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Abstract  

To apply enzymes in technical processes, a detailed understanding of the molecular 

mechanisms is required. Kinetic and thermodynamic parameters of enzyme catalysis are crucial to 

plan, model, and implement biocatalytic processes more efficiently. While the kinetic parameters, Km 

and kcat, are often accessible by optical methods, the determination of thermodynamic parameters 

requires more sophisticated methods. Isothermal titration calorimetry (ITC) allows the label-free and 

highly sensitive analysis of kinetic and thermodynamic parameters of individual steps in the catalytic 

cycle of an enzyme reaction. However, since ITC is susceptible to interferences due to denaturation or 

agglomeration of the enzymes, the homogeneity of the enzyme sample (HES) must always be 

considered, and this can be accomplished by means of dynamic light scattering (DLS) analysis. We here 

report, for the first time, on the use of an ITC-dependent work flow to determine both the kinetic and 

the thermodynamic data for a cofactor-dependent enzyme. Using a standardized approach with 

implementation of sample quality control by DLS, we obtain high quality data suitable for advanced 

modeling of the enzyme reaction mechanism. Specifically, we investigated stereoselective reactions 

catalyzed by the NADPH-dependent alcohol dehydrogenase Gre2p under different reaction conditions. 

The results revealed that this enzyme operates with an ordered sequential mechanism and is affected 

by substrate or product inhibition depending on the reaction buffer. Data reproducibility is ensured by 

specifying standard operating procedures (SOPs), using programmed workflows for data analysis, and 

storing all data in a F.A.I.R. (findable, accessible, interoperable, and re-usable) repository 

(https://fairdomhub.org/investigations/464#projects). Our work highlights the utility for combined 

binding and kinetic studies for such complex multi-substrate reactions. 
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Introduction  

Enzymes are widely used biocatalysts that have excellent chemo-, regio-, and 

enantioselectivity that exceeds those of many chemical catalysts.1–3 A profound understanding of the 

reaction mechanism of an enzyme and how it is influenced by process conditions is essential for the 

successful implementation of a biocatalytic process.4–6 To elucidate mechanistic principles, the kinetics 

of enzymes can often be conveniently studied using UV-Vis spectrophotometric or fluorescence-based 

assays in high-throughput formats, such as multi-well plates. However, this approach requires optically 

detectable cofactors, substrates, or products to track their consumption or production, respectively, 

and it may also be limited by the lower or upper detection limit of the analyte. Furthermore, this 

methodology is not suited for measuring thermodynamic binding parameters, although these can be 

crucial for understanding reaction mechanisms. To overcome these limitations, and to obtain in-depth 

insights into the biomolecular interactions and kinetic parameters of enzyme reactions, isothermal 

titration calorimetry (ITC) can be used. ITC is a highly sensitive, label-free analysis method that is being 

developed for more than two decades as a powerful tool to measure the thermodynamic parameters 

of biomolecular interactions (binding parameters, Kd, ΔHbinding, ΔG°, -TΔS and the stoichiometry of 

binding),7,8 and has recently gained acceptance to measure parameters of enzyme kinetics (kinetic 

parameters, Km and kcat).8–10 

Three types of ITC experiments, traditional binding experiments (ITC-BIND), experiments using 

the multiple injection method (ITC-MIM), and experiments using the single injection method (ITC-SIM), 

are usually applied to measure the heat generated by binding interactions or by the enzymatic reaction 

itself. In the traditional binding experiment, a ligand is titrated to the enzyme. The resulting titration 

peaks are then integrated to calculate the enthalpy of binding (ΔHbinding) and fit the dissociation 

constant (Kd). From the enthalpy of binding, the Gibbs free energy (ΔG°) and entropy contributions (-

TΔS) to binding are calculated. Entropy driven interactions can indicate a strong effect of hydrophobic 

interactions and/or conformational changes, while enthalpy driven interactions can indicate a strong 

effect of hydrogen and van der Waals bonding.7,11,12 Furthermore, with these experiments the 

stoichiometry of binding can be calculated to determine how many molecules of ligand bind to one 

enzyme molecule. In an ITC-MIM experiment, the reactant is titrated to the enzyme to establish a 

stepwise increase in reactant concentrations, mimicking the classical enzyme kinetics experiment. At 

each titration step, the energy produced by the enzyme reaction causes a stable shift of the signal, 

resulting in descending steps. This shift is directly proportional to the rate of the reaction, thereby 

enabling the calculation of Km. However, the reaction enthalpy (ΔHreaction) and the turnover number kcat 

can only be determined using ITC-SIM experiments. Therein, reactant is titrated to a higher 

concentration of enzyme, than in the ITC-MIM experiment. This approach results in the signal returning 

to the baseline and the resulting peak is integrated to yield ΔHreaction. In a variation of this experiment, 

the “recurrent single injection experiment” (ITC-rSIM),9 insight on product inhibition or activation can 

be gained. In summary, ITC kinetics experiments can be used to determine the Michaelis Menten 

constant, Km and turnover number, kcat, based on the appropriate kinetic model. However, the 

acquisition of high-quality, reproducible data is a mandatory prerequisite to achieve robust modelling. 

