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Abstract

Screening  promising  hydrogen  evolution  reaction  (HER)  electrocatalysts  for  water
splitting is crucial for the industrial scalability of sustainable energy storage. As HER
catalysts,  two-dimensional  (2D)  MXenes  are  promising  substitution  materials  for
platinum. Tuning the surface termination and loading a single atom can help improve the
electrocatalytic performance of 2D MXenes. We utilized density functional theory (DFT)
calculations to explore the catalyst activity and thermal stability of 2D single atom-loaded
MXenes with surface terminations. We demonstrate that 21 uninvestigated 2D single-
atom  MXene  catalysts,  among  264  promising  candidates,  show  an  electrocatalytic
activity surpassing that of platinum. Furthermore, machine learning tools predicted the
catalyst activity and thermal stability using elemental properties that are easily available
in chemical data repositories. The combination of DFT calculation and machine learning,
as an advanced research strategy, shows promise for assessing a wide variety of HER
electrocatalysts  and  screening  new  candidates  with  superior  performance  to  metal
platinum.

(Figure for Abstract)
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1. Introduction

Research in the area of sustainable energy (e.g. solar and wind energy) is of continued
and  paramount  importance.1 Harvested  solar  and  wind  energy  needs  to  be  stored
efficiently due to the discontinuous and variable nature of these energy sources.2 Water
splitting can be used to convert the discontinuous solar/wind energy into chemical energy
where hydrogen gas is produced.3 Catalysis of the HER is vital for the overall process
efficiency of water splitting.3 Further, the industrial scalability of hydrogen production
from water splitting requires cost reductions such that the process may compete, on a cost
basis,  with  hydrogen  produced  from  fossil  fuels.4 One  way  to  achieve  process  cost
reductions is to replace the conventional and expensive platinum group metal catalysts
with cheaper HER materials.5

2D MXenes have been widely researched as HER catalysts to replace  platinum group
metals due to their high electrical conductivity (4600 ± 1100 S/cm 6), large active surface
area  (21  m2/g  7),  and  high  stability  in  acidic  electrolytes  (MXenes  can  survive  in
hydrofluoric acid  8). The chemical formula of MXenes is Mn+1XnTx(n=1, 2, 3) with M
being a transition metal, X being C or N, and T representing the surface group (e.g. −O
and −F).9 The tuning of M (alloying), X, and T (surface functionalization) in Mn+1XnTx

has  previously  been  carried  out  to  improve  the  HER activity  of  2D  MXenes.10 For
instance,  via  tuning of  the M in Mn+1XnTx,  Wang et  al.  have used  density  functional
theory (DFT) calculations to screen 2D Mn+1XnO2, M2M′X2O2, and M2M′2X3O2 where M′
represents the transition metal. These authors found 110 unexplored structures with better
HER activity than platinum group metals.11 By tuning the X (from C to B) in Mn+1Xn, Sun
et al. 12 utilized DFT calculations to screen Co/Ni2B2, Pt/Ni2B2, Co2B2, Os/Co2B2, and Mn/
Co2B2 from  271  different  structures  with  these  5  screened  structures  showing  HER
activity surpassing that of noble metal platinum. Wang et al.  13 indicated that surface
functionalization (doping P region elements) improves the HER performance, resulting in
a lower HER Gibbs free energy (|ΔGH| < 0.2 eV, absolute value) compared with that (0.2
eV) without surface functionalization. Kamysbayev et al. 14 have successfully synthesized
MXenes  with  tellurium,  bromine,  selenium,  sulfur,  oxygen,  imido,  chlorine,  and NH
surface  terminations  by  performing  substitution  and  elimination  reactions  in  molten
inorganic salts without studying the HER catalytic activity of these structures. To the best
of  our  knowledge,  2D  MXenes  with  different  terminations  (e.g.  bromine,  imido,
selenium, tellurium, boron, silicon, phosphorus, and NH) have not yet been investigated
for the purposes of HER catalysis. 

