decision (or belief) model.

which can explain the observed data with differing degrees of fidelity. Using a supervised

learning procedure that compares an input X and output y, we compute a model posterior

using Bayes rule to select the model that best explains the observed data D = (X,y).

Here, given the observed data D = (X,y), we compute probability that the data is sampled

from any given model encoding our prior information. Computed posterior probabilities will

be used as a score to differentiate whether the collected response (for example, a CV response

at any input location in the search space of materials) is a target (with higher probability for

the corresponding target model) or not. In this work, we use both BMS and active learning in

a related but different context. BMS is used with observed data encoding a single CV curve

while active learning is used in the search space with their corresponding binary labels (i.e. a

target or not) as observed data. Moreover, BMS is used as an oracle for the active learning

task with modelsMj as GP .

For each modelM with a parameter index θ– a concatenated vector of hyper-parameters–
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we first compute model evidence p(y|X,M) on the observed data D = (X,y):

p(y|X,M) =

∫
p(y|X, θ,M)p(θ|M) dθ (2)

where p(y|X, θ,M) is probability of obtaining outputs y given input data X and a model

M. p(θ|M) represents distribution of parameter θ for any given modelM.

To understand which model to prefer from a finite set of models
{
Mi

}n
i=1

, we apply the

Bayes rule to compute the posterior probability of each modelMj(j ∈ {1, 2, ..n}) given data

D using the posterior of Equation (2):

p(Mj|D) =
p(y|X,Mj)p(M)

p(y,X)
(3)

where p(M) represents a prior over the finite set of models that is typically taken to be uniform

i.e. no prior preference to any single model. One common approach is to use logarithm of

the probability which can be interpreted as the information content of a probability model

given data. Taking the logarithm of Equation (3), we get the following:

log p(Mj|D) = − log

[
1 +

n∑
i 6=j

p(y|X,Mi)

p(y|X,Mj)

]
(4)

GP Models for Catalytic Responses

A GP is a distribution over smooth latent functions g : X → R. Assuming the observation

model p(y|g) is known, the standard approach is to use non-parametric Bayesian approach

by placing a GP distribution over g, i.e. p(g) = GP
(
µ(x), k(x, x′)

)
. Here µ(x) : X → R is a

mean function and k(x, x′) : X ×X → R is a covariance function. A function-space viewpoint

provides an intuitive explanation of GP as vector space of functions in a chosen (potentially

non-linear) feature space with φ(x) as a basis. In the function space representation, the

observation model plays the role of weights W with function g represented using g(x) =

φ(x)>W . It can be shown that φ(x) can be implicitly defined using the covariance function
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k(x, x′) between pair of inputs x, x′ ∈ X and a mean function µ(x) ofW 1. The mean function

µ encodes an average behavior of the function g. The covariance function k(x, x′) encodes

the correlations between outputs g(x), g(x′) for any given pair of input points (x, x′). In this

work, we denote the concatenated vector of the parameters in µ(x) and k(x, x′) as θ. Once

we select a GP encoding our prior beliefs, we use Bayes rule to update our posterior p(g|D)

conditioned on observed data D = (X,y) where y are the discrete evaluations of function g

at inputs X. For more information on GP , readers are referred to [26].

We represent a typical response from a cyclic voltammetry experiment as a function I(t, v)

with I being the current response collected at a time t for a time dependent applied voltage

v = V (t). The voltage load V (t) is typically chosen to be linear and the voltammetry is

often referred as direct current voltammetry [15]. Classification of a CV into an S-shape

(or not S-shape) can be looked at as determining a model evidence of a function defined by

CV curve (v, t) 7→ I under a GP function space with observed data D given by the discrete

CV curve X = I,y = (v, t). The covariance of a CV curve gives rise to the basis functions

in the GP space and the time-voltage grid becomes the input space where the function is

evaluated. For any given CV curve, its representation in the GP function space is obtained

by finding a θ that maximizes the posterior probability p(X = I|y = (v, t)) 2. We choose

the GP model with a non-stationary covariance as a target modelM2. It follows from the

reproducing kernel Hilbert space (RKHS) theorem (Ch 12.4 in [5]) that any smooth function

can be represented using a kernel or a covariance function. Thus for the null model (M1), it

is sufficient to use a GP with smoothness controllable covariance function. A brief overview

of the covariance functions selected as basis functions is described below. For both models