 Any model is only as good as the data it is based on and it seems trivial that the most important 

criterion for “good data” is that it can be reproduced. However, although reproducibility of enzyme 

kinetic data is of such paramount importance for biocatalysis, it is inherently challenged by several 

factors, such as missing parameters of the experimental procedures, measurement artefacts and bad 

experimental setup.13–18 Hence overcoming the current “reproducibility crisis”19 will require the 
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application of recommendations and guidelines for quality control. One important quality criterion for 

enzyme catalysis is the purity and “the homogeneity of an enzyme sample” (HES).18 While the purity 

of the sample is usually stable over the course of experiments, HES can change and lead to 

measurement artefacts which can be detrimental for highly sensitive methods such as ITC. HES can 

quickly be determined using dynamic light scattering (DLS) analysis.20 Furthermore, process 

parameters such as the reaction buffer and its precise electrolyte composition are known to affect 

enzyme activity.21 Especially in ITC experiments, the choice of a suitable buffer with low ionization 

enthalpy is crucial to improve the quality of the ITC experiment and the resulting data.7,22 Therefore, it 

has been established to ideally perform ITC experiments in different buffers in order to obtain buffer-

independent data.23 Overall, the goal of reproducible experiments must be to provide a solid data 

foundation for robust modeling, ultimately enabling the effective application of data-based 

techniques, such as machine learning. Furthermore, as discussed above, the entire modeling process 

must be reproducible. To achieve this, standard operating procedures (SOPs), open and F.A.I.R. 

(findable, accessible, interoperable, and re-usable) data analysis and modeling workflows are critical. 

 

Figure 1: Workflow to create high-quality data for robust enzyme reaction modeling. Traditional approaches to enzyme kinetic 

data (blue) primarily use spectrophotometric activity measurements. The implementation of dynamic light scattering (DLS) 

and isothermal titration calorimetry (ITC) for quality control and mechanistic insights, respectively, leads to an increase in 

data quality to enable robust modeling. 

To overcome the above limitations, we report here a methodological approach (Figure 1) to identify 

and implement relevant parameters that can improve the mechanistic understanding of enzymes and 

be used to acquire reproducible data for enzyme reaction modeling. To improve data quality and 

enable mechanism-based modeling in silico, DLS and ITC were implemented for quality control and 

mechanistic insights into the traditional enzyme kinetics workflow (Figure 1). To experimentally 

validate the performance of our proposed standardized workflow, we chose the NADPH-dependent 

ketoreductase Gre2p as a challenging, multi-reactant model system. Thus, we sought to address the 

challenge of investigating for the first time a complex multistep mechanism using a combined ITC-

based binding and kinetics approach in conjunction with DLS. We found that our approach provides a 

complete picture of the binding and kinetic parameters relevant for enzyme catalysis. The usefulness 

of this approach was further demonstrated by the analysis of reactions in different buffer conditions, 

thus determining the previously incompletely understood mechanism of Gre2p. To enable 

reproducibly, we document our work by reporting standard operating procedures (SOPs), using 

programming workflows and storing all data in a FAIR repository 

(https://fairdomhub.org/investigations/464#projects). 

 

https://fairdomhub.org/investigations/464#projects
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Results and Discussion 

 

Figure 2: Gre2p catalyzed conversion of NDK. Gre2p requires the NADPH cofactor for catalysis and the conversion of 5-

nitrononane-2,8-dione (NDK) to the preferentially produced (5S,8S)-anti hydroxyketone (HK). Isothermal titration calorimetry 

(ITC) was applied for the determination of the binding and kinetic parameters shown: dissociation constants (Kd) for the 

reactants (NADPH, NDK, NADP+, HK) and kinetic parameters (Michaelis Menten constant, Km and turnover number, kcat).  