Single-atom catalysts immobilized on supports have attracted intense interest due to the
high atom-utilization efficiency (a maximum efficiency of 100% 15) and reduced content
of noble metals (usually less than 1 wt %  16). These materials have improved catalytic
activity  by  enhancing  the  adsorption  of  reaction  intermediates.17 The  MXenes  with
surface terminations  are considered to be excellent electronic conductors and superior
candidates for the support of single-atoms that facilitate the HER.14 For instance, single-
atom ruthenium sites supported on nitrogen-doped Ti3C2Tx show superior HER activity
with an |ΔGH| of 0.039 eV,18 which is closer to zero than that (0.09 eV) of Pt(111).19, 20
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Inspired by the surface functionalization of MXenes and the advantages of single-atom
catalysts,  we  examined  the  HER  activity  and  thermal  stability  of  2D  single  atom-
supported MXenes with surface terminations through DFT calculations to speed up the
exploration  of  promising  new  HER  catalysts.  It  is  indicated  in  this  work  that  21
experimentally uninvestigated 2D single atom-supported MXenes with various surface
terminations showed an electrocatalytic performance surpassing platinum. Additionally,
we identified the important factors that govern the HER activity and thermal stability by
machine  learning,  which  accurately  predicts  the  Gibbs  free  energy  of  hydrogen
adsorption (reflecting activity  20) and the cohesive energy (a proxy for thermal stability
21). These important factors for Gibbs free energy and cohesive energy consist of 31 and
12,  respectively,  fundamental  properties  of  elements  (e.g.  molar  volume  of  surface
element  and the atomic  radius  of  the surface  element).  This  study not  only  provides
promising HER catalysts that may replace noble metal platinum but also gives a machine
learning algorithm for facile and accurate prediction of catalyst performance using only
simple elemental properties.

2. Computational details

2.1. DFT details

DFT calculations were conducted using open-source Quantum-ESPRESSO 22, 23 with the
Perdew–Burke–Ernzerhof  (PBE)  24 exchange-correlation  approximation.  The  nuclei–
electron  interaction  was described using ultrasoft  pseudopotentials.25 Spin polarization
was applied during DFT calculations. A plane wave basis with the energy cutoff of 769
eV was applied. Atomic positions were optimized until the forces were less than 0.01 eV/
Å with the total energy converged to 1×10−4 eV. A k-mesh of 4 × 4 × 1 (for sampling the
Brillouin zone) was utilized.26       For single atoms anchored at the surface of MXenes, a
3×3×1  supercell  was  chosen  with  at  least  18  Å  vacuum  space  to  avoid  artificial
interaction among the periodic units. 

The Gibbs free energy of hydrogen adsorption (ΔGH) was calculated to assess the HER
activities of various catalysts calculated in this study based on the equation:19, 20

∆GH=∆EH+∆ EZPE
H

−T ∆ SH
where ΔEH (eV) is the total energy change before and after hydrogen adsorption, ∆EZPE

H

(eV) represents the change in zero-point energy before and after hydrogen adsorption, T
(K)  is  temperature  and  ΔSH (J·mol−1 K−1)  is  the  difference  in  entropy  between  the
adsorbed hydrogen atom and hydrogen gas. ΔEH is obtained via the following equation:19,

20

∆ EH=(EnH ¿−E slab−
n
2
EH 2)/n

whereEnH ¿ (eV),  Eslab  (eV),  and  EH 2
 (eV)  are  total  energies  (obtained  from  DFT

calculation)  of the catalyst  with adsorbed nH atoms,  the catalyst  without  adsorbed H
atom, and isolated H2 gas molecule, respectively. Furthermore, ∆ E zPE

H  (eV) is expressed
as:19, 20
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∆ EZPE
H

=(EZPEnH
−
n
2
EZPE
H2 ) /n

where  ∆ EZPE
nH  (eV)  and  EZPE

H 2  are  the  zero-point  energies  (are  based  on  the  vibration
frequency  obtained  from  DFT  calculation  27)  of  the  catalyst  with  adsorbed  nH  and
isolated H2 molecule, respectively. Finally, the following equation was used to calculate
ΔSH (J·mol−1 K−1):19, 20

∆ SH≅−
1
2
SH 2

0

where SH 2

0  (J·mol−1 K−1) is the H2 gas entropy under the standard condition.

