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Abstract

MOFs and COFs are porous materials with a large variety of applications including gas
storage and separation. Synthesised in a modular fashion from distinct building blocks, a
near infinite number of structures can be constructed and the properties of the material can
be tailored for a specific application. While this modularity is a very attractive feature it also
poses a challenge. Attempting to identify the best performing material(s) for a given appli-
cation is experimentally intractable. Current research efforts combine molecular simulations
and machine learning techniques to evaluate the simulated performance of hundreds of thou-
sands of materials to identify top performing MOFs and COFs for a given application. These
approaches typically rely on moderated brute-force screening which is still resource-intensive
as typically between 70 - 100 % of the hundreds of thousands of materials must be simulated
to create a training set for the machine learning models used, restricting screening to rela-
tively simple molecules. In this work we demonstrate our novel Bayesian mining approach
to materials screening which allows 62 - 92 % of the top 100 porous materials for a range of
applications to be readily identified from large materials databases after only assessing less
than one percent of all materials. This is a stark contrast to the 0 - 1 % achieved by conven-
tional brute-force screening where porous materials are just chosen at random during a high
throughput screening. Through this accelerated virtual screening process, the identification of
high performing materials can be used to more rapidly inform experimental efforts and hence
lead to an acceleration of the entire research and development pipeline of porous materials.

1 Introduction

Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) are highly modular,
porous materials which have been studied for a range of applications due to their modularity
allowing for development of bespoke materials [1, 2]. This modularity is a double-edged sword
however, as their large number presents a bottleneck in the research and development pipeline.
For instance, tens of thousands of experimental structures have been published in the Cambridge
structural database [3] and hundreds of thousands of hypothetical structures have been created
computationally — e.g. in the hypothetical Metal Organic Framework (hMOF) [4] and the hypo-
thetical Covalent Organic Framework (hCOF) [5] databases. If the goal is to identify the highest
performing material for a given application, then a vast number of MOFs or COFs must be studied
in order to suitably explore the material space and identify top performing materials.

The systematic evaluation of materials via experimental high throughput screening (HTS) is highly
resource-intensive both in terms of time and money. To mitigate these costs, computational based
HTS has become prevalent since it allows for MOF and COF structures to be screened against a
target application on a drastically reduced timescale without the associated costs of synthesising
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and characterising the materials. Computational HTS for adsorption applications typically makes
use of grand-canonical Monte Carlo (GCMC) based molecular simulations [6] and has been used in
the screening of MOFs and COFs for numerous gas storage and separation applications [5, 7–15].

Computational HTS has allowed for the systematic evaluation of hundreds of thousands of struc-
tures found in materials databases like the hMOF database and hCOF database. The compu-
tational costs associated with routinely performing GCMC screenings on such a large scale has
however become prohibitive, due to the length of time and computational power required to sim-
ulate each material. To cut down on the number of materials which must be simulated, many
researchers are beginning to incorporate machine learning (ML) into their materials screenings as
summarised in the recent review by Jablonka et al. [16].

ML uses a set of mathematical tools to approximate the relationship between independent input
variables x and corresponding dependent output variable y. By observing prior training samples,
it determines a suitable “approximate function” f̂ that maps each input x to a corresponding
approximate output ŷ = f̂(x). Ideally ŷ = y but in practice ŷ is close to but not equal to y due to

the approximate nature of f̂ . Once developed, this approximate function allows for the prediction
of the dependent value even for previously unseen instances of x.

As an example, in the context of finding the most suitable porous materials for methane storage,
a ML model could be trained to relate the amount of methane adsorbed by a MOF (output y)
from several descriptors such as void fraction and surface area of that MOF (inputs x). Making
a prediction with a trained ML model is quicker by several orders of magnitude than molecular
simulations, facilitating even larger HTS.

Most ML based screening studies use 70 - 80 % of the available materials to train the model
[16] corresponding to tens of thousands of simulations. The remaining 20 - 30 % of the data is
then used to validate the trained model. This approach does not scale to scenarios where the
required simulations are computationally expensive in the first instance, for example due to the
examination of complex and/or mixed adsorbates as part of the HTS. In order to investigate these
scenarios then, a new approach is required to evaluating large material databases.