Introducing Gre2p 

Many industrially relevant enzymes use cofactors, such as NADPH or FAD,24–26 and thus may 

form tri-molecular complexes. We chose the NADPH-dependent redox enzyme Gre2p as a challenging, 

multi-reactant model system to experimentally investigate the performance of our proposed workflow 

(Figure 1). The ketoreductase Gre2p (Genes de respuesta a estres (stress-response gene), EC 1.1.1.283) 

has been previously used in the asymmetric synthesis of chiral alcohols with excellent 

enantioselectivities.27,28 Based on the available crystal structures, 4PVD and 4PVC, and computational 

docking experiments, an induced fit mechanism has been proposed for NADPH binding.29 Beyond that, 

little is known about the detailed mechanism of this enzyme despite its application in relevant areas 

of biocatalysis.28,30–33 Kinetic parameters have been published for hexane-2,5-dione, hexane-(2S,5S)-

diol27 and for a variant of Gre2p for nitrononane-2,8-dione (NDK, Table S1).32 In this work, we chose 

the NDK reaction (Figure 2) because it involves multiple reactants (NADPH, NDK, NADP+ or (5S,8S)-anti 

hydroxyketone, HK) that may affect the reaction as they accumulate. The reaction can continue to the 

chiral diol, albeit much slower than the reaction to HK (Figure S1). Multi-reactant enzyme mechanisms 

are difficult to study with conventional techniques. Elucidating such mechanisms requires the 

determination of the binding order of the reactants,34–36 and the determination of inhibition modes by 

the reactants. Therefore, the use of ITC seemed worthwhile to gain mechanistic insights and to elicit 

the robustness of our approach.  

We have used purified, heterologously expressed, hexahistidine(his)-tagged Gre2p from 

Saccharomyces cerevisiae (Sequence ID AJT71311.1, without the added his-tag) (Figure S2). The 

sequence of this Gre2p is identical to the Gre2p described by Müller et al. 27, but differs from the Gre2p 

in the crystal structures 4PVD and 4PVC by six surface residues. Gre2p is dimeric in crystal structures 

due to crystal packing, but reported to be monomeric in solution.27,29,37 Assuming a monomeric Gre2p 

and the molecular weight of 39040 Da, this would correspond to a hydrodynamic radius of almost 3 

nm.38 DLS measurements showed that our purified, his-tagged Gre2p has a hydrodynamic radius of 

approx. 6 nm (Figure S3). This larger than expected size is likely due to a certain amount of 

polydispersity in the sample and should not be interpreted as Gre2p being dimeric. In the following, 
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we employed DLS to routinely monitor the quality of the sample by determining the HES in order to 

investigate whether experimental processes have an impact on enzyme agglomeration.  

Spectrophotometrically determined kinetic parameters 

To set a starting point for our study, the activity of recombinant Gre2p was determined 

spectrophotometrically by measuring the change in NADPH absorbance at 340 nm during the 

conversion of hexane-2,5-dione and NDK (Table 1). For hexane-2,5-dione (Table 1 and Figure S4a), we 

obtained values that were in good agreement with previously published data27 (Table S1). However, 

we found that our data were best represented by a substrate inhibition model (eq. 2, Figure S4b), 

which resulted in higher Km and a lower kcat compared to values obtained with the classical Michaelis-

Menten model (Table 1). For NDK, no substrate inhibition could be observed (Figure S4c, Table 1). It is 

important to note that substrate inhibition is only identifiable from the raw data (Figure S4). Therefore, 

important information may be lost if only kinetic parameters are reported. Also, these classical 

spectrophotometric assays can quickly be NADPH-limited due to the upper detection limit of NADPH 

at 0.3-0.5 mM. If Kd,NADPH is in the same range as Km (Table 1), these NADPH concentrations are too low 

to saturate Gre2p with NADPH, and the kinetic parameters thus measured can only serve as rough 

estimates. Knowledge of the Kd‘s of the reactants would help to solve this issue and would shed further 

light on the reaction mechanism of Gre2p. Also, the apparent absence of substrate inhibition in the 

NDK reaction calls for further analyses. Thus, the previous experiments clearly show gaps in knowledge 

that can be filled with ITC.  

Table 1: Comparison of kinetic parameters determined spectrophotometrically (UV-Vis) and with ITC-MIM, fitted using the 

classical Michaelis Menten model (eq. 1) or a substrate inhibition model (eq. 2). See Figures S4 and 5 for the plotted raw 

data. Details on the ITC measurements are given in the section “Determination of the kinetic parameters with ITC”. Vmax was 

converted to turnover numbers (kcat), assuming a molecular weight for Gre2p of 39040 Da (eq. S1). 