In terms of cohesive energy, the following equation was used:21, 28

Ecoh=Etot (M n+1 XnT n−S )−(n+1 )Eatm (M )−n Eatm ( X )−n Eatm (T )−Eatm(S)
where Etot (eV) and Eatm (eV) are the total  energy of catalyst  and the energies of free
atoms of M, X, T as well as S (single atom), respectively. The cohesive energy per atom
is further calculated in order to normalize the cohesive energy of different catalysts:21, 28

É=Ecoh/(n+1+n+n+1)

2.2. Machine learning methods

The machine learning calculations were conducted using Anaconda (an open-source Python
distribution platform) with the libraries of TensorFlow and scikit-learn. The machine learning
calculation in this work has two parts: feature engineering and model prediction.  Machine
learning efficiently establishes the correlation between input data and output based on computer
algorithms.29

2.2.1 Feature engineering 

Initially, 49 features (e.g.  the atomic radius of the surface element, the  molar volume of
surface element)  that may influence the  ΔGH and  É were considered (see Table S1 in
supplementary information).30 These 49 features are the primary features of elemental
properties  that  are  easily  available  in  chemical  repositories  or  the  periodic  table  of
elements.11, 12 The Pearson correlation coefficient was then calculated to select the non-
linear dependence features. One of the two features is removed from feature groups when
they show a high Pearson correlation coefficient (> 0.9).12 Then the feature importance of
each feature was obtained using random forestry (RFR) with the unimportant (≤0.001)
features deleted.12 

2.2.2 Model prediction

The features selected in Section 2.2.1 were used as input with the calculated ΔGH and É
data as output (see Table S1 in supplementary information). All catalysts examined in
this work were further randomly separated into the training set and test set with a ratio of
7:3. To avoid a large variation in numerical values, a standardization of the dataset was
applied to ensure that the feature values are centered at the mean value of 0 with the
standard deviation of 1.31 Then we utilized six different machine learning algorithms to
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train the data, including artificial neural network (ANN), RFR, support vector regression
(SVR),  least  absolute  shrinkage and selection  operator  (LASSO),  k-nearest  neighbors
(KNN),  and  Bayesian.12,  32,  33 10-fold  cross-validations  were  conducted  for  all  six
algorithms  to select  the  hyperparameter  using the  training  data.34 Then the algorithm
parameters obtained from the training set were used to predict ΔGH and É in the test set.
The accuracy of each algorithm was assessed by the root mean square error (RMSE). 

3. Results

3.1 Screening potential HER catalysis

Fig. 1. Optimized atomic structure of single atom-loaded MXenes with surface
termination elements and single atom elements. Cr and Mn were not considered for the
single atom position, while C was not considered for the surface termination position. 

The Ti3C2T2 structure, one of most typical and widely studied MXenes, was selected in
this work.35 Based on previous studies,14, 35, 36 the stable configuration of Ti3C2T2 without
the loaded single atoms is illustrated in Fig. S1 (see supplementary information) with all
the functional groups (T= B, NH, O, F, Si, P, S, Cl, Se, Br, Te, and I) located on top of Ti
in the third layer of atoms. To confirm this configuration, we also conducted the DFT
calculations  to  obtain  the  total  energies  for  the  structures  with  surface  termination
elements at fcc, top, hcp, and bridge sites (Fig. S1 in supplementary information).37 The
site with the most negative total energy represents the most stable anchoring site. All
surface  elements  studied  are  most  stable  at  fcc  anchoring  sites  (Table  S1  in
supplementary information).  Further,  previous studies  38,  39 have demonstrated that the
single atom loaded on Ti3C2T2 is located at the top of the C atom in the third atomic layer,
and therefore that is what shown in Fig. 1. Cr and Mn were not considered for the single
atom position due to the catalytically inactive nature of these two elements and the high
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difficulty  in  structure  convergence  during  the  DFT calculations.40 Finally,  12  surface
termination element candidates coupled with the 22 single atom candidates lead to a total
of 264 different structures.

