Tunable Boc Modification of Lignin and Its Impact on Microbial Degradation Rate

Liuqun Gu,* †§, Meifeng Wang, ‡Hui Li, ‡ Kai Ni Teh,§ Yiqun Li*,‡ and Ye Liu*§

§ Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A-STAR); 4 Fusionopolis Way, Innovis Building, 138635, Singapore E-mail: ye-liu@imre.a-star.edu.sg

† Department of Biomedical Engineering, Jinan University; #601, Huangpudadaoxi, Guangzhou, China E-mail: guliqun@jnu.edu.cn or guliqun@yahoo.com

‡ Department of Chemistry, Jinan University; #601, Huangpudadaoxi, Guangzhou, China E-mail: tlyq@jnu.edu.cn

KEYWORDS: Lignin, Modification, di-tert-butyl decarbonate, Reactive filler, Crosslinker, Microbial degradation.

ABSTRACT: A new type of modified lignin, lignin-p-Boc was obtained through reaction with di-tert-butyl dicarbonate (Boc₂O) in aqueous media which was catalyzed using 4-dimethylaminopyridine (DMAP). Boc modification occurred regardless of types of lignin, was tunable, and proceeded well in recovering lignin at high purity from sodium lignosulfonate (a common byproduct from pulping industry; lignin content: 60%). Further reactivity of Lignin-p-
BOC was demonstrated as a potential reactive filler in green plastic and as potential crosslinker in design of bioreposable composite polymeric implants. Furthermore, the effects of the modification on the breakdown rate of alkali lignin by microbial (white rot fungus *P. chrysosporium*) was investigated, and the results showed that the modification obviously decreased the breakdown rate.

INTRODUCTION

Lignin is one of most abundant biopolymers and the most with rich aromatic components in nature. However, for utilization in industry it is much lagging behind than other biopolymers such as cellulose.\(^1\)\(^2\) One of main reasons is due to its random designed structure by nature; and lignin structure can be different after separation as a waste from the same bio-resource via different processes in pulping plants,\(^3\) which adds more difficulty for quality control in its utilization.\(^3\)\(^4\) Not surprisingly, the employment of lignin as macromolecule filler attracted a lot of attention because the negative effect of its less defined structure could be minimized. Especially the use of lignin as reinforcement in biodegradable thermoplastic was extensively explored due to the recent public concern to environmental impact of conventional plastic.\(^5\)

But chemically lignin is very polar composing of significant amount of phenolic and aliphatic hydroxyl group as well as some acidic functional groups, which would lead to incompatible or immiscible composite when mixing with non-polar thermoplastic.\(^6\)\(^7\) A common approach to increase the hydrophobicity is to modify lignin by masking the free hydroxyls (Scheme 1). The most widely used method is to protect hydroxyl groups of lignin with anhydrides\(^8\)\(^9\), silyl reagents\(^10\) or fatty acids\(^11\)\(^-\)\(^14\) forming new ester bond which is less polar. The advantage is simple and cost can be very cheap; another method is to modify lignin with “graft to” or “graft from” strategies
forming star polymers. For example: lignin-g-PLA, rosin-lignin copolymer and hydroxypropyl lignin (hydropropyl group with certain length). The advantage is longer hydrophobic chain; however it can be a difficulty to remove short-chain polymers after grafting and the resulted cost might hamper the potential application. General methods for modification of lignin in low cost for versatile utilization are still desirable.

Scheme 1. Common Lignin Modification Strategies and Our New Reactive One

Common Lignin Modification Strategies

<table>
<thead>
<tr>
<th>Modification Strategy</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small molecules modification strategy</td>
<td>Simple and cheap</td>
<td>Low Max lignin% in miscible composite</td>
</tr>
<tr>
<td>Grafting modification strategy</td>
<td>Relatively higher Max lignin% in miscible composite</td>
<td>Expensive, and impurities of monomers/polymer were difficult to be fully removed</td>
</tr>
<tr>
<td>Direct coupling strategy</td>
<td>Chains on lignin were controllable</td>
<td>Usually reaction conditions were critical and costs were expensive</td>
</tr>
<tr>
<td>Our new reactive modification strategy</td>
<td>Cheap and chains on lignin were controllable</td>
<td>Flammable byproducts could be removed during reactive extrusion</td>
</tr>
</tbody>
</table>