Method Substrate Model Km (mM) kcat (s-1) Ki (mM) 

UV-Vis hexane-2,5-dione Michaelis Menten, eq. 1 1.4 ± 0.6 4.1 ± 0.5 Not applicable 

UV-Vis hexane-2,5-dione Substrate inhibition, eq. 2 2.5 ± 1.0 5.4 ± 0.7 99 ± 8 

UV-Vis NDK Michaelis Menten, eq. 1 2.4 ± 0.6 1.8 ± 0.1 Not applicable 

ITC-MIM NDK Michaelis Menten, eq. 1 0.7 ± 0.2 2.7 ± 0.8 Not applicable 

ITC-MIM NDK Substrate inhibition, eq. 2 1.4 ± 0.1 3.6 ± 0.9 10*Km 
# 

  #fixed during fitting based on the estimation of Kd,NDK from the ITC-BIND experiments 

Binding of reactants to Gre2p  

Since the results from the above spectrophotometric experiments called for additional 

investigations on the binding parameters of the reactants, ITC-BIND experiments were performed, 

where one reactant was titrated to Gre2p to determine Kd, ΔHbinding, ΔG°, -TΔS and the stoichiometry 

of binding. These experiments can also shed light on the reaction mechanism by determining the 

binding order of the reactants. In an ordered, sequential mechanism, only one reactant will bind to the 

free enzyme, while in a non-sequential mechanism, both reactants will bind to the free enzyme, thus 

allowing the distinction of these mechanisms.  
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Figure 3: ITC-BIND experiment to determine the binding parameters of NADPH to Gre2p. Binding of NADPH is much stronger 

than expected from the Michaelis constant obtained from spectrophotometric measurements (Km =2.4 mM vs Kd =12.2 μM). 

a) representative data of the raw heat of the titrations of NADPH to Gre2p (blue line), from which isotherms are integrated 

(inset, dots) and Kd is fitted (inset, line). The heat of dilution of the controls (NADPH to buffer, buffer to Gre2p and buffer to 

buffer as represented by black, grey and light-grey titrations, respectively) is negligible compared to the heat of binding. b) 

integrated isotherms (dots) and fits for Kd (lines) of five replicates in blue, orange, green, red and purple as a function of the 

molar ratio of NADPH and Gre2p; the inset shows the resulting energy terms, the experimental Gibbs free energy (ΔG°, 

hatched), enthalpy (ΔH, blank) and entropy (-TΔS, dotted). Errors are only given on the directly measured enthalpy values. 

Note that the slope at the inflection point corresponds to 1/Kd indicating that the molar ratio at the inflection point 

corresponds to the stoichiometric ratio. 

Table 2: Binding parameters obtained with ITC-BIND experiments for Gre2p with NADPH or NADP+ in KPi buffer, pH 7.5, at 

25° C.  

Ligand Kd 

(μM) 

ΔG0 

(kcal/mol) 

ΔH 

(kcal/mol) 

-TΔS 

(kcal/mol) 

NADPH 12.2 ± 2.5 -6.7 ± 0.1 -5.5 ± 0.5 -1.2 ± 0.4 

NADP+ 96.6 ± 18.0 -5.5 ± 0.1 -4.3 ± 1.0   -1.2 ± 1.2   

 

ITC-BIND experiments with NADPH (Figure 3) measured a Kd, NADPH in the lower micromolar 

range (Table 2). Although this is an almost 1000-fold difference compared to the 

spectrophotometrically determined Km in the low millimolar range (Table 1), the result seemed 

reasonable because it is known that NADPH often binds much more strongly to enzymes with the same 

EC number as Gre2p (EC 1.1.1.283).39–42 ITC-BIND experiments further elucidated that binding of 

NADPH to Gre2p is dominated by enthalpy, indicating that favorable hydrogen and/or van der Waals 

bonding drive the binding process (Table 2). The fact that entropy plays an unfavorable role in NADPH 

binding suggests that an energetically unfavorable conformational change has to occur to allow NADPH 

binding. Such an interpretation is supported by previously reported crystal structures that reveal a 

conformational change induced by NADPH binding.29 Finally, stoichiometry of binding is another 

binding parameter routinely obtained with ITC-BIND experiments. Stoichiometry of binding for 

NADPH, as determined from the inflection point of the binding curve, indicated that one molecule of 

NADPH binds to one active site of Gre2p (0.9 ± 0.2, Figure 3). This was to be expected from the fact 

that Gre2p is monomeric in solution and contains one active site per monomer.27,29,37 In contrast, 

binding of NDK to Gre2p was not detectable by ITC (Figure S5). Due to solubility limitations of NDK in 

the buffer, a maximum concentration of 100 mM NDK could be used for titrations. We therefore 

estimate that binding of NDK to Gre2p is at least 10-times weaker than the spectrophotometrically 

determined Km would imply (Table 1). Therefore, binding of NDK to Gre2p without NADPH bound (Kd, 
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NDK, Gre2papo) is at least 10-times less favorable than binding of NDK to Gre2p with NADPH bound (Km, 

Gre2pholo). These data consistently show that Gre2p operates via an ordered, sequential mechanism in 

which NADPH binds first, resulting in Gre2pholo, and that only Gre2pholo can then bind NDK (Figure 4). 

