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ABSTRACT 

Motivation: The detection of small molecules binding sites in proteins is central to structure based 
drug design. Many tools were developed in the last 40 years, but only few of them are available 
today, open-source, and suitable for the analysis of large databases or for the integration in 
automatic workflows. In addition, no software can characterize subpockets solely with the 
information of the protein structure, a pivotal concept in fragment-based drug design. 
Results: CAVIAR is a new open source tool for protein cavity identification and rationalization. 
Protein pockets are automatically detected based on the protein structure. It comprises a subcavity 
segmentation algorithm that decomposes binding sites into subpockets without requiring the 
presence of a ligand. The defined subpockets mimick the empirical definitions of subpockets in 
medicinal chemistry projects. A tool like CAVIAR may be valuable to support chemical biology, 
medicinal chemistry and ligand identification efforts. Our analysis of the entire PDB and the 
PDBBind confirms that liganded cavities tend to be bigger, more hydrophobic and more complex 
than apo cavities. Moreover, in line with the paradigm of fragment-based drug design, the binding 
affinity scales relatively well with the number of subcavities filled by the ligand. Compounds 
binding to more than three of the subcavities identified by CAVIAR are mostly in the nanomolar 
or better range of affinities to their target. 
Availability and implementation: Installation notes, user manual and support for CAVIAR are 
available at https://jr-marchand.github.io/caviar/. The CAVIAR GUI and CAVIAR command line 
tool are available on GitHub at https://github.com/jr-marchand/caviar and the package is hosted 
on Anaconda cloud at https://anaconda.org/jr-marchand/caviar under a MIT license. The GitHub 
repository also hosts the validation datasets. 
Contact: jean-remy.marchand@novartis.com; finton.sirockin@novartis.com 
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INTRODUCTION  

The PDB hosts more than 150 000 experimentally determined structures of macromolecules. Drug 

targets are particularly well represented in this dataset, with 88% of the targets of new molecular 

entities approved by the US food and drug administration in the period 2010-2016 being publicly 

and freely accessible in the PDB at date of approval.1 This great wealth of data presents fantastic 

opportunities to extract meaningful information for drug design efforts. Protein cavities are at the 

basis of the functions of folded proteins, from enzymatic activity to binding of endogenous 

molecules and signal transduction. Binding pockets can be characterized empirically by analyzing 

holo structures of the target in complex with a ligand, but the analysis of the entire PDB, including 

structures without ligand, requires automatic algorithms to perform that task. The cavity detection 

field has been prolific in the last three decades,2–4 with some successful applications for the 

prediction of target ligandability,5–9  identification of off-targets,10–14 functional annotation,15–18 

ligand design and drug repurposing.19–22 Structure-based cavity detection methods can be grouped 

into two general families: energy-based algorithms and geometry-based.2,23,24 Energy-based 

methods rely on the calculation of the interaction energy between chemical or pseudo-chemical 

probes and the surface of proteins. As such, they can result in very valuable information for 

medicinal chemistry, but may require a careful preparation of the protein and are inherently 

computationally intensive.25–30 Geometry-based methods are less resource demanding and 

potentially more resilient to small changes in the pocket, which gives them a different scope as 

they can be applied on large scales. They detect cavities based on their shapes and are sometimes 

augmented with other properties, e.g., buriedness, pharmacophores, or conservation of certain 

residues overrepresented in binding pockets.10,31–34 Cavities are generally defined as clefts on the 

surface of the protein. A variety of geometry-based methods for pocket detection has been 
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developed, i.e., algorithms relying on (1) enclosure of grid points around the protein, (2) space 

filling, (3) Voronoi diagram, and (4) imaging science (Table 1). Consensus methods combining 

results from more than one method have also been described.35,36 

Table 1. Main software for geometry-based cavity detection.  

Method Core principle Representative examples 

Enclosure of grid 
points 

The enclosure of grid points around the 
protein, i.e., how many close contacts 
with protein atoms, defines potential 
cavities 

POCKET,37 LIGSITE,38 
PocketDepth*,39 PocketPicker,23 

McVol*,40 VICE,41 VolSite,9 
SiteMap7 

Space filling Spheres are placed around the protein 
surface to detect empty spaces in the 

protein convex hull 

SURFNET,42 PASS,43 
PHECOM*,44 KVFinder*,45 
GHECOM*,46 SCREEN,8 

POCASA47 
Voronoi diagram The Voronoi decomposition of the space 

of protein atoms serves as basis to 
identify clefts 

FindSurf,48 CAST,49 APROPOS;50 
Fpocket*,6 SiteFinder (MOE) 

Imaging science Gaussian surfaces approximate the 
protein shape  

DoGSite,24 CavVis*51 

* indicates open-source software available at the time of the study. 

Recent versions of these software perform generally well on validation datasets, with a 

reported ability to detect the correct ligand binding pocket in their top three scoring cavities around 

80 to 90%.4 However, many programs are either available as closed-source commercial 

packages/webservers or unavailable. In order to enable the development of novel cavity 

comparison tools, we developed a comprehensive ligand-agnostic Python-based open-source 

platform for cavity detection and characterization, usable with a graphical user interface (GUI) 

and/or advanced command line tool. We started from a concept of enclosure of grid points 

algorithm and augmented them with novel ideas to refine the resulting cavities, e.g., double pass 

to estimate buriedness, trimming of spurious points and exclusion of loosely connected nodes, size 

and hydrophobicity filters. In addition, we addressed blind spots of existing algorithms, such as 
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treatment of metals and structural waters in binding pockets, detection of cavities at the interface 

of multi-chain proteins or multi-domain complexes, and decomposition of binding cavities into 

meaningful subpockets. Cavity segmentation into subcavities is crucial in the era of structure-

based drug discovery, with medicinal chemists attempting to improve potency and selectivity of 

their hits by filling protein subpockets.29,52–55 Similar proteins may have binding pockets with 

different subcavities and dissimilar proteins may have conserved subcavities. Many drug targets 

exhibit well-defined subpockets geometrically, such as proteases, kinases and GPCRs, which are 

used extensively in order to develop selective compouds.53 In addition, two independent studies 

concluded that drug-like ligands typically occupy about a third of their binding pockets, filling 

only some of the subpockets.56,57 Efforts have been made to try to characterize the chemical 

fragment preference of certain residues,58,59 and link the fragment chemical space to binding 

pocket microenvironments.60–63 These methods extract and store information of fragmented 

ligands from the PDB and their interactions with surrounding amino acids. However, they lack a 

clear protein-centric definition of the subcavities and circumvent it by running queries on empirical 

ligand- or coordinate-based definition of subpockets. DoGSite was developed as a ligand-agnostic 

cavity identification tool, borrowing concepts from the computational image recognition field.24 