Common Lignin Modification Strategies Diagram

- **Small molecules modification strategy**
 - **Pros:** Simple and cheap
 - **Cons:** Low Max lignin% in miscible composite

- **Grafting modification strategy**
 - **Pros:** Relatively higher Max lignin% in miscible composite
 - **Cons:** Expensive, and impurities of monomers/polymer were difficult to be fully removed

- **Direct coupling strategy**
 - **Pros:** Chains on lignin were controllable
 - **Cons:** Usually reaction conditions were critical and costs were expensive

- **Our new reactive modification strategy**
 - **Pros:** Cheap and chains on lignin were controllable
 - **Cons:** Flammable byproducts could be removed during reactive extrusion
Recently, tosylated lignin was synthesized in an aqueous medium in the absence of any organic solvent; it is more reactive than unmodified lignin and shows potential for several applications. Inspired by this work, here we develop a new practical method to modify lignin with di-tert-butyl dicarbonate (Boc₂O) without using any organic solvents. The degree of the modification can be tuned by adjusting the loading of catalyst and the amount of Boc₂O used. The Boc modified lignin shows more reactive than unmodified lignin, which is useful for new green composite via reactive blending with thermopolyesters because of the possible newly formed O-Boc/cyclic carbonates group on modified lignin (Scheme 2). In addition, under optimized conditions various aromatic hydroxyl groups could all be converted into single syringyl type ones in basic aqueous solution which increases the regularity of lignin in structure. This method was also demonstrated to be very efficient in recovering lignin in high purity from industrial lignosulfonate lignin (lignin content: 60%). Further evaluation of the microbial (white rot fungus P. chrysosporium) breakdown rate with both alkali lignin and alkali lignin-p-BOC and results indicated that the presence of Boc groups in lignin obviously decreased the rate of degradation.

Scheme 2. Structure of Lignin and a Postulated Modified Structure of Lignin

Di-tert-butyl dicarbonate (Boc₂O) is well known as a reagent for protection of amines and alcohols in organic synthesis in the presence of base catalyst. In addition, it is also used as a dehydrating agent in reaction with carboxylic acids. A recent revisited reaction of alcohols with Boc₂O in the presence of 4-dimethylaminopyridine (DMAP) indicated that the pKa of the alcohols
strongly affect formation of products (symmetrical carbonates or O-Boc) and the reaction rate; More acidic alcohol reacts faster with Boc₂O. Inspired by this finding, we envisage that the acidic hydroxyl (phenolic) and carboxylic acid groups which are of much importance to the polar property of lignin could be easily protected with Boc₂O (Scheme 2). Furthermore, 1,2-diols or 1,3-diols might possibly be converted into cyclic carbonates according to the literature (Scheme 2). In a result, the modified lignin would be more hydrophobic.

EXPERIMENTAL SECTION

Materials. Alkaline lignin and sulfite lignin were all purchased from Tokyo Chemical Industry Co., Ltd. (TCI), Singapore and Shanghai. The raw sulfite lignin (purity: around 60%) was purchased from Shaanxi New Leader Enterprise; Di-tert-butyl dicarbonate (Boc₂O) was purchased from Sigma-Aldrich and Scientific Resource Pte Ltd (Alfa-Aesar) as well as Aladdin, Shanghai. All other common chemicals were purchased either from Sigma-Aldrich, Singapore, Aladdin or Macklin, China. Double beam TU-1901 UV–visible spectrophotometer was from Beijing Persee General Instrument Ltd. The white rot fungus P. chrysosporium (ATCC 24725) was brought from Guangdong Culture Collection Center.

Characterization of Lignin. All lignin samples were freeze-dried under reduced pressure before use for FTIR, NMR analysis. For reactions with Boc₂O, lignin was used without any pretreatment from bottle.