Finding an optimal MOF or COF for an application is not an easy task. Molecular simulations
are “black box” functions in terms of parameters optimisation: there is no analytical expression
trivially linking a given structure (or features of those structures) to a quantifiable property such as
gas adsorption. Conducting molecular simulations is also expensive enough that it is not tractable
on databases containing tens of thousands of structures; moreover these kind of simulations provide
noisy data. An elegant approach would be to replace the non-analytical black box simulations by
a well-behaved analytical function whose statistical properties and derivatives are known. Such
a “surrogate” function can then be used as a good general interpolator in place of the black box
function. One of the more popular approaches to do exactly that is Bayesian optimisation (BO)
which uses Gaussian processes as the surrogate model, supplemented by an acquisition function
to select materials for testing [17–19]. The Gaussian processes provide interpolated values with
uncertainties and the acquisition function represents the typical exploration/exploitation trade-off.

A further advantage of BO is that it allows the model to learn as a scientist would: in a continuous,
iterative process capable of autonomously selecting which material to investigate next. As such it
is a good example of active learning (AL), a type of ML where the specific goal is to rapidly train
a reliable ML model in an iterative fashion rather than a batch process requiring large volumes of
data upfront [17–19].

The application of BO in materials science is limited to a small number of publications applying the
technique to materials screening [20–23]. Indeed, in a recently published review on the application
of ML in the study of porous materials by Jablonka et al. only four paragraphs out of 64 pages
discussed the application of AL [16]. For HTS of over 100,000 materials for various applications,
BO based active learning represents an attractive approach for materials screening [23–25].

In this paper, we demonstrate the successful application of BO assisted material screenings for
several adsorption targets using our recently developed AL framework, the Autonomous Materials
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Investigator (AMI). To demonstrate the robustness of the AMI, we performed three separate
autonomous HTS on different porous material targets:

1. Methane storage in COFs, evaluated using the deliverable capacity (working volume of
methane which can be adsorbed by a COF) [5]

2. Methane storage in COFs, evaluated via the Wiersum adsorption performance indicator
(API) [26]

3. Carbon dioxide/nitrogen separation (carbon capture) in MOFs, evaluated by a bespoke
metric based on work by Wilmer et al. [14]

For all three HTS, the features used to describe the materials are investigated and the rate of
acquisition of top performers by the AMI in each study is assessed.

2 Methodology

2.1 The Autonomous Materials Investigator (AMI)

The AMI conducts a HTS by first selecting a number of randomly sampled materials from the given
material database and determines their performance with full-fledged molecular simulations. After
this initial sampling, the AMI trains its surrogate model, a Gaussian processes regressor, from
the features of the sampled materials (descriptive input parameters) and their target scores (their
performance in the given adsorption application). The surrogate model then provides Bayesian
predictions of the performance scores of the remaining untested structures using existing data
from the already-tested structures. These predictions are then used to identify the most-likely top
performers from the remaining materials, which are then sampled using one of several acquisition
functions, and tested by running a molecular simulation on the sampled material. The results of
the molecular simulation are finally added to the training set for a next model fitting. The process
of conducting Bayesian predictions and sampling likely top performing materials then repeats until
a predetermined number of materials have been sampled and investigated (figure 1).

Randomly
select
initial

materials

Conduct
molecular
simula-
tion(s)

Fit model
to data

Select next
material
for inves-
tigation

End
material
screen

Figure 1: Overview of AMI screening using molecular simulations to investigate materials selected by
model. The iterative sampling loop is highlighted green.

As more structures are tested, the AMI’s knowledge is regularly updated which refines the feature-
score relationship within the surrogate model. Thus, the AMI continually updates the approximate
function f̂ as it iteratively samples individual materials. The AMI’s major advantage is that it
autonomously samples materials from the database, while training itself, allowing to identify the
absolute top performers after probing only a small fraction of the input database. Therefore, it
does not require an entire, pre-computed, database (in contrast to other ML approaches as per
Jablonka et al. [16]). In doing so, full simulations are performed for each sampled material, always
providing reliable data instead of ML approximates.

In the search for the top performers, it is vital for the AMI to strike a balance between exploitation
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(testing of materials similar to those already sampled with the highest predicted scores), and
exploration (testing of materials which the AMI is more uncertain about in terms of their predicted
performance) when sampling materials for investigation. Testing materials with dissimilar features
(exploration) is essential for exploring the whole materials space and ensuring that the AMI is
not stuck testing only similar materials while ignoring other high performing materials with very
different features. Equally however, exploration can result in testing a high proportion of low
performing materials.