In short, small hotspots are identified with a difference of Gaussians algorithm and then inflated 

to merge them into cavities. Original hotspots can be treated as subpockets without further 

processing. However, DoGSite is not open source and the validation of the pre-merging hotspots 

discovered by DoGSite for the characterization of subpockets have been discontinued, with further 

work defining selectivity subpockets as grid differences between pockets of distinct kinases.64 The 

pertinence of the subsite decomposition produced by CAVIAR was assessed qualitatively and put 

in parallel with DoGSite’s results. Finally, we performed an analysis of the PDB to characterize 
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differences between liganded and apo binding pockets, as well as an analysis of the binding 

affinities of ligands with regards to the number of subpockets they fill. 

MATERIAL AND METHODS  

PDB parsing and object selection. PDB files are parsed and information from the header are 

retained for exclusion criteria and further analysis. The PDB parser is adapted from the ProDy 

source code.65 Protein chains with fewer than thirty residues are excluded, hydrogen atoms are 

ignored. Metal ions and well-coordinated water molecules are retained. Well-coordinated water 

molecules are defined by contacts within 3.1 Å to at least three hydrogen bond donor/acceptor 

heavy atoms from the protein. The analysis of cavities in multi-chains PDB files produces noise 

from clefts formed at contact interfaces from different protein chains.66 Frequently, the presence 

of more than one chain in PDB files comes from the packing of more than one protein chains in 

the crystal unit and does not account for productive interchain contacts responsible for the protein’s 

activity. Thus, by default, the longest protein chain and the ones in contact with it, viz., chains with 

at least 75 atomic interchain distances below 5.0 Å with the longest chain are selected for further 

analysis. Other options include selecting only the longest protein chain, one or more explicit user-

specified chain, and all protein chains. All aforementioned parameters are accessible and 

modifiable via options. 

Cavity identification.  The selected atoms are enclosed in a cubic grid, with a spacing of 1.0 Å 

and a margin of 2.0 Å around the minimum and maximum coordinates around each axis. Grid 

points further than 6.0 Å from protein atoms are filtered out for computational efficiency. Grid 

points within the protein surface, i.e., within 1.0 Å of the van der Waals envelope of an atom, are 

assigned a protein type. Remaining grid points are considered as solvent grid points and 
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investigated further (Figure 1, panel A). For each solvent grid point, the fourteen cubic directions, 

i.e., the three axis and the four cubic diagonals in both positive and negative directions, are 

investigated for contacts with protein grid points. For each direction, if a protein grid point is 

encountered within four grid spacings, viz., 4 Å for the three axis and 6.9 Å for the cubic diagonals 

(grid spacing of 1 Å), a counter is incremented. The final number for a grid point is comprised 

between 0 and 14, and represents the “buriedness” of a solvent grid point (Figure 1, panel B). Grid 

points with a buriedness of 8 or above are considered as putative cavity grid points, and grid points 

with a buriedness of 7 or less are investigated a second time. The second pass is similar to the first 

one, except that solvent grid points are investigated to be in vicinity (three grid spacings) of the 

previously defined cavity grid points. Solvent grid points with at least 8 contacts with putative grid 

points are added to the set of putative cavity grid points. This second pass is necessary to include 

points that are in the middle of large cavities and may be missed by the first pass, which would 

otherwise create voids in large cavities (Figure 1, panel C). 
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Figure 1. Grid-based cavity identification. (A) The protein, represented as a gray shape, is 

embedded in a grid. (B) The number of contacts between grid points outside of the protein surface 

and grid points inside the protein surface is investigated and defines putative cavity grid points. 

(C) A second pass detects grid points enclosed in putative grid points that would have been missed 

in B. 

One of the risks associated with a grid based algorithm is cavity overspanning, i.e., to favor 

very large cavities overflowing at the surface of the protein and have cavity grid points connecting 

cavities that should not be connected (Figure 2). To circumvent this, we developed a metrics to 

estimate how a grid point is surrounded by its peers, within its cavity ensemble. The number of 

A B 

C 
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surrounding cavity grid points within 2 grid spacings (Nneighbors, max. = 124) and their average 

buriedness (Bavg, max. = 14) is used to calculate a “trim score” (scoretrim, equation 1) corresponding 

to how mingled a cavity grid point is, in a set of cavity grid points. Points with a trim score below 

500 are trimmed out. 

��������	 
 ��������� ∗ 10����/��     (Eq. 1) 

 

Figure 2. Cavity overspanning and trimming of spurious cavity points. (A) Yellow points are 

connecting a cavity in the light gray protein chain and another one in the dark gray chain. (B) For 

each cavity point, the count of neighbors and the average buriedness are measured in order to 

calculate the trim score. (C) Grid points with a trim score below 500 are eliminated from the cavity 

grid points set. 