Indeed, previously reported crystal structures that show a conformational change due to the induced 

fit NADPH binding29 are also supportive of this mechanism since they indicate that indeed two distinct 

structural conformations of Gre2p exist (Gre2papo and Gre2pholo). 

The binding parameters of NADP+ were also determined by ITC-BIND experiments (Table 2, 

Figure S6). Binding of NADP+ was almost 10-times weaker than binding of NADPH (Table 2). Compared 

to NADPH, the Gibbs free energy (ΔGNADP+
° ) was less favorable (less negative), with less favorable 

enthalpy contribution (ΔHNADP+), and comparable entropy contribution (-TΔSNADP+, Table 2). This 

suggests that the binding of NADP+ to Gre2p is driven by favorable hydrogen and van der Waals 

bonding, similar as the binding of NADPH. It has to be noted, however, that due to the weak binding, 

the fit of NADP+ binding is of low quality as the data result in a c-value close to 1.0 (Table S2). The c-

value (eq. S243) depends on the binding affinity, the number of binding sites and the heat of binding 

(ΔH) and it should be in the range of 1-1000 to ensure appropriate sample concentration in the ITC-

BIND experiment.44 Although the low c-value and the corresponding Kd, NADP+ could have a considerable 

error, no further experimental clarification could be performed, since unattainably high enzyme 

concentrations would have to be used to obtain data with a potentially higher c-value. Binding of HK 

to Gre2p was very weak and could only be estimated to be at least as weak as binding of NDK (Figure 

S7). The order of unbinding of HK and NADP+ cannot be determined experimentally and would 

necessitate computational approaches, such as molecular modelling.  

 

 

Figure 4: The proposed mechanistic model for Gre2p. The black structure represents Gre2papo , blue Gre2pholo , purple fully 

reactive Gre2p with both NADPH and NDK bound, yellow Gre2p after the reaction with both NADP+ and HK bound. The crossed 

arrow (red) indicates that NDK cannot bind to Gre2p unless NADPH is already bound (Gre2pholo). Binding of NDK to Gre2pholo 

is represented in part by Km. Note that the order of unbinding of HK and NADP+ cannot be determined experimentally.  

Determination of the kinetic parameters using ITC 

With our experimentally obtained details on the binding parameters of all reactants, we then 

investigated the kinetics of Gre2p with ITC-MIM and ITC-rSIM experiments to determine accurate 



9 
 

kinetic parameters and further elucidate the reaction mechanism. The ITC-MIM experiments were 

initially fitted using a standard Michaelis-Menten model to determine the kinetic parameters (Km and 

kcat) (Table 1, Figure 5a). We found that Km was more than 3-fold lower than the value obtained from 

spectrophotometric measurements, whereas kcat increased slightly (Table 1). This indicated that, 

despite Kd, NADPH being << 0.3 mM, Gre2p is not saturated with NADPH in the spectrophotometric assay. 

However, the reaction rate decreased unexpectedly in the ITC-MIM experiments (Figure 5b). In such 

an ITC-MIM experiment, the substrate concentration inside the cell increases with each subsequent 

titration step and, thus, high substrate concentrations are reached in the late phases of the 

experiment. Three different hypotheses could explain the observed decrease in reaction rate. Firstly, 

measurement artifacts in the ITC-MIM experiment, secondly enzyme inactivation towards the end of 

the ITC experiment, and, thirdly, a slow-onset inhibition by product or substrate inhibition may occur. 

Product inhibition would be caused by the product accumulating due to the enzymatic reaction, while 

substrate inhibition would be the result of the substrate accumulating at higher concentrations with 

the increasing number of ITC titration steps. 

 

Figure 5: Kinetics for Gre2p from ITC-MIM experiments indicate that the classical Michaelis-Menten model (eq 1.) does not 

represent the data well and that data are best fitted using a substrate inhibition model (eq. 2). Three replicates in blue, orange 

and green are shown, fitted with different kinetic models in b) and c). a) representative data of the raw heat of the titrations 

of NDK to a solution of NADPH and Gre2p in the cell (blue line), from which isotherms are integrated (inset, dots) and Km is 

fitted using the standard Michaelis-Menten model (inset, lines, eq. 1). The control reaction (titrating buffer to Gre2p and 