In traditional Bayesian optimisation, the objective is to find the single highest value corresponding
to the material with the largest performance indicator for the application considered. However,
in screening for adsorption applications we are interested in identifying a subset of high perform-
ing materials to study in more detail (e.g. using more computationally expensive simulations
or experiments) to determine feature-performance relationships more generally and find a collec-
tion of best performing materials. This broadened identification of top performing materials is
demonstrated through the use of two novel approaches we refer to as “Bayesian mining” [27].
Our Bayesian mining algorithms - Greedy tau, and Greedy N - either target all structures with a
performance score above some threshold (e.g. the methane storage target set by the US Depart-
ment of Energy) or all of the structures in some chosen fraction of the full database (e.g. the top
100). This latter target has the advantage that it requires no user input or prior knowledge of the
range of expected performance scores. Here, we compare our two Greedy algorithms against two
conventional Bayesian acquisition functions, expected improvement (EI) and Thompson sampling,
which both search for the single best material in the entire database [28].

In order to provide a proof of principle of the method, we used pre-existing brute-force screening
results from a range of different screening scenarios as detailed in section 2.3. We looked up the
corresponding material performance value from the published data, which replaced conducting a
molecular simulation on the sampled material as this allowed for repeated runs of the AMI to be
conducted in significantly less time than with full simulations. It is worth noting that even though
we focus on molecular simulations of adsorption here, the framework can be easily adapted to any
process where autonomous screening would be beneficial.

2.2 Features

As our aim is to predict the adsorption performance of MOFs and COFs, we used a set of physical
and chemical properties as descriptive features that are typically used to characterise porous
materials such as chemical composition, surface area, void fraction and pore diameter. In addition,
we computed topological features, which provide a characterisation of the shape of the pore space.
A full list and description of the features are given in table S1.

The topological features were calculated following the persistent homology method first used
by Lee et al. [29] with the notable difference that we performed calculations on the material
structure only. This makes our topological features an intrinsic property of the structure that
is independent from the choice of adsorbate, allowing it to be re-used as a feature in different
adsorption screening scenarios. For simplicity, we applied the method to a 3×3×3 supercell. For
a handful of structures the use of that fixed number of cells led to the violation of the minimum
image convention (maximum persistent homology length scale of radius 4 Å, see section S6). These
structures were simply discarded. Full details are given in supporting information S6.

Prior to being used in the AMI, for each target assessed, all feature values were standardised by
subtracting the mean value of the feature within the target database and dividing this value by
the standard deviation of the feature. This is a standard pre-processing step in ML so that all
features are provided to the model in a similar numerical range.

2.3 Scores

We used the following three adsorption quantities as ML scores throughout this paper i.e. the
numerical values used to assess the performance in each application. They were chosen as they
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represent application focused adsorption challenges currently being investigated and also require
increasingly more nuanced features for the AMI to suitably model the feature-score relationship.

Deliverable capacity Firstly, we use the volumetric deliverable capacity, given in equation 1
for methane stored at 65 bar and released at 5.8 bar at 298 K as simulated by Mercado et al. [5]
for 69,840 hypothetical COFs:

DCCH4
= N65 bar −N5.8 bar. (1)

DC is the deliverable capacity and N is the volumetric amount of methane adsorbed in v(STP)/v.

Wiersum adsorbent performance indicator (API) Secondly, we used the same dataset
from Mercado et al. and considered a modified version of Wiersum et al. ’s adsorbent performance
indicator (equation 2) which was originally developed for assessing the adsorption of mixtures
[26]. The Wiersum API is an engineering performance metric which recognises that the optimum
material for an adsorption process will be a compromise between the deliverable capacity and
the heat of adsorption (∆Hads) which indicates the energy required to release stored methane for
utilisation. The heat of adsorption is sometimes used as a feature in gas adsorption predictions
[30, 31] but is intentionally included as a component of the target in this paper to ensure that
the feature input for each material contains only properties that can be calculated a priori for
the whole database and can be reused for other applications. Hence, all data that rely on GCMC
simulations and are application-specific are only considered as scores:

APIWiersum =
DCCH4

∆Hads
. (2)

Selectivity API To test the AMI on a more demanding application, we used data published
by Wilmer et al. for N2 and CO2 mixture adsorption in the hMOF database [14]. Here we chose
a mixture containing mole fractions of yCO2

= 0.1 and yN2
= 0.9 adsorbed at 1 bar and desorbed

at 0.1 bar at 298 K; the conditions used by Bae and Snurr to represent flue gas separation by
vacuum swing adsorption [32]. Note that the data, although used to screen MOFs for mixture
separation, are based on pure component simulations which are much quicker to run than mixture
simulations [14]. While it has been noted that the the original force fields used by Wilmer et al.
[14] potentially caused over-prediction of adsorption in fluorine containing MOFs [33], the hMOF
data was used in this work without any further treatment.