A B 

C 
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Putative grid points are embedded in a graph, where edges are built around adjacent grid 

points in the cube. Bridges and self loops are filtered out, as well as nodes with a degree of three 

or less. At this stage, clusters of more than 40 grid points are identified as cavities. Cavity grid 

points are assigned pseudotypes according to the pharmacophore type of the closest atom: 

hydrophobic (aliphatic and aromatic), polar non charged (hydrogen bond donor/acceptor), 

negative (charged group of Asp/Glu), positive (charged group of Lys/Arg), other (S atom of Cys, 

ring of His, metal ion). Some properties are calculated and stored, e.g., hydrophobicity, cavity 

score (equation 2), median buriedness of cavity points, cavity size in grid points, presence of a 

ligand, list of cavity residues and if the cavity has missing atoms, alternate locations or is between 

different protein chains. By default, cavities with missing residues or a 8th quantile of buriedness 

of 10 or less are excluded. This additional filtering step is performed to avoid generating noise 

from spurious cavities based on missing atoms, or cavities unlikely to be binding pockets because 

they are overly exposed. Finally, cavities are ranked according to the cavity score (scorecavity, 

equation 2) and exported as a PDB file.  

���������� 

��!∗	"���∗#

���
     (Eq. 2) 

where size is the size of the cavity in grid points, median is the median buriedness and q is the 8th 

quantile of buriedness. 

 Computationally intensive calculations are performed with NumPy (1.17.3) and SciPy 

(1.4.1), and therefore benefit from the performance and optimization of these packages. Graph 

methods rely on the NetworkX (2.4) library. 
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Parameters optimization for cavity identification. Many parameters are defined in our cavity 

detection algorithm and are accessible via the command line tool. We optimized the default 

settings to give the best performance on a hand curated data set of high quality protein cavities 

(Supporting Information item S1 and table S1). In short, this dataset contains very well defined 

cavities as well as challenging cases with cavities potentially overspanning or hard to detect. The 

list of parameter values tested can be found in the Supporting Information item 1. In total, we 

tested 190,080 combinations of parameters on a dataset of 106 PDB structures. The score used for 

optimization consisted of a mixed step function using ligand coverage, i.e., percentage of ligand 

atoms covered by cavity points, and cavity coverage, i.e., percentage of cavity points covered by 

ligand atoms. For the ligand coverage, a threshold of 0.66 was used and any number below that 

threshold returned a value of 0. The same was done for cavity coverage with a threshold of 0.5. 

The step values of ligand and cavity coverage were then summed up to give the optimization score 

(scoreoptimization, equation 3). 

������$��	�!����� 
  ��&��'(�)����" +  ��&��'(������       (Eq. 3) 

with coverageligand = 0 if coverageligand < 0.66, 

coveragecavity = 0 if coveragecavity < 0.5 

Validation sets for cavity identification. We assembled different datasets extracted from 

literature sources, i.e., Kahraman et al,57 Huang and Schroeder,33 the 198 drug-target set of 

MetaPocket,36 the DUD-e 102 targets;67 databases, i.e., scPDB68 and PDBbind;69 as well as our 

own compiled datasets, i.e., GPCR set and drugs set. The GPCR set contains 174 GPCR structures 

with drug-like ligands, including orthosteric and allosteric binders. The drugs set contains 540 

drugs in PDB structures curated from the RCSB PDB drug mapping tool. The complete set of PDB 
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files used for validation is available in the GitHub repository of the CAVIAR package (link in the 

Notes section). 

These datasets vary by size, viz., from few dozens in the literature sets to more than 11,000 

in scPDB database, and in their scope and composition. The use of multiple datasets aimed at 

detecting any particularity arising in one dataset. There is a discrepancy between some of the 

numbers in the published cavity identification validation sets and our data. For example, the 

“MetaPocket” dataset is supposed to contain 198 drug targets, but we have 196 PDB in our 

“MetaPocket” validation set. Two of the structures in the original dataset were removed from the 

distribution of released RCSB PDB entries. The absence of the specified ligand identifier in the 

PDB file, as well as duplicated PDB entries are two other reasons for discrepancies in numbers. 

Success in cavity identification is defined by the overlap between cavity points and ligand atoms 

within 1 Å. The direct comparison with other algorithms is performed on Huang and Schroeder’s 

dataset33 and defines success by the presence of a ligand atom within 4 Å of the geometric center 

of the cavity, in order to allow for direct comparison with the literature. 

Ligandability assessments. The ligandability module contains a machine learning algorithm 

trained on the non-redundant set of druggable and less druggable binding sites (NRDLD),70 with 

the same split between training set and test set as previous studies.9,70,71 Among the 113 complexes, 

71 proteins binding sites are considered “druggable” and 42 “undruggable”. The training set 

contains 76 entries (48 “druggable”, 28 “undruggable”) and the test set 37 entries (23 “druggable”, 

14 “undruggable”). A list of 27 descriptors characterizing the chemical environment, the 

buriedness, and the size of the cavities was extracted to train the models (Supporting Information 

item S4). The chemical environment is defined by the projection of the pharmacophore type of the 

protein atoms to their closest cavity grid points. Fifteen machine learning algorithms were tested 
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and ranked by Matthews correlation coefficient between the classifier and the ground truth 

(Supporting Information table S4 and item S5).  Machine learning was performed with scikit-learn 

(0.22.1).  

Subcavity decomposition. Either all available cavities, liganded cavities, or user-specified 

cavities can be investigated for subcavities decomposition. We borrowed concepts from computer 

image recognition for cavity segmentation. First, the cavity grid points ensemble is converted into 

a 3D image, which is then remodeled with an Euclidean distance transform. Grid points are 

assigned values corresponding to their distance to the cavity surface. The points with the highest 

values are used as seeds for a watershed algorithm,72 which segments cavities into subgroups. Seed 

points are separated by at least 3 Å to each other, in order to prevent over-segmentation. The 

watershed algorithm uses the values from the Euclidean distance at each cavity grid point as 

markers of local topography to flood basins starting from each seed until the different basins meet 

(Figure 3). 

Figure 3. 2D representation of the watershed algorithm. (A) Two overlapping circles, e.g., a cavity 

that we seek to segment. (B) The local topography of the image is defined by an Euclidean distance 

transform of the original image. The darkest points are the most distant points to the image 

boundary. (C) Segmented image, with two objects, one in green and one in red, being separated 

after applying the watershed algorithm. (D) Different example obtained by moving the left object. 

A. Overlap B. Distance transform C. Segmented objects D. Oversegmented 
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In this case, an additional seed is defined in between the two object, and generates a spurious third 

segment in light yellow. 