³¹P NMR Spectroscopy. Quantitive ³¹P NMR Spectra of all lignin were obtained according to published method. Alkaline lignin, sulfite lignin and all lignin-p-BOCs were freeze-dried under reduced pressure for 2 days before measurement. General method: To a dry vial (1 mL) with 30 mg lignin sample was added a solvent mixture of anhydrous pyridine and deuterated chloroform (0.5 mL in 1.6/1 V/V), then phosphitylating reagent (2-chloro-4,4,5,5-tetramethyl-1,3,2-
dioxaphospholane (TMDP), 50 μL), cyclohexanol (100 μL, 10.85 mg in a solvent mixture of anhydrous pyridine and deuterated chloroform in 1.6/1 V/V) as internal standard, and chromium (III) acetylacetonate solution (100 μL, 5.0 mg in a solvent mixture of anhydrous pyridine and deuterated chloroform in 1.6/1 V/V) as a relaxation reagent. Finally the solution was made up to 1 mL with solvent mixture of anhydrous pyridine and deuterated chloroform (in 1.6/1 V/V), then the vial was sealed tightly and the solution was shaken for 2 hours to ensure thorough mixing. It was transferred into a dry NMR tube for subsequent analysis. All experiments were carried out on a JEOL 500 MHz or a Bruker 400 MHz spectrometer. 31P NMR chemical shifts were referenced with respect to water signal at 132.2 or cyclohexanol signal at 145.2. Peak of phosphitylating reagent TMDP was at 176.0. The content of hydroxyl groups for phosphitylating reagent was obtained by integration of the following spectral regions: aliphatic hydroxyls (150.3 - 145.3 ppm), condensed phenolic units (144.6 – 141.2 ppm), syringyl phenolic units (143.3 - 142.0 ppm), guaiacyl phenolic hydroxyls (140.5 -138.6 ppm), p-hydroxyphenolic units (138.5 – 137.3 ppm) and carboxylic acids (135.9 – 134.0 ppm).

1H NMR Spectroscopy. Quantitive 1H NMR Spectra of all lignin were obtained with pentafluorobenzaldehyde as internal standard. All experiments were carried out on a JEOL 500 MHz or Bruker 300 MHz for 1024 scans. 40 mg pentafluorobenzaldehyde (0.2 mmol) was added into 10 mL d_6-DMSO in a vial. The solution was shaken for a thorough mixing and then kept for use (Standard A). To a vial (1 mL) with 10 mg lignin sample was added Standard A (0.5 mL), then the solution was shaken for 2 hours to ensure thorough mixing. It was transferred into a NMR tube for subsequent analysis.

Boc Protection of Lignin. General procedure A: A mixture of 2N NaOH (5 mL), alkali lignin (1 g) and Boc$_2$O (2.5 mL or other amount) with a stirring bar in a 20 mL vial was placed into an
ice-water bath, then DMAP (339 mg or 100 mg) was added and the mixture was warmed to room
temperature after 20 mins. The reaction continued to be stirred at room temperature for 3 hours or
1 day. After then, 2 N HCl was added drop by drop to adjust the pH value to about 2. The modified
lignin was isolated by centrifugation and subsequent washing (3 × 20 mL) deionized water. The
isolated product was freeze-dried under reduced pressure to give dry sample for characterization.

General procedure B: A mixture of MeCN (5 mL), alkali lignin (1 g) and Boc₂O (2.5 mL) with a
stirring bar in a 20 mL vial was placed into an ice-water bath, then DMAP (339 mg) was added
and the mixture was warmed to room temperature after 20 mins. The reaction continued to be
stirred at room temperature for 1 day. The solvent was removed by air flowing and the latter
workup procedure was same to that of the above General procedure A.

Demonstration as potential reactive filler by simple mixing of lignin-p-BOC and
polyethylene glycol. A mixture of lignin-p-BOC (0.25 g) and polyethylene glycol (Mw = 2000 or
400) (1 mL) was stirred at 60 °C for 1 hour; the mixture became homogeneous after reaction. Then
the mixture was cooled to room temperature and was precipitated in hexane/ethyl acetate solution.
Pale yellow powder was obtained as a product lignin-p-PEG in 0.197 g (PEG 400: 0.185 g) and
further dried in vaccum for hours (molar ratio 1/1 to total hydroxyls) before NMR characterization.

^1^HNMR data of both products indicated PEG reacted with lignin-p-BOC and considerate amount
of PEG chains were attached onto lignin core successfully.