|ΔGH|  for hydrogen adsorption  is a well-established descriptor for the HER activity of
catalysts,41 thus  H  adsorption  on  the  different  structures  studied  in  this  work  was
examined using DFT computations. A highly negative ΔGH corresponds to difficulty in
H2 desorption with a highly positive ΔGH reflecting a large barrier to the electrochemical
reduction reaction.20 In literature, a catalyst is considered as an excellent candidate if it
shows a value of |ΔGH| smaller than 0.2 eV.42 |ΔGH| of Pt(111) is 0.09 eV.20 The |ΔGH|
values for Ti3C2T2 (T = B, O, I, P, S, Si, Br, F, Cl, Se, Te, and NH) without single atom
loading are all above 0.2 eV with the smallest |ΔGH| value of 0.5 eV for Ti3C2Si2 and the
largest |ΔGH| value of 3.4 eV for Ti3C2F2 (see Fig. S2 in supplementary information). The
variation of surface termination of 2D MXenes resulted in a change in the |ΔGH| value,
further demonstrating the importance of surface tuning of 2D MXenes for HER catalysis. 

As indicated  in  the introduction,  2D MXenes could be promising supports  for  single
atoms. Through single-atom loading, the MXenes and dopant may produce more active-
sites and thus enhance their HER performance.43 Previous studies 18, 28, 43, 44 predominantly
focused on the calculation of |ΔGH|  values of oxygen-terminated MXenes with single-
atom loading as HER catalysts. However, we considered the combined effect of the 12
different surface terminations and single atom loading in the current study. Fig. 2 gives
the |ΔGH|  values of 264 catalysts  calculated  in this  work.  After the loading of single
atoms, 61 promising candidates among 264 calculated structures show excellent HER
catalyst  activity  with |ΔGH|  values  less  than  0.2 eV.  Further,  21 structures  may have
catalytic  activity  surpassing  that  of  Pt  (111)  with  |ΔGH|  values  less  than  0.09  eV.
Importantly, these 21 structures have not previously been reported as HER catalysts (to
the  best  of  our  knowledge)  –  these  include:  Ti3C2B2−Re,  Ti3C2B2−Os,  Ti3C2B2−Ir,
Ti3C2O2−Re,  Ti3C2O2−Ir,  Ti3C2I2−Ir,  Ti3C2P2−Hf,  Ti3C2S2−Ti,  Ti3C2S2−Tc,  Ti3C2S2−Ir,
Ti3C2Si2−W,  Ti3C2Si2−Re,  Ti3C2Br2−Cu,  Ti3C2Br2−Pt,  Ti3C2F2−Ti,  Ti3C2F2−Fe,
Ti3C2F2−Ir, Ti3C2Cl2−Cu, Ti3C2Cl2−Pt, Ti3C2Se2−Au, and Ti3C2Te2−Nb.
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Fig. 2 The Gibbs free energy (ΔGH) distributions of hydrogen adsorbed on different 2D
single atom-loaded MXenes. The upper and lower dashed lines in Fig. 2 correspond to

the values of 0.2 eV and −0.2 eV, respectively.

The experimental feasibility (or the thermal stability) of DFT calculated 2D materials is
usually  evaluated  by  its  cohesive  energy  per  atom  with  a  higher  absolute  value
corresponding to higher stability.21 The absolute cohesive energies for all the structures
(264 in total) studied in this work are in the range of 5.9 to 8 eV/atom (Fig. 3), which are
higher  than  those  of  synthesized  borophene  sheet  (5.81  eV/atom)  and  MoS2 (5.02
eV/atom),45 indicating that all studied structures in this work show higher experimental
feasibility. The variation in cohesive energies of the MXenes with and without (see Fig.
S3 in supplementary information) single atoms are less than 0.2 eV, indicating that the
loading of the single atom does not significantly influence the thermal stability of the
MXenes. As shown in Fig. 3, the O (~7.9 eV) and F (~7.1 eV) terminated structures show
higher  thermal  stability,  whereas  the  I  terminated  structures  have  the  lowest  thermal
stability (~5.9 eV). This coincides with the fact that the experimentally prepared MXenes
are generally terminated with O and F groups 46 and provides theoretical support to this
fact.  Notably,  the thermal  stability (Fig. 4) of the 21 promising HER candidates with
catalytic activity surpassing Pt (111) are within the range spanning Ti3C2O2−Re (7.9 eV)
and Ti3C2I2−Ir (6.0 eV), showing the highest and lowest stability, respectively. 
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Fig. 3 Cohesive energy distributions of hydrogen adsorbed on different 2D single atom-
loaded MXenes.