 The watershed algorithm tends to over-segment images.72 A careful definition of the seed 

points and topological values is necessary in order to obtain a reasonable separation of objects. We 

tried to balance the Euclidean distance transform values with the local pharmacophore information 

around each grid point (Shannon entropy of pharmacophore values), but it did not change 

significantly the results. We therefore developed a rationale to merge small “spurious” subcavities 

with their largest neighbor. First, we detect subcavities of size smaller than 50 grid points. For 

each small subcavity, direct contacts, i.e., at 1 Å, with other subcavities are calculated. If more 

than two thirds of the small subcavity grid points are in contact with neighboring subcavities, we 

consider that this subcavity is most likely noise and we add it to the subcavity it has the most 

contacts with. In most cases, subcavities filling these two criteria are interstitial and disk-shaped 

between several subcavities, or extended and laying on top of another subcavity (Figure 4). Image 

segmentation routines are performed with scikit-image (0.16.2). 

Figure 4. Merging spurious subcavities. (A) and (B) are two examples of cavity oversegmentation. 

In some cases, flat subcavities are created at the surface (A), and sometimes they are generated in 

between other main subcavities (B). (C) Summary of the rationale to detect potentially spurious 

A B C D
D 
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subcavities and identify its merging partner. (D) Result of (C) on (B). In both (A) and (B), the 

yellow subcavity is merged with the dark blue one. 

Validation sets for subcavity analysis. A carefully hand-picked dataset of 59 proteins for which 

subcavities can be defined with a high level of confidence, based on experimental knowledge, was 

assembled. This dataset contains 17 protease structures, which are a gold standard of proteins with 

binding pockets divided in precisely defined subpockets. In addition, we compiled 13 structures 

of GPCRs, 5 of bromodomains, 5 of kinases, 2 of acetylcholine esterases, 3 of ligases E3, and 14 

other structures: FKBP, EGFR, Glucocorticoid receptor, TLR4, SMO, DOT1L, CYP51, SYI1, 

Acetylcholine receptor, HMGCoA reductase, tubulin alpha, NaK ATPase, Alpha amylase, and 

HSP90 alpha. 
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RESULTS AND DISCUSSION 

Performance of CAVIAR for cavity identification. The definition of a cavity is a case-by-case 

subjective concept, which makes it difficult to extract meaningful statistics for the comparison of 

pocket identification algorithms. Success in cavity identification is defined as finding at least one 

ligand atom overlapping with cavity grid points, and results can be found in Table 2. CAVIAR 

successfully identifies almost all cavities in the large datasets, e.g., reaching 99% of success on 

the 11,816 complexes of scPDB and 92% on the 4,227 cases of PDBBind. The performance is 

similarly high accross all datasets except the MetaPocket dataset that plateaus at 81%. The 

MetaPocket dataset is enriched in very solvent-exposed ligand-protein complexes, with a flat 

surface of the protein (e.g., PDB codes 1pk2, 1gtb, 1lu1, 1q8m, 1sxk, 1tt6, 2c6g), which, by design, 

CAVIAR does not detect with default parameters (cf. limitations). Our validation datasets, 

especially the larger ones, contain a certain number of noisy PDB structures. For example, we 

noticed several cases of wrong ligand identifier (e.g., a cosolvent instead of the ligand-like 

compound) in the scPDB, PDBBind and MetaPocket datasets, which we corrected, but non-

exhaustively. The hand validation of all of these structures is beyond the scope of this work. It is 

interesting to note that if we restrict the PDBBind dataset to high affinity complexes with a 

micromolar affinity or better, the success in identifying binding pockets raises in comparison to 

the whole PDBBind dataset (Table 2).  

Table 2. General performance of CAVIAR on different datasets. 

 n PDB n ligands top 1 top 3 any missed 

scPDB 11,816 5,459 79% 94% 99% 1% 

PDBBind 4,227 3,277 67% 84% 92% 8% 

PDBBind-HA* 3,335 2,145 74% 90% 95% 5% 

Drugs 554 257 67% 83% 96% 4% 

MetaPocket 196 95 60% 76% 81% 19% 
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GPCR 174 123 89% 97% 99% 1% 

DUD-e 102 102 83% 95% 96% 4% 

Kahraman 98 12 77% 90% 95% 5% 

Success percentages are defined as finding the specified ligand in the top 1, top 3 of ranked cavities 

or at all (any). N PDB indicates the count of PDB structures in the dataset, and n ligands the count 

of unique ligands (the same ligand can be in different PDB structures). *PDBBind-HA is the 

PDBBind dataset restricted to high affinity complexes, with an affinity of 1 µM or lower. 

 In addition, we used Huang and Schroeder’s dataset33 to compare the performance of 

CAVIAR to state of art cavity identification software (Table 3). Overall, CAVIAR performs well 

both on the 48 unbound structures and the 48 bound structures, with a success of 83% and 94% 

respectively in the top 3 ranked cavities. This is similar to the performances of VICE,41 DoGSite24 

and Fpocket.6 CAVIAR fails on three occurrences in the bound dataset, all three are very exposed 

ligand on flat surfaces of the protein (Supporting Information Table S3).  

Table 3. Comparison of CAVIAR against state of art methods for cavity identification on a dataset 

of 48 bound and 48 unbound diverse protein complexes. 

 
Top1 Top3 

method unbound bound unbound bound 

VICE41 83% 85% 90% 94% 

CAVIAR 77% 88% 85% 94% 

DoGSite24 71% 83% 92% 92% 

Fpocket6 69% 83% 94% 92% 

LSite24 75% 75% 85% 88% 

PocketPicker23 69% 72% 85% 85% 

DSite24 65% 69% 77% 79% 

LIGSITE38 58% 69% 75% 87% 

CAST50 58% 67% 75% 83% 

PASS43 60% 63% 71% 81% 

SURFNET42 52% 54% 75% 78% 
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Values of all algorithms except CAVIAR were extracted from 24. CAVIAR’s success values were 

calculated with the definition of 24.  