Preparation of hydropropyl alkaline lignin. The preparation procedure is according to
reported procedure^8b^. ^3^P NMR result indicated that almost all the aromatic hydroxyls were masked
with hydropropyl groups (total alphatic OH: 3.80 mmol/g).

Demonstration as potential reactive filler with BOC protection of hydropropyl alkaline
lignin. Boc Modification reactions in acetonitrile and in NaOH solution were similar to General
procedure A and General procedure B with Boc₂O (molar ratio 1/1 to total hydroxyls) in the presence of 10 wt% DMAP for 1d.

FT-IR Analysis. Fourier transform infrared spectra were obtained with powdered solid lignin on KBr disks. Spectra were collected from 4000 to 400 (or 600) cm\(^{-1}\) with 16 cans. A typical BOC modified lignin:
- OH, 3000 - 3700 cm\(^{-1}\);
- C-H stretch, 2976 and 2940 cm\(^{-1}\);
- C=C stretch, 2050 – 2070 cm\(^{-1}\);
- C=O (bicarbonate) stretch, 1755, 1650 (conjugated) cm\(^{-1}\);
- C=C (aromatic) bending and ring puckering, 1566 and 1511 cm\(^{-1}\);
- C-O vibration, 1278, 1257, 1215, 1145, 1145, 1038 cm\(^{-1}\).

General methods for microbial degradation of alkali lignin and lignin-p-BOC 2. A new batch of BOC modified lignin was synthesized for microbial degradation testing according to the same procedure in preparation of lignin-p-BOC 2. Many microorganisms are capable of degrading lignin and one of the best characterized species is white-rot fungi. This strain we selected is *Phanerochaete chrysosporium* (*P. chrysosporium*). The culture was maintained on malt agar slants at 4°C, and then transferred to malt agar plates and cultured at 39°C for 7 days. The spores on the agar were scraped and suspended in the sterile water. The spore concentration was determined by measuring absorbance at 650 nm and adjusted to 5.0 × 10\(^6\) spores/ml. Lignin degradation was studied in 50 mL Kirk’s nitrogen limitation cultures without veratryl alcohol adding in 200-ml Erlenmeyer flasks. Lignin was added as a solution in 1 ml of 10% DMSO to give a concentration of 1 g/L. 5 ml of spore suspension was added to each flask, and the pH was adjusted to 4.5 with H\(_3\)PO\(_4\). Lignin degradation were carried out at 39°C for 18 days and flushed with oxygen every day. Control groups contained no spores were incubated like spore-containing cultures. All experiments were carried out in triplicates. Absorption of solution of lignin was measured with double beam UV–visible spectrophotometer. 0.5 ml samples were removed from the cultures every day and then sonicated for 30s. 4.5 ml of 0.55% (W/V) NaOH was added to the culture in order to
precipitate mycelia and protein. Then the mixture was centrifuged. The supernatant was diluted to proper concentration and measured at 280 nm.

RESULTS AND DISCUSSION

The Effect of Solvent and Loading of DMAP on Total Hydroxyls of Alkali Lignin. Initially a reaction of alkali lignin and Boc₂O in acetonitrile with catalytic amount of DMAP was performed at room temperature for 1 day (Table 1). Boc modification of lignin occurred as expected smoothly by comparison of ¹H NMR/FT-IR spectra of commercial lignin and lignin-p-BOC after modification.²⁶ Quantitative ³¹P NMR of purified lignin-p-BOC 1 indicated after modification the content of the total free hydroxyls and carboxylic acids dropped to 41% (2.53 mmol/g, entry 1, Table 1) of that of commercial alkali lignin (6.12 mmol/g, Figure 1). Since poor solubility of lignin in acetonitrile was observed, a reaction in NaOH solution was tested. Remarkable increase on reaction efficiency was achieved and the units of total free OH of lignin-p-BOC 2 were reduced to 10% (0.63 mmol/g, entry 2, Table 1) of the original one. Reaction rate for Boc protection of lignin was very fast at room temperature and in 3 hours the content of free OH for lignin-p-BOC 3 was comparable with lignin-p-BOC 2 that achieved in 1 day (11% (0.67 mmol/g) VS 10% (0.63 mmol/g)) of original one, entries 2 and 3, Table 1).