NADPH in the cell, black) shows that the baseline is stable compared to the heat produced in the reaction, leading to 

descending steps (blue). Note that the time on the x-axis in a) is proportional to the substrate concentration on the x-axis in 

the inset and in b) and c) because subsequent injections every 180 s lead to a stepwise increase in substrate concentration.  b) 

integrated isotherms (dots) and fits for Km and kcat (lines). Note that the standard Michaelis-Menten model does not represent 

the data well. c) integrated isotherms (dots) and fits for Km and kcat (lines) using a substrate inhibition model (eq. 2, details in 

main text). For b) and c), the maximal reaction rate, kcat , was calculated using ΔHreaction obtained from ITC-rSIM experiments 

(Table S4, Figure S19), and varies between replicates (Table 1). Kinetic parameters resulting from these models are 

summarized in Table 1. Note that the difference in kinetic parameters measured by ITC and spectrophotometry indicates that 

NADPH is indeed limiting in spectrophotometric assays (Table 1). 

We initially looked into possible measurement artifacts in ITC-MIM experiments. Specifically, 

we tested the order in which reactants are titrated to Gre2p, the enzyme concentration and the stirring 

speed.9,45 While we could clarify that the order of reagent injection can lead to artifacts (Figure S8), 

the procedure specified in the SOP (NDK is titrated to a mixture of NADPH and Gre2p) does not show 

such artifacts (Figure 5a). Another artifact, that is known to be caused by a too high the enzyme 

concentration, can lead to “steps sloping towards the baseline”.9 Although we could specifically induce 

this artifact, it is a systematic error that cannot explain the observed phenomenon of the decrease in 

reaction rate at the end of the reaction (Figure S9).  Finally, mechanical stress due to stirring in the ITC-
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MIM experiment could lead to enzyme agglomeration and inactivation, which would become more 

significant in late stages of the experiment. ITC experiments carried out with identical samples in two 

individual instruments at different stirring speeds indicated that the slower stirring speed led to noisier 

and lower quality data (Figures S10, S11) as compared to the faster stirring speed (Figures S8, S9 and 

S12).  More details on all three possible artifacts and our tests can be found in the SI section 

“Elimination of measurement artefacts in the ITC-MIM experiments”. Altogether, these tests 

excluded measurement artifacts, leaving the hypotheses of enzyme inactivation and slow-onset 

inhibition to be tested further. 

Enzyme inactivation in the ITC was tested by performing DLS and activity measurements before 

and after mock ITC experiments and stirring or shaking in Eppendorf tubes (Figure S13). In these mock 

experiments, only buffer was titrated to Gre2p. Likewise, no reactants were present in any of the other 

experiments to determine HES of Gre2p described below. As discussed above (Figure S3), DLS data 

showed that Gre2p was already heterogeneous prior to any treatment and even directly after the first 

freeze/thaw cycle, as indicated by the high Z-averages and polydispersity indices (Figure S13). Samples 

after treatments showed that the Z-average increased by up to two orders of magnitude compared to 

the sample before treatment (Figure 13a). Accordingly, the PDI value also increased after treatments, 

although less pronounced (Figure 13b). HES was severely decreased by the mock ITC experiments and 

even by stirring in Eppendorf tubes, but much less severely during mere shaking in Eppendorf tubes. 

Hence, intensive stirring caused the deterioration of HES in the ITC, presumably by induction of 

agglomeration of the enzyme due to mechanical sheer forces.  

As a possible means to reduce the agglomeration of proteins, we tested ITC measurements in 

the presence of the nonionic detergent Tween-20 (Tween), a widely used additive to prevent non-

specific protein binding and aggregation. Indeed, the presence of Tween resulted in a more 

homogeneous enzyme sample as compared to the sample in the absence of Tween (Figures S13a, b). 

Unfortunately, however, Tween also led to the loss of more than 50% of the activity (Figure S13c). 

Additional investigation of this phenomenon by ITC indicated that Tween had a detrimental effect on 

the binding of NADPH to Gre2p, leading to a 3-fold increase in Kd (Table S3 and Figure S14). 

Furthermore, we established by ITC-MIM experiments that Km was increased and kcat decreased in the 

presence of 0.1% Tween (Table S3 and Figure S15) as compared to the parameters obtained in the 

absence of Tween. Given the adverse effect of Tween on Gre2p’s kinetic and thermodynamic 

parameters, we did not proceed with Tween in the buffer.  

We then tested whether the observed decrease in HES is linked to changes in Gre2p activity. 