In order to identify high-performing MOFs for carbon dioxide capture from flue gas, we used an
adsorption performance indicator based on the CO2/N2 selectivity of the MOF. Selectivity is in
general defined as per equation 3

Si,j =
xi/xj
yi/yj

. (3)

where xi is the mole fraction of component i in the pore and yi is the mole fraction in the bulk.
For our case looking at a mixture of 10 mole-percent CO2 and 90 mole-percent N2 this becomes
equation 4, with a slight modification:

ŜCO2,N2
= 9×

NCO2

NN2
+ 1

. (4)

We added 1 to the denominator to avoid division by zero in cases where the MOF did not take
up any N2 during the simulation. It is worth noting that this change does not alter the relative
rankings of selectivities.
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The heat of adsorption was not included in the data of Wilmer et al. [4]. Our selectivity API
(APIS) given in equation 5 therefore only combines two important evaluation criteria for adsor-
bents in pressure swing applications: the selectivity under adsorption conditions, and the working
(or deliverable) capacity of CO2

APIS = log
(

1 + (Ŝ ×DCCO2
)
)

(5)

The resultant distribution of values inside the log is monomodal and tailed towards high values
[34, 35]. As Gaussian processes assume normally distributed targets, we took the logarithm of
those values APIS to reduce the effect of tailing and increase the symmetry of their distribution.

2.4 Experimental Design

The efficiency of four acquisition functions Greedy tau, Greedy N, Thompson, and EI were assessed
for each of the previous three performance scores until a given percentage of the overall database
had been sampled. We chose to stop our sampling at about 1 % of the entire database in each
case. This corresponds to 500 COFs from the entire hCOF database [5] and 950 MOFs from
the hMOF database [14]. These totals include the 50 samples which were selected randomly to
initialise the AMI, after which the AMI updated itself with each further sample taken.

In addition to the acquisition functions, the impact on the AMI of using distinct feature groups
physical (P), chemical (C) and topological (T), and combinations of these groups (PT, PC, CT)
relative to the whole available feature space (PCT) was also assessed. A full list of the features
in the different feature groups available in each database is given in table S1. The feature matrix
resultant from these different feature usages were all brought up to the same total number of
features as the full PCT feature matrix for each target by the inclusion of “white noise” features,
containing random values for each material, sampled from a standard normal distribution. This
ensured the same number of features would be present in each tested group, allowing for fairer
comparison between results. To benchmark the performance of each feature group combination, a
feature matrix containing only white noise (R) was also created, to which the AMI attempted to
model the relationship with the given target values. Feature groups rather than singular features
were assessed here as the AMI requires a lengthy, iterative process of sampling and fitting in order
to “fully” train. This notably increased the training time and therefore prohibited conventional,
univariate feature selection techniques used in typical ML scenarios [16].

Each combination of acquisition function and feature group was tested 16 times, each time starting
with a different set of randomly sampled materials in the initialisation process, so as to obtain
reliable average performance values and demonstrate the consistency of the AMI’s ability. Con-
fidence intervals were generated by bootstrap sampling — with replacement — the maximum
number of top performing structures identified and taking the 0.5% and 99.5% quantiles of the
resulting sample means (i.e. confidence level of 99%).

3 Results and Discussion

3.1 Feature Comparison

Selecting the features which describe the training examples in a data set is an important process in
any ML workflow. Different problems require different features to suitably model the relationship,
however the number of features should ideally be constrained due to the negative impacts of the
number of features on model training times [16]. This is especially true when using a Gaussian
process surrogate model as its training time is more negatively impacted than typical ML models
with large numbers of features [36]. Hence the first stage of demonstrating the AMI in the three
target scenarios is the identification of features which allow for suitable mapping of the COF and
MOF structures to the target values. Due to the AL approach employed by the AMI, however, the
relative importance of the features were expected to change throughout the screening as different
groups of materials were sampled by the AMI in the discussed exploration/exploitation trade-off.
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Figure 2: Box plots of AMI performance for each target scenario using different feature groups. Each
box plot is constructed from 16 repeats with all materials sampled using the EI acquisition function. Each
repeat consists of 500 AL iterations for COFs or 950 AL iterations for MOFs (∼ 1% of the respective
databases).

As the purpose of this work is to sample highly-performant materials from large databases, the
metric used to assess the impacts of different features was the number of top 100 performing
materials sampled in the total number of materials sampled by the AMI using conventional EI
sampling. As the performance values of each screening scenario are taken from prior studies and
are therefore known, it was possible to use this benchmark. The 50 materials randomly sampled to
initialise the AMI were discarded from the assessment so that only materials intentionally sampled
by the AMI would be considered.