Table 1. Boc modification of alkali lignin with Boc₂O²⁶

<table>
<thead>
<tr>
<th>Entries</th>
<th>Solvent (Boc)₂O (mL)</th>
<th>DMAP (mg)</th>
<th>Lignin-p-BOC (g) (Number)</th>
<th>Aliphatic OH (mmol/g) (%)c</th>
<th>Aromatic OH (mmol/g) (%)c</th>
<th>Carboxylic acid (mmol/g) (%)c</th>
<th>Total free OH and acid (mmol/g) (%)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MeCN 2.5</td>
<td>339</td>
<td>0.79 (1)</td>
<td>0.75 (64)</td>
<td>1.50 (54)</td>
<td>0.28 (64)</td>
<td>2.53 (59)</td>
</tr>
<tr>
<td>2</td>
<td>NaOH (2N) 2.5</td>
<td>339</td>
<td>1.08 (2)</td>
<td>0.33 (84)</td>
<td>0.30 (91)</td>
<td>0.32 (59)</td>
<td>0.95 (84)</td>
</tr>
<tr>
<td></td>
<td>NaOH (2N)</td>
<td>2.5</td>
<td>339</td>
<td>1.13 (3)</td>
<td>0.46</td>
<td>0.21</td>
<td>0.35</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>-----</td>
<td>-----</td>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>3</td>
<td>2.5</td>
<td>0</td>
<td>0.21</td>
<td>0.38 (88)</td>
<td>0.18</td>
<td>1.95</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.5</td>
<td>339</td>
<td>1.08 (4)</td>
<td>1.39</td>
<td>0.37 (82)</td>
<td>0.24 (77)</td>
<td>1.12</td>
</tr>
<tr>
<td>5</td>
<td>1.4</td>
<td>339</td>
<td>0.88 (5)</td>
<td>0.37 (84)</td>
<td>0.24 (77)</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2.5</td>
<td>100</td>
<td>1.21 (6)</td>
<td>0.53 (84)</td>
<td>0.31 (84)</td>
<td>0.31 (80)</td>
<td>1.35</td>
</tr>
<tr>
<td>7</td>
<td>0.5</td>
<td>50</td>
<td>0.97 (13)</td>
<td>0.64 (74)</td>
<td>0.36 (54)</td>
<td>2.27</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Alkali</td>
<td>2.11</td>
<td>3.23</td>
<td>0.78</td>
<td>6.12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Reaction conditions: DMAP (339 mg) was added into a mixture of 2 N NaOH (5 mL), alkali lignin (1 g) and Boc₂O (2.5 mL) with a stirring bar in a 20 mL vial. The solution was stirred at rt for 1 d; *b*: The reaction was performed at rt for 3 hrs; *c*: Conversion percent of hydroxyls or acid. A control reaction of lignin and Boc₂O in the absence of DMAP as a catalyst was also examined, and the result indicated NaOH solution could also slightly promote Boc protection of lignin, but in a much lower efficiency on masking of aliphatic hydroxyls (units of free aliphatic hydroxyls: 66% (1.39 mmol/g) VS 16% (0.33 mmol/g) of original one, entries 2 and 4, Table 1). In concern of cost, reactions with low amount of Boc₂O and DMAP were also examined, comparable concentration of residual hydroxyls (18% VS 16%, entries 2 and 5, Table 1) for lignin-p-BOCs was observed, however a lower yield was achieved with equivalent amount of Boc₂O. The reaction yield could be maintained well in the presence of 10 wt% DMAP meanwhile the concentration of free hydroxyls on new product slightly increased (17% VS 10%, entries 2 and 6, Table 1).
Figure 1. Quantitative 31P NMR Spectra and signal assignment of commercial alkali lignin and alkali lignin-p-BOC 2 - 4 in CDCl$_3$/pyridine.