Cavities are ranked according to their cavity scores, which is a raw estimate of a cavity’s 

interest and relies only on size and buriedness. This score was not developed with the intention to 

order cavities with regards to their ligandability but rather to have an heuristic to limit the number 

of stored cavities in the case of a large scale analysis of the PDB. In addition, it may be unsettling 

for the user to get an unordered list of results. Interface cavities between protein chains are often 

big and will therefore have higher scores than small voids inside a protein chain. PDB files with 

repeats of a protein chain can contain repeats of the same cavity, with small variations of scores 

due to small rearrangements in the binding pocket or grid orientation dependency. These repeated 

cavities may not all contain the ligand, which can place the liganded cavity second or third instead 

of first rank. For these reasons, the top 1 and top 3 values in tables 1 and 2 are underestimates of 

the quality of the cavity detection algorithm. The (underestimated) statistics and the visual 

inspection of the results of the small datasets demonstrate CAVIAR’s good performance in 

detecting liganded cavities with a high confidence. 

Performance of the k-NN classifier for ligandability predictions. We implemented a k-nearest 

neighbors (k-NN) algorithm in order to provide the user with a quick estimation of the ligandability 

of the detected cavities. This method was trained on the same dataset, with the same train/test sets 

as previously published methods,6,7,9,70,71 with 27 descriptors extracted from our cavity detection 

algorithm. The k-NN method came out as the best classifier among the fifteen supervised learning 

algorithms we evaluated, and performs similarly to existing methods (Table 4 and Supporting 

Information table S4 and item S5). 
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Table 4. Matthews Correlation Coefficient (MCC) and accuracy of five software for the prediction 

of ligandability of cavities.   

 k-NN 

(CAVIAR) 
VolSite DrugPred PockDrug Fpocket SiteMap 

MCC 0.73 0.77 0.77 0.54 0.39 0.24 

Accuracy 0.86 0.89 0.89 0.76 0.73 0.65 

Values for VolSite,9 DrugPred,70 Fpocket,73 and SiteMap7 are extracted from 9, values for 

PockDrug from 71. 

In details, the ligandability module of CAVIAR correctly predicts all of the 23 “druggable” 

structures as ligandable, with four of them bearing a value of 0.6, which indicates low confidence 

in the prediction (Supporting Information Table S4). Interestingly, among these four cases, three 

are incorrectly predicted as non ligandable by at least one of the other four ligandability assessment 

software, including one wrongly assigned by all of the other tools as non ligandable. The prediction 

of poorly ligandable targets turns out to be a trickier exercise. CAVIAR mispredicts five of the 

fourteen “unligandable” targets as ligandable. Four of these five cases are liganded cavities, only 

one being apo. Our goal with this module is to give the user a quick idea of a cavity’s ligandability 

with a simple method. Values are discrete between 0 and 1 with a step of 0.2. We recommend to 

consider ligandability values for a given cavity of 0.8 and 1.0 as probably ligandable, 0.4 and 0.6 

as inconclusive, and values of 0.2 and 0 as possibly very difficult to design a ligand for.  

Subcavity segmentation. We assembled a dataset of 59 diverse proteins to judge qualitatively the 

performance of the decomposition of pockets into subpockets. These proteins are classified by the 

RCSB PDB as follows: 21 hydrolases, 14 membrane proteins, 7 transferases, 5 transcription 
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regulators, 4 ligases, 2 oxidoreductases, 2 hormone receptors, 1 chaperone, 1 choline binding 

protein, 1 structural protein and 1 immune system protein. The subcavity segmentation algorithm 

fits qualitatively to the empirical description of binding subpockets in most cases, but depends on 

the quality of the detected cavity. In some cases, subpockets are missing because the entirety of 

the cavity is not detected, or on the contrary, spurious subcavities are present when the cavity 

overspans. In spite of our merging rationale, the decomposition algorithm tends to oversegment 

cavities. We discuss here four cases of what we think are successful cases of cavity segmentation 

with CAVIAR (Figure 5), two cases of failures (Figure 6) and compare them to DoGSite default 

output. These six examples were selected with respect to CAVIAR, not a consensus of CAVIAR 

and DoGSite, which was run separately, and may not represent an accurate depiction of DoGSite’s 

performance. The rest of the results is available on the GitHub repository of the CAVIAR package 

(link in the Notes section). 

 The first example is the binding pocket of the chaperone protein hsp90-α. It contains two 

subpockets, namely the adenine subpocket, where the natural ligand, ADP, binds, and a lipophilic 

subpocket, mostly utilized by small molecule inhibitors to improve their selectivity profiles.74,75 

CAVIAR identifies correctly the main binding pocket and splits it into two subcavities. One 

subpocket is occupied by the adenine head group of the ligand, and the other one by its iodo-

benzodioxole group (Figure 5A). DoGSite recognizes the two subpockets, but produces a larger 

result and generates four subcavities in total (Figure 5B). The second example is the HIV-1 

protease, which contains six well defined subsites, recognizing specifically aminoacid side chains 

of the target peptide to cleave.76,77 CAVIAR generates seven subcavities, six of which corresponds 

to the six landmark subsites S1 to S3 and S1’ to S3’. The S1 subsite is segmented into two 

subcavities, which correspond in the PDB of our experiment to the piperazine and the benzofurane 
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groups of the ligand (Figure 5C, chemical groups in magenta and dark blue), and in the literature 

to the S1 and extended S1 pockets.76 DoGSite, on the other hand, correctly predicts the binding 

pocket, but fails to decompose it into subpockets, i.e., outputs only one single pocket (Figure 5D). 