Fig. 4 The Gibbs free energy and cohesive energy of 21 promising catalysts (Ti3C2Tx with
single atom loaded) which may show better catalytic activity with respect to Pt(111). 
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The change of ΔGH and  É with the variation of surface termination and single atom
choice cannot be expressed by a simple linear relationship. The key factors that influence
the ΔGH and É values of the 2D single atom-loaded MXenes need to be determined. To
address  this  issue,  a  quantitative  exploration  of  as-yet  unknown  data  correlations  is
conducted via machine learning, which is becoming increasingly popular in the catalyst
field.47

3.2 Feature engineering and model prediction by machine learning 

The unknown correlation between inputs (various features) and outputs (ΔGH and  É)
established  by  machine  learning  was  desirable  for  further  ΔGH and  É predictions.48

Additionally, recent investigations in the catalyst field have indicated that the screening
of  promising  catalysts  could  be  accelerated  by  machine-learning.49 Unpromising
candidates  can  be  excluded  by  machine  learning,  thus  reducing  the  number  of  DFT
calculations.50

The quality of the various numerical features of different catalysts determines the model
prediction of the machine learning algorithm. The published studies  51-53 about machine
learning  prediction  in  the  catalyst  field  predominantly  tended  to  use the  electronic
features  of  active  surface  atoms,  including  d-band  characteristics  and  Bader  charge
transfer,  which  require  further  non-self-consistent  field  calculation.  However,  this
requires ab initio level computational cost to prepare these features. Consequently, it is
strongly  desirable  to  develop  machine  learning  algorithms that  only  utilize  readily
available  data  (e.g.  easily  found  elemental  properties)  without  using  DFT-obtained
features to achieve an efficient search over the broad catalyst group. In the meantime, the
use of these more easily found features should not result in a significant loss in prediction
accuracy. 

In this work,  49 elemental properties (see Table S2 in the supplementary information)
that are easily available in chemical repositories or the periodic table of elements were
selected without using DFT-obtained features.11, 12 Based on the correlation map of the 49
features  by  Pearson  correlation  coefficient  (see  Fig.  S4  in  the  supplementary
information),  17 features were removed from the feature group due to a high level of
linear correlation. After that, 32 features remained, including the ionic radius of a single
atom (labeled as IA), ionic radius of surface group element (IG), atom number of single
atom (AA), first ionization potential of single atom (FA), second ionization potential of
single atom (SA), third ionization potential of single atom (TA), first ionization potential
of surface group element (FG), electron affinities of single atom (EA), electron affinities
of  surface element  (EG), boiling point  of single atom (BA), boiling point  of surface
element (BG), melting point of single atom (MA), Pauling electronegativity of single
atom (PA),  atomic  radius  of  single  atom  (AR),  charge  transfer  of  single  atom (CA),
charge transfer of surface element (CG), crystal radius of single atom (CR), crystal radius
of surface element (CS), atomic mass of surface element (AS), covalent radius of single
atom (CO), molar volume of single atom (MV), molar volume of surface element (MS),
group number in periodic table for single atom (GS), group number in periodic table for
surface  element  (GG),  nuclear  spin  of  single  atom in  (NA),  nuclear  spin  of  surface
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element (NG), thermal neutron capture of single atom (TA),  thermal neutron capture of
surface element (TG),  effective nuclear charge of single atom at different orbit  (EE),
work  function  of  single  atom  (WA),  thermal  conductivity  of  single  atom  at  room
temperature (TC), and thermal conductivity of surface element at room temperature (TS).

The importance of these 32 features for ΔGH and É predictions are given in Fig. 5 (a and
b). Fig. 5 (a) shows that the  ΔGH prediction is dependent on features of both surface
elements and single atoms. This further indicates that the synergistic effect between the
surface termination and single atom loading can affect the HER catalytic reactivity. This
is  due  to  the  important  role  of  surface  groups  in  electron  transfer  and  the  affected
intermediate adsorption and reaction kinetics as a result of surface functionalization.38 For
É prediction, the low importance features were further dropped with only 12 features (IG,
FG, EG, BG, CG, CS, AS, MS, GG, NG, TG, and TS) kept to maintain the importance
and precision simultaneously. Moreover, these 12 features kept for  É prediction are all
the  properties  of  surface  termination  elements,  indicating  that  the  cohesive  energy is
predominantly dependent on the properties of surface termination elements.  This also
validates  our proposal  stated in the introduction to study the surface tuning effect  of
MXenes. 