The Effect of Solvent and Loading of DMAP on Total Hydroxyls of Sulfite Lignin. In current market, lignin byproducts (lignosulfonate) from sulfite process for chemical pulping of wood are dominant although the kraft process is the operation pre-eminently employed.$^{3, 27}$ hence to develop an economic method to utilize sodium lignosulfonate is in great need. Subsequently, Boc modification of sodium lignosulfonate was also optimized similarly and generally similar trend was observed (Table 2). However, lower overall yields were achieved probably because of their better solubility in water. Interestingly, with this method, lignin-p-BOC can be recovered easily on water from industrial sodium lignosulfonate lignin (lignin purity: 60%)28 without additional NaOH base because the inside base promoted the reaction (Entry 7, Table 2). This
process not only combines the modification and pre-purification in one pot, but also reuses the waste impurity29 as a base.

![Image](image1)

![Image](image2)

Figure 2. Quantitative \(^{31}\text{P}\) NMR spectra and signal assignment of commercial sulfite lignin and sulfite lignin-p-BOC 8 - 10 in CDCl\textsubscript{3}/pyridine.

The Effect of Reaction Conditions on Selective Masking of Lignin. The presence of catalytic DMAP accelerated BOC modification of aliphatic OH groups (units of free aliphatic hydroxyls: 16% (0.33 mmol/g) VS 66% (1.39 mmol/g) of original one, entries 2 and 4, Table 1), meanwhile NaOH showed its preference in modification of aromatic OH groups (units of free aliphatic hydroxyls: 66% (1.39 mmol/g) VS aromatic hydroxyls 12% (0.38 mmol/g) of original one, entry 4, Table 1 and Figure 1). The aromatic hydroxyls were masked in faster rate probably because they are more acidic and the deprotonation process is fast. Interestingly, all the aromatic hydroxyls could selectively either be protected by Boc or be converted into syringyl OH when the Boc
modification reaction was performed in NaOH solution for 1 day in the absence of DMAP as a catalyst (lignin-p-BOCs 4 and 10, Figure 2), which is not observed in other methods for modification of lignin probably generated by Friedel-Crafts alkylation reaction of guaiacyl part (2-substituted phenolic moiety) with Boc₂O (a known chemistry under similar conditions). The existence of DMAP had negative effect on this selective transformation especially when reaction time was prolonged, although it benefited Boc protection of aliphatic OH.

Table 2. BOC modification of sulfite lignin with BOC₂O.

<table>
<thead>
<tr>
<th>Entries</th>
<th>Solvent</th>
<th>(Boc)₂O (mL)</th>
<th>DMAP (mg)</th>
<th>Lignin-p-BOC (g) (Number)</th>
<th>Aliphatic OH (mmol/g) (%)<sup>d</sup></th>
<th>Aromatic OH (mmol/g) (%)<sup>d</sup></th>
<th>Carboxylic acid (mmol/g) (%)<sup>d</sup></th>
<th>Total free OH and acid (mmol/g) (%)<sup>d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MeCN</td>
<td>2.5</td>
<td>339</td>
<td>0.23 (7)</td>
<td>0.79 (83)</td>
<td>0.43 (17)</td>
<td>0.12</td>
<td>1.33 (75)</td>
</tr>
<tr>
<td>2</td>
<td>NaOH (2N)</td>
<td>2.5</td>
<td>339</td>
<td>0.48 (8)</td>
<td>0.55 (88)</td>
<td>0.19 (63)</td>
<td>0.03</td>
<td>0.77 (85)</td>
</tr>
<tr>
<td>3<sup>b</sup></td>
<td>NaOH (2N)</td>
<td>2.5</td>
<td>339</td>
<td>0.57 (9)</td>
<td>0.88 (81)</td>
<td>0.17 (67)</td>
<td>0.12</td>
<td>1.17 (78)</td>
</tr>
<tr>
<td>4</td>
<td>NaOH (2N)</td>
<td>2.5</td>
<td>0</td>
<td>0.19 (10)</td>
<td>1.98 (57)</td>
<td>0.26 (50)</td>
<td>0.13</td>
<td>2.37 (55)</td>
</tr>
<tr>
<td>5</td>
<td>NaOH (2N)</td>
<td>1.2</td>
<td>339</td>
<td>0.57 (11)</td>
<td>0.69 (85)</td>
<td>0.27 (48)</td>
<td>0.10</td>
<td>1.06 (80)</td>
</tr>
<tr>
<td>6</td>
<td>NaOH (2N)</td>
<td>2.5</td>
<td>100</td>
<td>0.47 (12)</td>
<td>0.95 (80)</td>
<td>0.31 (40)</td>
<td>0.09</td>
<td>1.35 (74)</td>
</tr>
<tr>
<td>7<sup>c</sup></td>
<td>NaOH (2N)</td>
<td>1.5</td>
<td>100</td>
<td>0.62 (14)</td>
<td>1.06 (77)</td>
<td>0.44 (15)</td>
<td>0.45</td>
<td>1.95 (63)</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.64</td>
<td>0.52</td>
<td>0.10</td>
<td>5.26</td>
</tr>
</tbody>
</table>