Our third example is the GPCR of the M1 muscarinic acetylcholine receptor bound to an 

antagonist. Two subpockets overlap with the orthosteric pocket of the receptor, where the ligand 

is present, and three additional subpockets are detected at the level of the allosteric pocket (Figure 

5E). Both in CAVIAR and DoGSite, the orthosteric and allosteric pockets are connected. At the 

level of the orthosteric site, one of the two subcavities of CAVIAR overlaps with the amine binding 

subpocket and contains the quartenary amine of the ligand, while the other defines the more 

hydrophobic part of the binding pocket and hosts the two thiophene moieties of the inhibitor.78 

DoGSite results are similar to CAVIAR, except that it does not segment the orthosteric pocket into 

subsites (Figure 5F). The last successful case discussed here is the EGFR kinase domain bound to 

lapatinib, for which CAVIAR detects six subpockets (Figure 5G). The main binding region of 

ATP, i.e., the adenine, sugar and phosphates regions, is described by one large subpocket, occupied 

by the main hinge binding motif of the ligand and its furan attachment.79 More granularity appears 

at the front and back pockets. The front pocket is divided into two subpockets, not occupied by the 

ligand. The back pocket contains three subpockets, which correspond to three parts of the ligand: 

one contains the chloroaniline, one the flexible linker, and the last one the terminal fluorobenzene. 

The sulfonyl tail of the ligand is solvent exposed and not overlapped by any cavity grid point. The 

cavity from DoGSite overlaps similarly with the ligand, but does not decompose the pocket into 

subcomponents. On the contrary, it detects other connected subpockets far from the ligand binding 

groove, and significantly overspans (Figure 5H). 
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Figure 5. Examples of successful decomposition by CAVIAR and comparison to DoGSite. In all 

panels, the 2D structure of the ligand is depicted with a color code corresponding to the subcavity 

segmentation, or in black if not covered by subcavities. (A) and (B) Chaperone protein hsp90, 

PDB code 2fwz. (A) The CAVIAR subpocket algorithm correctly identifies the adenine pocket, in 

orange and the lipophilic pocket, in blue. (B) DoGSite also identifies the two subpockets (same 

colors), but overspans. (C) and (D) HIV-1 protease, PDB code 1c70. (C) CAVIAR correctly 

identifies the six protease subsites (S3 in cyan, unoccupied by the ligand, S2 in light blue, S1 in 

A B C 

D 

E F 

G H 
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pink and dark blue, S1’ in green, S2’ in yellow, and S3’ in orange), as well as further decomposes 

the S1 site into its main site (pink) and an extended S1 pocket (dark blue). (D) DoGSite 

successfully identifies the pocket, but fails to segment it into subsites. (E) and (F) M1 muscarinic 

acetylcholine receptor, GPCR, PDB code 5cxv. (E) CAVIAR detects two subpockets in the 

orthosteric site, which correspond to the amine site (orange spheres) and the lipophilic pocket (blue 

spheres). The allosteric cavity is connected to the orthosteric one, and is decomposed into three 

subpockets. (F) DoGSite similarly detects and connects both the orthosteric and allosteric sites, 

but fails to segment the orthosteric pocket. (G) and (H) EGFR kinase, PDB code 1xkk. (G) 

CAVIAR pulls together one main subpocket for the adenine site, the sugar site and the phosphates 

region (red spheres). It further splits the pocket into its front pocket region (two subpockets in light 

blue and yellow) and into its back pocket (three pockets in light green, orange and light blue). (H) 

DoGSite does not segment the ligand binding pocket into further elements and significantly 

overspans towards the back of the protein (salmon and pink dots). 

 In some cases, CAVIAR fails to produce any relevant deconstruction of cavities into 

subpockets. Examples of such include factor Xa (PDB code 2bqw) and HCV NS3 protease (PDB 

code 3kee). In both cases, parts of the ligands and of the cavities are very solvent-exposed, which 

hinders the detection of the entirety of the cavities (Figure 6). Since the detected cavity is too small, 

it cannot be segmented effectively into subpockets. Both CAVIAR and DoGSite fail in these two 

cases, although DoGSite tends to detect larger portions of the binding pocket.  
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 Figure 6. Examples of unsuccessful decomposition by CAVIAR and comparison to DoGSite. In 

all panels, the 2D structure of the ligand is depicted with a color code corresponding to the 

subcavity segmentation, or in black if not covered by subcavities. (A) CAVIAR and (B) DoGSite 

cavity detection and segmentation of factor Xa protease, PDB code 2bqw. (C) CAVIAR and (D) 

DoGSite cavity detection and segmentation of HCV NS3 protease. In all cases, both software fail 

at describing correctly the entirety of the cavities and their complexity in terms of subpockets. 

Visual interface. CAVIAR is available both as a GUI and as a command line tool. The GUI is 

developed to be as friendly and transparent as possible for the user, on the contrary to the command 

line tool. The command line tool comes with many options to provide power users with batch use 

and the ability to tune their cavity searches. For instance, most parameters of the grid search can 

be adjusted and tuned for particular protein families or types of cavities; filters can be activated to 

include/exclude PDB files based on experimental method, resolution, deposition date, PDB 

version; metal atoms and well-coordinated water molecules can be incorporated or not in the 

search; presence of a ligand and how much of its atoms are covered by cavity grid points can be 

investigated. The profusion of parameters can be unsettling, thefore a website was developed to 

guide the user with extended information (link in the Notes section). The GUI restricts the options 

C A B D 
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to default and consists of two windows. The first window relates to cavity identification, in which 

the user can specify a PDB code to download or a local PDB file, select a protein chain, exclude 

or not cavities with missing atoms and interchain cavities, whether to open PyMOL80 to visualize 

the results and choose the automatic coloring scheme according to buriedness, cavity number or 

pharmacophore type (Figure 7A). The second window relates to the subcavity decomposition and 

has similar options (Figure 7B). 

Figure 7. Visual interface for the CAVIAR cavity detection (A) and subcavity decomposition (B) 

algorithms. 

Liganded cavities are more complex than apo cavities. We analyzed 97,221 X-ray structures 

from the PDB that passed a brief filtering protocol, viz., only X-ray crystallography structures with 

a resolution below 2.5 Å and no classification as obsolete or having caveats in the PDB header. 

On average, each PDB structure has 8.3 ± 11.6 cavities and a median of 5, with the number of 

cavities per PDB file increasing with the number of residues in the PDB file and the number of 

A 

B 
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protein chains. Cavities are segmented on average into 2.7 ± 2.9 subcavities, with a median of 2. 