Using spectrophotometry, we analyzed the activity of Gre2p after different treatment steps, i.e., the 

initial freeze/thaw cycle, the mock ITC experiment, a 1h incubation at room temperature or a 5h 

incubation on ice (Figure S16). After these treatments, reactants were added and the activity was 

immediately determined by monitoring the NADPH absorbance. We found a 25% loss of activity after 

the mock ITC experiments (Figure S16). A comparable activity loss (29%) was also measured after 

storing Gre2p at room temperature (Figure S16). While these comparable losses in activity suggested 

that Gre2p inactivation was prone to thermal instability, in-depth analysis by employing a Selwyn test46 

provided evidence that slow-onset inhibition rather than thermal inactivation is the reason for the 

observed reduction in activity at later reaction stages. This hypothesis was supported by ITC-rSIM 

experiments, which indicated that very weak to no enzyme inactivation occurred in the ITC (Figure 
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S19). More details can be found in the SI sections “Specific activity and Selwyn test” and "Recurrent 

single injection experiments”. 

While the distinction between enzyme inactivation and slow-onset inhibition is notoriously 

difficult with a Selwyn test, it can be achieved with ITC-rSIM experiments. If the injection depth of the 

peaks and ΔHreaction of all recurrent injections are identical, no product inhibition is present, whereas 

enzyme inactivation leads to broader peaks in ITC-rSIM experiments. Analysis of the ITC-rSIM data 

showed that peaks of both injections had identical depth (Figure S19) and ΔHreaction did not decrease in 

the second injection (Table S4), thus indicating that product inhibition was absent. Furthermore, fitting 

ITC-MIM data with a model assuming competitive product inhibition (eq. S3) and using Kd, NADP+ (from 

Table 2) as Ki did not improve the quality of the fit, thus contradicting the possibility of product 

inhibition.  

After we could exclude all these possibilities, an investigation of the substrate inhibition 

remained, which had previously been observed in photometric assays for Gre2p conversion of hexane-

2,5-dione (Figure S4b) but not for NDK (Figure S4c). The same kinetic model for substrate inhibition 

(eq. 2) was used, and this model led to a very good fit of the ITC-kinetic data (Figure 5c) with the 

estimated Ki = Kd, NDK = 10*Km (Table1). Therefore, our experiments so far showed that Gre2p uses an 

ordered, sequential mechanism for the reaction with NDK (Figure 4), and that substrate inhibition must 

be included for reactions with NDK and hexane-2,5-dione to model kinetic data of Gre2p (eq. 2 and 

Figure 5). Of note, these insights would not have been possible using only spectrophotometric assays 

but indeed required the combination of ITC binding and kinetic experiments with supporting 

characterization of the HES by DLS.  

Impact of process parameters on the enzyme mechanism 

All experiments so far were performed in one reaction buffer (KPi buffer, 100 mM, pH 7.5). 

However, the reaction buffer is a generally important process parameter for biocatalytic applications, 

since the buffer’s electrolyte composition can markedly affect enzyme activity,21,47 a fact that is also 

revealed by the buffer influence on the results of ITC experiments.7,22 Therefore, we investigated 

whether we could characterize the influence of the reaction buffer on enzyme kinetics with our work 

flow. To this end, the whole series of the above discussed DLS and ITC experiments were conducted in 

two additional buffers, PBS (1x PBS, pH 7.5) and HEPES (100 mM, pH 7.5). DLS experiments indicated 

that the homogeneity of Gre2p was comparable in all buffers tested (Figure S20). The results of the 
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ITC experiments, carried out following the previously set SOPs, are summarized in Figure 6 and Tables 

S5, S6.  

 

Figure 6: The reaction buffer impacts kinetic and binding parameters. Overview of these parameters as a function of the ionic 

strength of the buffer (KPi, PBS or HEPES, red blue and green). Binding parameters for NADPH and NADP+ are shown as circle 

and square, respectively. a) dissociation constants Kd b) Gibbs free energy of binding, ΔG° c) Enthalpy contribution to binding, 

ΔH d) Entropy contribution to binding, -TΔS e) Michaelis constant Km  f) turnover number kcat. See SI for raw data for binding 

of NADPH and NADP+ in PBS buffer (Figures S21, S22) and in HEPES buffer (Figures S23, S24), respectively. SI also contain the 

raw kinetic data for the reaction in PBS buffer (Figure S25) and in HEPES buffer (Figure S26). Note that Kd values for NADPH 

and NADP+ binding and associated entropy values are almost identical in some cases, thus leading to overlapping data points 

in a) for HEPES buffer (green) and d) for KPi buffer (red). See Table S5 for all values. 