^a Reaction conditions: DMAP (339 mg) was added into a mixture of 2 N NaOH (5 mL), sulfite lignin (1g) and Boc₂O (2.5 mL) with a stirring bar in a 20 mL vial. The solution was stirred at rt temperature for 1d; b: The reaction was performed at rt for 3 hrs; c: Reaction conditions: DMAP
(100 mg) was added into a mixture of DI water (5 mL), industrial sulfite lignin (purity 60%, 2g) and Boc₂O (1.5 mL) with a stirring bar in a 20 mL vial. The solution was stirred at rt temperature for 3 hrs; d: Conversion percent of hydroxyls or acid.

Reactivity after Boc Modification. The units of Boc groups calculated based on quantitative ¹H NMR of lignin-p-BOC were not always consistent with the units of decreased free hydroxyls calculated based on ³¹P NMR, which indicated other reactions including O-Boc further reactions with free OH into cyclic carbonates or Boc₂O promoted lactones formation might occur as expected²⁴, ²⁵. The fact that less amount in units of O-Boc in lignin-p-BOC 2 (in 1d) compared to those in lignin-p-BOC 3 (in 3h) from quantitative ¹H NMR suggested that longer reaction benefited further reactions of O-Boc with other free hydroxyls resulting to less total free hydroxyls. To achieve a structurally compatible polymer blends based on lignin usually required a pretreatment of lignin by grafting short chains on isolated lignin³⁰-³¹. In addition, a simple reactive lignin can potentially increase the highest content of lignin for compatible polymer blends. To be reactive filler in new thermoplastic composites, O-Boc groups on lignin-p-BOC are expected to be still reactive with other free nucleophilic groups (such as aliphatic OHs, NHs) from thermoplastic during extrusion. In order to demonstrate the possible reactivity, hydropropyl alkaline lignin³² was selected as a model substrate because it has excellent solubility in common deuterium solvents (CDCl₃/pyridine or d₆-DMSO) and newly formed long chain hydropropyl groups can also act as free nucleophilic OHs similar to those from thermoplastics.

In order to prove that reactive extrusion with lignin-p-BOC is possible, polyethylene glycol (PEG) was chosen for simple mixing with lignin-p-BOC at 60 °C for 1 hour in the absence of other reagents. The new PEG peaks on ¹HNMR spectra of products with PEG₂₀₀₀ and PEG₄₀₀ indicated that further reactions occurred as expected and PEG chains were introduced onto lignin core successfully (Figure 3). This further reactivity can be expected in extrusion process for green
composite as well, and might be easily extended to synthesis of various biocompatible materials as crosslinker for elastomers which has potential biomedical application33a like bioresorbable composite polymeric implants33b.

\textbf{Figure 3.} Comparison of lignin-p-BOC with further reacted product lignin-p-PEG\textsubscript{2000}.

Reactions in acetonitrile and in NaOH solution with Boc\textsubscript{2}O (molar ratio 1/1 to total hydroxyls) in the presence of 10 wt\% DMAP were parallel performed for 1d. The isolated Boc modified product in acetonitrile showed no free hydroxyl and carboxylic acids signal on 31P NMR spectra surprisingly. Significant amount of samples became insoluble in CDCl\textsubscript{3}/pyridine or \textit{d}_6-DMSO after reaction, which indicated that intermolecular carbonation involved with O-Boc and other free
OH groups occurred as expected, forming larger polymer with more cross-linking structure. Interestingly, the degree of intermolecular reaction are remarkably decreased in aqueous solution (NaOH) and the Boc modified hydropropyl alkaline lignin (aliphatic hydroxyls: 1.33 mmol/g) was fully soluble in CDCl$_3$/pyridine or d_6-DMSO, which shows that the future reactive extrusion might also be tunable by controlling the moisture content (details see SI).