About 140,000 of the 800,000 cavities we detected are liganded, with an average ligand coverage 

of 79 ± 25% and a median of 88%. The analysis of holo cavities tend to show that cavities do no 

overspan significantly, as the average cavity coverage by ligand atom is 60 ± 31% and a median 

of 62%. This is a much higher cavity coverage compared to previous reports, arguing that ligands 

fill on average only a third of their binding pockets.56,57 If we focus our analysis on the drug-like 

ligands of the PDBBind dataset, the cavity coverage rises to 74 ± 26% with a median of 82%. 

Liganded cavities tend to be bigger, more hydrophobic, more ligandable and more complex 

geometrically (segmented into more subcavities) compared to apo cavities (Table 5). Ligands 

occupy on average 2.5 ± 1.5 subcavities with a median of 2.  

Table 5. Differences between liganded cavities and holo cavities in the PDB. 

 
Liganded cavities 

N=138,632 
Apo cavities 
N=668,621 

Size (Å3) 
353 ± 423 

Median = 238 
145 ± 208 

Median = 83 

Number of subcavities 
4.4 ± 4.6 

Median = 3.0 
2.3 ± 2.3 

Median = 2.0 

Hydrophobicity 
45 ± 17% 

Median = 43% 
39 ± 17% 

Median =  38% 

Ligandability 
0.62 ± 0.27 

Median = 0.60 
0.51 ± 0.26 

Median = 0.40 

Liganded cavities are bigger, more hydrophobic, more ligandable and more complex geometrically 

(more subcavities) than apo cavities. All comparisons are significant with Kolmogorov-Smirnov 

tests with a significance level of 0.01 (Supporting Information Table S6). 

Binding affinity increases with the number of subcavities filled by the ligand. We compared 

the binding affinities of ligand to their targets and the number of subcavities they interact with on 

the PDBBind dataset and on more particularly two types of drug targets in the PDBBind, proteases 
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and kinases. The more subcavities a compound fills, the higher the affinity. This effect is 

particularly striking for compounds binding to more than three subcavities, most of them bearing 

a binding affinity in the nanomolar range or better (Figure 8). 

Figure 8. Distribution of binding affinities expressed as –log(affinity) in function of the numbers 

of subcavities filled by the ligand. (A) Protease dataset. In blue, ligands filling one or two 

subcavities (n=453), orange three subcavities (n=154), and green four or more subcavities (n=194). 

The peak of activity is in all cases in the nanomolar range, however, the more subcavities are filled, 

the less there is micromolar or worse binders and the more low nanomolar or better binders are 

found. (B) Kinase dataset. Same colors as A, with 249 molecules binding to one or two subcavities, 

122 to three and 103 to four or more. (C) Entire PDBBind dataset. Same colors as A, with 2,456 

molecules binding to one or two subcavities, 800 to three and 579 to four or more. 

Binding affinities increase linearly in the protease dataset when more subpockets are involved 

in ligand binding (Table 6). In details, 801 unique proteases pockets are liganded and the –

log(affinity) ranges from 6.7 for ligands filling only one subcavity to 7.0 for two, 7.5 for three and 

8.2 for four and more subcavities. Differences between subsets are significant according to 

Kolmogorov-Smirnov tests for all subsets, i.e., one, two or three subcavities filled versus the four 

or more subcavities subset, but also joined subsets of two and less subcavities versus four and 

A.  Proteases B.  Kinases C.  Entire PDBBind 
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more, and three or less versus the four and more subcavities (detailed statistics in Supporting 

Information Table S6). 

Table 6. Affinities according to number of subcavities bound by the ligand in the protease dataset. 

 1 subcav 2 subcavs 3 subcavs >3 subcavs 
Proteases (n = 801) 6.7 +/- 2.0 (207) 7.0 +/- 2.0 (246) 7.5 +/- 1.9 (154) 8.2 +/- 1.6 (194) 

Mean values and standard deviation of –log(affinity) are given, with the number of PDB entries 

for each category in parenthesis. 

In general, if we extend the analysis to kinases and the rest of the PDBBind dataset, compounds 

filling four or more subpockets bear a substantially more favorable binding affinity to their drug 

target. Only 9%, 16% and 19% of ligands binding to at least four subpockets have an affinity to 

their target in the micromolar range or worse in the proteases (17 out of 194), kinases (16 out of 

103), and entire PDBBind datasets (111 out of 570), respectively. On the contrary, compounds 

binding to a maximum of three subcavities are 29%, 36% and 42% in the micromolar or worse 

range, in the proteases, kinases and entire PDBBind datasets, respectively (Table 7). 

Table 7. Comparison of binding affinities of ligands occupying up to three subcavities and ligands 

occupying more. 

Micromolar or worse 
ligands occupying 

Proteases 
(801) 

Kinases 
(474) 

PDBBind 
(3,826) 

Up to 3 subcavities 29% (of 607) 36% (of 371) 42% (of 3,256) 

> 3 subcavities 9% (of 194) 16% (of 103) 19% (of 570) 
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Numbers in parenthesis indicate the total count of unique PDB in each set. The proportion of 

weak binders binding to up to three subcavities is doubled to tripled in all datasets compared to 

ligands binding four or more subcavities. 

Limitations of the method. The main limitations of CAVIAR are inherent to the experimental 

data it relies on, primarily protein structure obtained with X-ray crystallography. This induces a 

series of caveats that cannot be circumvented. Only proteins with a resolved static structure can be 

investigated. If a flexible cryptic pocket of interest is not present in the structure given as input to 

CAVIAR, it will not detect it. While this limitation cannot be solved systematically, it can be 

mitigated by generating series of structures in silico, e.g., by producing homology structures and 

generating conformational ensembles from sampling methods.81–83 Crystal contacts, artifacts and 

protein chain repeats can produce spurious non-productive interchain cavities (Figure 9A). 