M1 andM2, the mean function is chosen to be µ(x) = 0 as we normalize the response curves

I(v, t) to be with in (0, 1) and expect the covariance function to determine the shape of the

CV curve.
1for this reason we use k(x, x′) and basis function of GP interchangeably in this paper
2we use the maximum a posteriori or MAP estimation
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Squared Exponential Covariance

We use the commonly known squared exponential kernel (in Equation (5) and Figure 2) as a

covariance model forM1 where the resulting feature map φ(x) forms a basis for functions

that are smooth and stationary.

k(x, x′) = σ2
f exp

(
(x− x′)>Λ−1(x− x′)

)
(5)

In Equation (5), σf is scaling parameter, and Λ is a diagonal matrix with each entry as a

length scale for the corresponding dimension of x, x′ ∈ X . The left panel of Figure 2 depicts

five samples drawn at random from the GP with the covariance in Equation (5).The right

panel of the same figure depicts the covariance function visualized on a uniform grid of

X × X as contours. From Figure 2, it can be seen that the covariance is stronger (≈ 1)

between inputs with Euclidean norm (i.e. distance) less than a length scale controlled by the

parameter Λ.

Figure 2: A pictorial representation of Equation (5). Left panel: five samples drawn at
random from the GP built using Equation (5), captures the smooth and locally correlated
nature of the GP. Right panel: a contour plot depicting correlations between outputs of
one-dimensional vectors x, x′ ∈ X . Color code represents the covariance k(x, x′) with red
representing high covariance i.e. output values g(x), g(x′) are highly correlated and vice-versa.
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Neural Network Covariance

We use a neural network covariance kernel to build a GP function space representation for

the target model M2(shown in Equation (6) and Figure 3). The fast kinetic (or S-shape

curve) responses have a non-stationary covariance and hence we choose a covariance that is

effective in handling rapidly changing signals.

k(x, x′) = σ2
f sin−1

(
x>Λ−2x′√
h(x)h(x′)

)
(6)

h(x) = 1 + x>Λ−2x

In Equation (6), σf is scaling parameter, and Λ is a diagonal matrix with each entry as a

length scale. Figure 3 is analogues to Figure 2 and it can be seen that the covariance is

high (≈ 1) in two blocks of input locations that are separated by a completely un-related input

locations (covariance ≈ 0). This is in contrast toM1 where the covariance is determined by

some form of distance between input points.

Figure 3: A pictorial representation of Equation (6). Left panel: five samples drawn at
random from the GP built using Equation (6), captures the non-stationary nature nature
of the GP signified by constant values and sharp rises in the response values. Right panel:
a contour plot of covariance between two one-dimensional vectors x, x′ ∈ X as inputs. A
positive value for k(x, x′) signifies that output values g(x), g(x′) are highly correlated and
vice-versa.
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Results

To demonstrate the application of active search for S-shaped CV curves, we choose a classic

EC-mechanism, that consists of two reactions: E and C (Equation (R1) and Equation (R2))

corresponding to one electron transfer reaction (E) and one chemical reaction (C), respectively.

EC-mechanism is selected as it is a well studied mechanism [21, 3, 14] that produces a variety

of CV shapes thus serves as a good test case for the oracle proposed in this paper. In this

work, we use the MECSim [13] simulator to generate CV curves on demand.

Data generation

The EC mechanism is a two step reaction comprising of an electron transfer Equation (R1)

followed by a chemical reaction in Equation (R2).

P + e −−⇀↽−− Q (R1)

Q + A −−→ P (R2)

Electro-chemical kinetics of the EC mechanism can be modeled and solved using governing

partial differential equations [22]. In this work, we are interested in modeling the kinetics of

species (and electron) that contributes to current generation under cyclic voltage sweep at a

given sweeping rate.