 Comparison of the binding parameters for NADPH and NADP+ in KPi, PBS and HEPES buffer 

obtained by ITC-BIND experiments indicated that Kd for NADP+ was 10-times lower than for NADPH in 

KPi and PBS buffer (Figure 6a). While the difference in Gibbs free energy of binding NADPH and NADP+ 

was comparable in all buffers, (Figure 6b), contributions of enthalpy (Figure 6c) and entropy (Figure 

6d) varied substantially. In HEPES and PBS buffer, the enthalpic term dominated NADPH binding (Figure 

6c), whereas the entropic term dominated NADP+ binding (Figure 6d). The difference in enthalpy and 

entropy contribution between NADPH and NADP+ binding was most pronounced in PBS buffer (Figures 

6c, d). It should be noted, however, that due to the weak binding, the fit of NADP+ binding in PBS buffer 

was of low quality, resulting in a c-value below 1.0 (eq. S2, Table S2). Nevertheless, these striking 

differences in binding parameters in these different buffers raised the question of whether and how 

kinetic parameters would be affected. 

To test whether the observed buffer-dependent differences in binding behavior led to a 

change in kinetic parameters, ITC-MIM and ITC-rSIM experiments were performed and the resulting 

data was again fitted with the substrate inhibition model (eq.2, Figures S25, S26). The obtained Km and 

kcat values were highest in PBS buffer (Figures 6e, f, respectively and Table S6). ITC-rSIM experiments 

showed that product inhibition occurs in PBS buffer but not in KPi and HEPES buffer (Figure S19 and 

Table S4). Therefore, these experiments provided conclusive evidence that the buffer can change the 

mode of inhibition of Gre2p from substrate to product inhibition.  Furthermore, the catalytic 

efficiencies (
𝑘𝑐𝑎𝑡

𝐾𝑚
, Table S6) indicated that product inhibition in PBS buffer was less detrimental than 
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substrate inhibition in the other two buffers. In fact, it was found that catalytic efficiency was about 

1.7-fold greater in PBS (4.2 mM/s) than in KPi and HEPES (about 2.5 mM/s) buffer. These results nicely 

illustrate that the detailed knowledge of thermodynamic and kinetic parameters as well as of the 

enzyme mechanism might be exploited to readily identify optimal buffers for a biocatalytic reaction by 

rational process engineering.  

Conclusion  

The identification of critical parameters for rapid optimization of biocatalytic processes is of 

paramount importance for rational process engineering. We have here introduced a standardized 

workflow that can be used for in-depth characterization of thermodynamic and kinetic parameters to 

yield insights into mechanistic details of enzyme catalysis under variable reaction conditions. Our 

workflow uses DLS for sample quality control as well as ITC and spectrophotometric activity 

measurements to determine thermodynamic and kinetic parameters. As illustrated for the cofactor-

dependent Gre2p, the workflow is capable of uncovering enzyme inactivation and slow-onset 

inhibition and translating them into traceable, reproducible, high-quality data and models of the 

reaction mechanism. To enable the full reproduction of our results, we have followed established 

guidelines and best practices for SOPs48 and the reporting of enzyme and biocatalytic data18,49 in 

addition to storing our data on FAIRDOMHub (https://fairdomhub.org/investigations/464#projects).50 

Hence the work is in compliance with various large-scale efforts to tackle the current reproducibility 

crisis19 such as NFDI4chem, NFDI4cat, NFDI4ing and the GO FAIR initiative.51–54  

To illustrate the usefulness of our workflow under variable reaction conditions, we studied a 

cofactor-dependent enzyme that presented a new challenge for ITC methodology. Our approach 

revealed that the NADPH-dependent alcohol dehydrogenase Gre2p uses an ordered, sequential 

mechanism, the enzyme suffers from “slow-onset inhibition” and the mode of inhibition changes with 

the composition of the reaction buffer. The latter findings are of particular relevance for process 

engineering as they emphasize that a comprehensive understanding of the enzyme mechanism can be 

exploited to improve biocatalytic production processes. Our results suggest that solvent engineering 

approaches55,56 to optimize enzyme activity in biocatalytic processes should not be limited to organic 

solvents but also include aqueous buffer solutions. Therefore, the work should motivate further 

studies, for example, on the influence of the ionic strength of the buffer and its electrolyte 

composition, such as Hofmeister effects,57,58 on the mechanism of enzymes and thus on the overall 

biocatalytic process. The work also calls for further ITC-studies on enzyme variants for fundamental 

studies to identify the involvement of positions of interest on reactant binding or conversion.59 Finally, 

molecular modelling of the binding of reactants can provide atomistic insight into binding processes.60–

63 Because our approach is amenable to automation and scale-up for high-throughput, the 

combination of such diverse approaches will provide the high-quality data needed for the engineering 

of enzymes and biocatalytic processes through machine learning to speed up the future development 

of industrial biocatalysis.1,64–67  

 

 

https://fairdomhub.org/investigations/464#projects
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Experimental Section 

Detailed materials and methods, SOPs, raw data and files can be found in the SI and on FAIRDOMHub 

(https://fairdomhub.org/investigations/464#projects). 
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