Significant work has been invested into detecting biologically relevant protein chains contacts,84,85 

and we may implement such an algorithm in later versions of our tool. The second intrinsic 

limitation of CAVIAR is that it is designed for discovering cavities potentially binding small 

organic drug-like compounds, which, de facto, excludes surface patches such as protein-protein 

interfaces and very exposed ligand binding grooves (Figure 9B). This may change in the future:  

different sets of parameters can be optimized for detecting surface patches, or even protein-protein 

interaction interfaces. Critical settings are accessible via a configuration file and optimizing the 

software for the detection of exposed binding grooves mostly requires the assembly of carefully 

curated target optimization datasets. 

Technically, CAVIAR suffers from other kind of limitations. As most cavity detection tools, 

it may overspan cavities, in particular because validation routines tend to reward larger pockets. 

We optimized the default set of parameters to restrict cavities to direct protein surroundings of 
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known ligands, but some cases still evade our optimization and produce very large invaginations 

(Figure 9C). Finally, the validation of a protein cavity detection algorithm is arduous, due to the 

inherent fuzziness of the definition of what is a “protein cavity” and the long-standing difficulty 

to design a meaningful validation dataset. This shortcoming is exacerbated for the segmentation 

of cavities into subcavities, for which a systematic definition simply does not exist to our 

knowledge. Providing that the input cavity is correct, the subsite decomposition suffers from very 

few false negatives. In other words, it tends to produce more subpockets than less, e.g., 

oversegment the pocket rather than fail to characterize a subcavity. 

Figure 9. Representative cases of failure with CAVIAR. (A) Spurious interchain cavity. A cavity, 

in orange spheres, is found at the interface between two protein chains, in white cartoons, which 

is a crystal contact and not biologically relevant (PDB code 1ejd). (B) Case of an exposed ligand, 

in blue sticks, on top of a flat surface of a protein, in white surface (PDB code 2pk4). The binding 

surface patch is too exposed to be detected with CAVIAR’s default set of parameters. (C) A cavity, 

in orange spheres, overspans inside the entire protein chain, in white surface representation (PDB 

A B C 
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code 2cvc). However, in this case, numerous ligands, in blue sticks, are present everywhere inside 

the protein. 

 

CONCLUSIONS  

The most fruitful applications of cavity detection tools depend on what questions the generated 

data is used to answer to: can we use the generated cavities and cavity descriptors to evaluate 

ligandability or to compare cavities? Both these applications require to have a cavity detection 

software with high performance, accessible, and tunable for one’s needs. Many of the published 

software are closed-source, incorporated in commercial packages, accessible only in the form of 

webservers, or, more often than not, simply no longer accessible. The open-source availability of 

CAVIAR on GitHub and Anaconda combined with its comprehensive Python language defines it 

as a powerful toolkit to build upon with. A dedicated website is available with step-by-step usage 

notes and an extended manual to help the community adjust CAVIAR to their needs (See the Notes 

section for the website, GitHub and Anaconda links). The cavity detection, characterization and 

segmentation runs fast, ranging from a five seconds average on the DUD-e 102 targets (including 

tool initialization, reading and writing the files) to a ten seconds average on the scPDB dataset on 

one core of a Xeon E5-4620 CPU of 2012 with a clock speed of 2.20 GHz. We did not run a 

systematic benchmark of the computational efficiency of CAVIAR against other similar software. 

The qualitative comparison of CAVIAR, DoGSite, Schrödinger’s SiteMap and Fpocket on few 

test cases indicates that CAVIAR is much faster than DoGSite or SiteMap, but slower than 

Fpocket. 
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Moreover, some novel notions were introduced as an attempt to refine the cavity detection 

and address challenges that are not resolved in the literature, such as cavity overspanning of 

buriedness-based algorithms and the analysis of protein subpockets. The comparative investigation 

of protein subcavities may help to understand selectivity issues or polypharmacological effect of 

certain drugs, also known as chemoisosterism of protein environments.86 In other words, it is 

possible to define matched “subcavities” pairs of protein cavities comparably to what is done with 

matched molecular pairs of chemicals.87 The notion of subcavity is an ill-defined concept and the 

robust partitioning of binding pockets into subpockets is an unmet need in medicinal chemistry 

and chemical biology. CAVIAR aims at a systematic detection and classification of protein 

subcavities. Moreover, the deconstruction of pockets into subcavities may help for partial cavity 

matching in the context of cavity comparison.88 Our analysis of the PDB resulted in significant 

differences between apo and holo cavities, in terms of size, ligandability, hydrophobicity and 

complexity. Finally, in line with the fragment-based drug design paradigm,52,54 we found that the 

binding affinity of small molecule ligands scales reasonably with the number of subcavities they 

fill, with a propensity to high affinities, in the nanomolar range or better, for ligands binding to 

more than three subcavities. 
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ASSOCIATED MATERIAL 

Supporting Information. 

 List of parameters optimized for cavity detection, analysis of the potential grid dependency of 

CAVIAR’s algorithm, details of results on the 48 bound/unbound validation dataset, presentation 

of the ligandability descriptors and ligandability module, additional statistics on the PDB, scPDB, 

PDBBind and significance tests (PDF) 

AUTHOR INFORMATION 

Corresponding Author 

*J.-R.M., e-mail: jean-remy.marchand@novartis.com 

*F.S., e-mail: finton.sirockin@novartis.com  

ORCID 

Jean-Remy Marchand: 0000-0002-8002-9457 

Bernard Pirard: 0000-0003-0702-0955 

Peter Ertl: 0000-0001-6496-4448 

Finton Sirockin: 0000-0003-2536-7485 

Author Contributions 

The study was designed by all authors. J.R.M. wrote the software and performed the analysis. 

J.R.M. and F.S. analyzed the results. The manuscript was written by J.R.M. and F.S.. All authors 

have given approval to the final version of the manuscript.  

Notes 



 33

Installation notes, user manual and help for CAVIAR are available at https://jr-

marchand.github.io/caviar/. The CAVIAR GUI and CAVIAR command line tool are available on 

GitHub at https://github.com/jr-marchand/caviar and on Anaconda cloud at 

https://anaconda.org/jr-marchand/caviar under a MIT license. The GitHub repository also hosts 

the validation datasets. 
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