Towards this goal, the transport of the three species (P, Q, A) in the solution is modelled

using Fick’s second law of diffusion with a source term corresponding to the heterogeneous

reactions:

∂CP

∂t
= Ddiff

∂2CP

∂u2
+ ksCQCA

∂CQ

∂t
= Ddiff

∂2CQ

∂u2
− ksCQCA

∂CA

∂t
= Ddiff

∂2CA

∂u2
− ksCQCA (7)
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with the boundary conditions defined as follows:

t = 0,∀u CP = C0
P , CA = C0

A, CQ = C0
Q

t > 0, u→∞ CP = C0
P , CA = C0

A, CQ = C0
Q

t > 0,∀u ∂CA

∂u
= 0;

∂CP

∂u
+
∂CQ

∂u
= 0;CP/CQ = exp

(
F

RT
(V − E0)

)
(8)

In Equations (7) and (8) the formal reversible potential of electron transfer reaction eq. (R1)

is E0, the concentration of catalyst P is CP , specie Q is CQ and substrate A is CA. Ddiff

is a common diffusion coefficient for all species and ks is the rate constant of the forward

reaction in Equation (R2). The spatial domain is denoted as u starting from the working

electrode (i.e. u = 0) assuming a semi-infinite domain. The time scale of the simulation

is denoted as t. Initial concentrations (i.e. at t = 0) are denoted with a superscript 0. V

represents the time varying applied voltage. For a cyclic voltage sweep between voltages

Vi, Vf at a rate of ν V/s we get Equation (9) for V (Ts is switching time).

V (t) =


Vi + νt 0 < t < Ts

Vf − νt T < t < 2Ts

(9)

Digital simulation of system of partial differential equations in Equations (7) and (8) is

performed to determine spatio-temporal concentration profiles of species P, Q, A. The

Faradaic current observed during the cyclic voltage load is computed using Equation (10)

following the Butler-Volmer model for heterogeneous electron transfer at the electrode surface.

i(t, v) = FAsurfk
0

[
CQ exp

(
αF

RT
(V − E0)

)
− CP exp

(
(1− α)F

RT
(V − E0)

)]
(10)

In Equation (10), F is Faraday’s constant, Asurf is surface area of electrode ( = 1 cm2), R is

universal gas constant, T is room temperature. k0 is heterogeneous electron transfer rate

constant and α is a symmetric charge transfer coefficient (=0.5).
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We use the freeware software MECSim [12, 13] to digitally simulate the cyclic voltam-

metry response in the voltage range of [−0.5V, 0.5V ] 3. Along with the parameters used

in Equations (7) and (8), MECSim can also simulate the effects of an uncompensated

resistance (Ru), double layer capacitance (Cdl) which are not used in this work. We

form a 6-dimensional design search space using C0
P , C

A
0 , ks, k

0, ν, E0 and set the values of

Ru = 0, Cdl = 0, α = 0.5, D = 1× 10−5. Table 1 lists the combinatorial space defined with six

design variables (dimensions of search space) and number of samples along the dimension

used to create an exhaustive search grid of tunable settings. After excluding responses from

a diverging simulation arising from a combination of non-physical parameters for MECSim 4

we get a total of ≈ 17× 103 CV curves in our database.

Table 1: Combinatorial space used to generate CV responses in EC mechanism along with
number of levels used in the exhastive search.

Parameter range number of levels per dimension
logC0

P [-2,3] 5
logC0

A [-2,3] 5
E0 [-0.4,0.4] 5

log ks [-1,6] 5
log k0 [-1,6] 5
log ν [-2,4] 6

Using BMS as an oracle to identify S-shaped CV curves

We demonstrate the application of the BMS oracle to label the CV responses as target, if

they are of S-shape, and as non-targets otherwise. We use the proposed BMS oracle to

label the CV responses and couple it with standard active search techniques to find our

"targets" within a given budget of label queries (i.e. number of queries to the simulator). To

accommodate for the high-throughput search running a batch of experiments at a time, we

run the active search using both sequential selection of query locations (batch size b = 1) and

a batch selection (b = 100). We use the design space in Table 1 and aim to find as many
3http://www.garethkennedy.net/MECSimDownload.html
4see MECSim documentation for known limitations
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targets as possible in the resulting combinatorial design space S of six parameters (dimension

of S).