Investigation on Microbial Degradation. Concerning the Boc modification might have effect on degradation of lignin and with which fully biodegradable single-used plastics34, we evaluated the microbial (white rot fungus P. chrysosporium) breakdown rate of both alkali lignin and alkali lignin-p-BOC in parallel according to literature35. The presence of Boc groups in lignin obviously decreased the rate of degradation by white rot fungus *P. chrysosporium* within 18 days (**Figure 4**), which is consistent with proposed enzyme breakdown mechanism initiated from hydroxyl parts36. This finding is of much importance to future design of “green plastics” with modified lignin as a major component in balancing the stability in storage and biodegradability after filled in field.

Figure 4. Absorption change of alkali lignin and Boc-alkali lignin at 280nm.

CONCLUSION
In summary, a new type Boc modified lignin was synthesized under mild conditions with Boc₂O and the modification was generally tunable on the degree of Boc protection and preference on the different hydroxyls by slight change of reaction conditions. Simple optimization indicated that Boc modification occurred more efficiently in aqueous medium in the absence of any organic solvent, and both types of commercial lignin (alkaline and lignosulfonate) were applicable. This method demonstrated to be very efficient in recovering lignin in high purity from industrial lignosulfonate lignin (lignin content: 60%). This process not only combines the modification and pre-purification in one pot, but also reuses the waste impurity as a base. The Boc modified lignin-p-BOC also shows potential as reactive filler for new composite. The reactive potentiality of O-Boc group with aliphatic OH was demonstrated in Boc modification of hydropropyl alkaline lignin. Evaluation of the microbial (white rot fungus P. chrysosporium) breakdown rate of both alkali lignin and alkali lignin-p-BOC in parallel indicated that the presence of Boc groups in lignin obviously decreased the rate of degradation.

ASSOCIATED CONTENT

Supporting Information. Data and spectrum of ¹H NMR, FT-IR and ³¹P NMR of lignin-p-BOC prepared under different conditions as well as experimental details in microbial degradation of alkali lignin and alkali lignin-p-BOC see are available free of charge in Supporting Information.

AUTHOR INFORMATION

ORCID
Liuqun Gu: 0000-0002-4254-6824

Notes
The authors declare no competing financial interest.
Author Contributions

♀: Both authors contributed equally

ACKNOWLEDGMENT

We acknowledge the funding support (Biomass-to-Chemicals) to Y. Liu from the Science and Engineering Research Council (SERC) of the Agency for Science, Technology and Research (A*STAR), Singapore and a startup funding from Jinan University to L. Gu (No: 88015155 and 88016607).

REFERENCES

(2) a) Ball, P. Licking lignin Nat. Mater. 2007, 6 (8), 553-553; b) Bruijnincx, P. C. A.; Rinaldi, R.; Weckhuysen, B. M. Unlocking the potential of a sleeping giant: lignins as sustainable raw materials for renewable fuels, chemicals and materials. Green. Chem. 2015, 17 (11), 4860-4861.

(26) The details in identifying different functional groups of lignin-p-BOC see Supporting Information.

(28) Lignin product data was from Alibaba website.

(29) The raw sodium lignosulfonate (purity: around 60%) was purchased from Shaanxi New Leader Enterprise Ltd, China; the major impurities are sodium oxide (Na$_2$O, 16%) and volatile acid (8%) according to a product report from the supplier.

(32) Hydropropyl alkaline lignin was prepared according to reported literature (reference [8b]). 31P NMR result indicated that almost all the aromatic hydroxyls were masked with hydropropyl groups (total aliphatic OH: 3.80 mmol/g).

A method for lignin-p-Bocs was developed with various sources of lignin; lignin-p-Bocs showed potential as reactive fillers for composite plastics and as crosslinkers for bioreversible composite polymeric implants.