Fig. 5 Feature importance of 32 different features used for ΔGH and É predictions.

Machine  learning algorithms  were  employed to  predict  ΔGH and  É,  including  ANN,
RFR, SVR, LASSO, KNN, and Bayesian. Fig. 6 (a and b) presents the ANN-predicted
values and DFT-calculated values with those values for other  algorithms given in the
supplementary information (Fig. S5−9). The testing set using ANN shows the RMSE of
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0.158 eV and 0.04 eV for two-value predictions. ANN shows the lowest RMSE in the
ΔGH prediction,  while  RFR  and  KNN  have  the  lowest  RMSE  (0.02  eV)  in  the  É
prediction (Fig. 6 (c and d)).  ANN has many layers with each layer  showing several
neurons which would process the cumulative input from neurons of a previous layer via
an  activation  function  (a  sigmoid  function  in  this  work).54 A  gradient  descent
optimization algorithm is used to systematically  tune the weights connecting different
neurons  until  convergence.  The small  variations  in  input  can  be  responded by ANN
without causing a change in output, thus ANN is more fault-tolerant.55 We used the ANN
consisting of two hidden layers with 3 and 3 neurons (learning rate is 0.005 with training
epoch of 250) which shows the smallest prediction error (∼0.158 eV) in ΔGH prediction.
For É prediction, though only 12 important features were kept, it is still achieved by an
amazing low error (0.02 eV) using algorithms of RFR (the number of trees is 200 and the
minimum number of samples required to split is 4) and KNN (the number of neighbors is
7). 

Fig. 6 The performance of ANN used for the prediction of ΔGH (a) and É (b), as well as
the RMSE for different algorithms used for prediction of ΔGH (c) and É (d).

It  has  now  been  demonstrated  that,  only  using  elemental  properties  that  are  readily
available,   we are able to obtain a similar  precision (RMSE of 0.158 eV) with those
studies (0.15 eV,12 0.14 eV,11 and 0.17 eV 56) using the electronic features (e.g. d band
center and Bader charge transfer) that need further non-self-consistent field calculation
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associated with high computational cost. It should be noted that the cohesive energy of
the single atom-loaded MXenes has not previously been predicted (to the best of our
knowledge)  by  machine  learning  with  such  a  low  RMSE  (0.02  eV).  The  direct
comparison of the computational  speeds for DFT calculation and machine learning is
hard. An easy structural optimization (e.g. C2Br2−Pt) using DFT calculation would take
131.2 core-hour, while the slowest machine learning algorithm (that is ANN) would take
0.05 core-hour to achieve the model prediction of ΔGH. Because of the faster calculation
speed of machine learning in comparison to DFT calculation, the algorithms described in
this work may help future researchers quickly screen single atom-loaded MXenes HER
catalysts at the initial design stage. Then DFT calculation and laboratory experiments can
be used to further screen the promising catalysts identified via machine learning. 

4. Conclusions

The HER electrocatalytic performance of 2D MXenes can be controlled via the tuning of
both surface termination and the loading of single atoms. Via DFT calculations, we have
screened 61 ideal HER catalysts from 264 candidates of two-dimensional single atom-
supported MXenes with terminations that may be experimentally prepared. Among the
most promising HER catalysts, 21 showed better HER activity (with the |ΔGH| values less
than 0.09 eV) than that of Pt. 

The HER electrocatalytic performance and thermal stability of the catalysts studied in
this  work were further  supported by machine  learning algorithms (ANN, RFR, SVR,
LASSO,  KNN,  and  Bayesian).  Most  importantly, we  present  a  way  to  provide  a
comparable precision (RMSE values for the activity and thermal stability predictions are
0.158 eV and 0.02 eV, respectively) to the published machine learning works by avoiding
their adoption of complex electronic features and the associated high computational cost,
and  by  only  using  features  that  are  easily  available  in  chemical  repositories.  The
algorithms used in this work are expected to help future researchers quickly screen single
atom loaded MXenes HER catalysts at the initial design stage in a cost-effective manner. 
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