To demonstrate the efficacy of the proposed methods, we first pre-compute labels for set

of ten CV curves in S of varying shape. Figure 4 depicts the chosen CV curves ordered based

on model posterior (Equation (4)) percentile rank. Notably, the highest scored CV curves

have the S-shape which are of interest in this work. From Figure 4, it can be noted that BMS

assigned the highest score to CV curves where the forward and backward sweeps overlap

exactly i.e. no hysteresis or capacitive behavior (highlighted using a red box). On the other

spectrum, the oracle labels several types of CV curves with low scores. These types include

the classic "duck-shape" curves, or curves that are diffusion driven with peaks in the forward

and backward sweep.

Figure 4: Representative CV curves from the dataset ordered and color coded using the BMS
score. CV curves boxed in red will be labelled as targets by the oracle.

Active (Batch)Search for S-shaped CV curves

Active search with batch selection of locations in the design space has been recently studied

and successfully applied to high throughput combinatorial search of material and drug

discovery [10]. We use the state-of-the-art active batch search introduced in Jiang et.al [10],

with a fixed budget of 1000 queries (≈ 6% of exhaustive search with details in Table 1) to the

simulator for batch sizes of b ∈ {1, 100} to actively query our combinatorial search space S.

For batch b = 1, the decision model p(y = +1|D) is updated after each iteration, while for
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batch size b = 100, the decision model is updated after 100 CV measurements from the

simulator and oracle. The batch size reflects the setting of the high throughput analysis, as

often material is prepared in batches.

A label for any given location is assigned based on the application of BMS oracle to

the corresponding CV curve I(v, t) simulated by solving Equations (7) and (8) over 4× 103

discrete time points. We label a CV response as target if its BMS oracle score is in the range

defined by top three percentile ranks 5 6 shown in Figure 4.

Figure 5: Active target detection in the EC mechanism combinatorial search space (see Table 1
for definition of search space). We repeat the active search 20 times, each time starting with
a randomly chosen non-S-shape data point in S.

We assume that our design space is continuous thus a k-nearest neighbor probability

distribution is used a decision model in Bayesian active learning following the approach in [10].

This assumption implies that if we find a target at a certain location in the search space,

k-closest neighbors in the design space also are highly likely to be a target as well.

In Figure 5, we report the average number of targets found in the design space over the

number of label queries for two batch sizes (b = 1, 100) considered 7. Our results demonstrate
5this is a heuristic and can be altered based on application
6Similarly for active search of bi-functional oxygen electrocatalysts, one can assign a material as a target

if both of its OER and ORR experimental CV curves are in the top three percentile ranks of BMS scores.
7The number of target are averaged over a total of 20 active searches each time start with a randomly
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that searching the design space using active learning can be useful, with a near linear target

detection. It can also be noted from Figure 5 for any given number of allowed label queries

to the oracle (or equivalently number of simulation queries to the simulator), the sequential

selection finds marginally more targets than the batch selection b = 100. This observation

is in accordance with Theorem 1 in [10]. Jiang et.al, [10] argue that batch selection suffers

from having to select a batch from the search space with fewer observed responses and

locations. However, from experimental point of view, one need to consider the advantages

and dis-advantages of sequential selection over batch selection.

Conclusion and future work

In conclusion, we defined and evaluated a GP-based oracle for materials discovery using cyclic

voltammetry. Next, we combined the oracle with a state-of-the-art active batch search to

identify condition resulting in the targeted shape of CV curve. We demonstrated a robust high

throughput combinatorial search to find the target responses using only < 6% of total number

of CV experiments from the corresponding exhaustive search (with a discrete sampling of

modest 5 levels per dimension).

This work has implications in identification of characterization conditions where kinetic

knowledge extraction from the cyclic voltammetry can be preformed more effectively. Specifi-

cally, we have illustrated a framework that can be used to identify S-shaped CV curves. Once

S-shaped CV curve is obtained, a foot of the wave analysis can be applied [25] to extract rate

constant for rate determining step, overpotential dependent turn over frequency etc. In this

sense our method has applications in accelerated knowledge extraction, with the application

in screening for target catalysts including the bi-functional alkaline fuel cell catalysts that

motivated this work.

selected sample in the search space
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