From the results of the feature assessment in figure 2, a general trend was observed for the methane
targets determined for the hCOF database, where physical features dominated with some benefit
from the inclusion of topological features and a negligible contribution from the chemical features
which performed as well as random noise. Overall, for the deliverable capacity target, the feature
group making use of all features (figure 2 PCT) had allowed the AMI to sample a median of 46
(44-47 at 99% confidence level) top 100 performers after only 500 materials sampled. As each
AMI sampling represents an unknown material being simulated in order to obtain its deliverable
capacity, the power of the AMI is immediately apparent with almost 1 in 10 materials sampled
being in the top 100 COFs from a database containing over 69,000 entries. The AMI sampling of
the hCOF database for the Wiersum API target was even more successful, with a median of 52
(51-55 idem) top 100 performers sampled. Here the best performance of the AMI was achieved
in the absence of chemical features only taking into account physical and topological features
(figure 2 PT). The preference for the AMI in using feature group PT over PCT for the Wiersum
API sampling was likely due to the limited ability of binary chemical features (element present
or not in the structure) to convey sufficient information on the target and hence “misled” the
AMI in this instance. The notably higher number of top performers sampled was likely due to
fewer COFs satisfying the physical requirements of being top performers, and hence providing
narrower distributions of values which allowed the AMI to sample these materials more easily.
This can be seen in figure S1 where the distributions of physical features are much tighter for the
top performing Wiersum API and deliverable capacity targets.

In contrast to the trend noted for the hCOF adsorption targets, the feature group resulting in the
highest AMI performance for the hMOF Selectivity API target was the combination of chemical
and topological features (figure 2 CT). This group had earlier lead the AMI to under-perform
compared to physical feature groups but now allowed for 17 (13-18 idem) top 100 MOFs to be
sampled. Compared to the results obtained by the AMI for sampling COFs for different methane
based adsorption targets, the success of the AMI in this screening scenario is still notable as 17
top 100 performing MOFs were sampled from over 130,000 in only 950 AMI iterations. This
significantly outperforms conventional brute-force screenings, particularly when the complexity of
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Figure 3: Comparison of AMI acquisition rate of top 100 performing materials for different acquisition
functions: EI (blue), Thompson (red), Greedy N (green), Greedy tau (orange). The repeats for each
acquisition function assessment are shown as faint lines, with the median sampling as a function of AMI
iteration shown by the bold line. Targets shown are: a) methane deliverable capacity (hCOF), b) Wiersum
API for methane (hCOF), c) Selectivity API for CO2 and N2 (hMOF).

the target (selective adsorption of CO2 and N2) is considered.

For both hCOF and hMOF targets, the trends observed using the EI acquisition function with
different feature groups were also observed with the other acquisition functions with the exception
of some distributions being notably wider or tighter (see supporting information S5).

3.2 Bayesian Mining with AMI

The different AMI screening functions EI, Thompson, Greedy N, and Greedy tau were compared
with the AMI able to access all features available in the PCT group for the relevant target. Again,
each acquisition function study was repeated 16 times, the median result of which was found in
order to visualise the non-skewed number of top 100 performing materials sampled by the AMI
as a function of AMI iterations (materials sampled exclusively by the AMI), presented in figure 3.
Any top performing materials sampled during the initial random sampling were omitted as they
do not reflect the abilities of the acquisition functions.

For both of the COF screening targets (a and b) it can be seen in figure 3 that, with the exception
of EI, the AMI was able to consistently sample 84 (83-86 at 99% confidence level) and 92 (91-93,
idem) of the top 100 performing COFs for deliverable capacity and Wiersum API respectively
after only 450 AMI-guided samples (500 total). This is a stark contrast with conventional brute-
force screenings where most of the 69,000 COFs have to be simulated to identify the top range of
materials.

For the selectivity API target studied on the hMOF database (figure 3c), overall lower numbers of
top performing materials were identified compared to the methane targets but using the Greedy
acquisition functions still resulted in an average of 56 (49-62 at 99% confidence level) top perform-
ing materials being sampled by the AMI after 900 iterations (950, including initialisation). Given

8



the selectivity API describes the selectivity of both CO2 and N2 within a MOF, it is altogether
a much more complex target than the methane based COF targets, and hence demonstrates an
equally if not more impressive achievement. The greater spread of individual curves seen in figure
3c compared to the two other cases is likely caused by the the additional uncertainties on the
MOF features (section 3.1). Overall it seems that the chemical features do provide some insight
into the hMOF database, but do not fully capture the significance and hence yields inconsistent
results for MOFs and COFs.

Across all four of the AMI acquisition functions and three target scenarios assessed as part of this
work, the Greedy acquisition functions and the conventional Thompson were found to consistently
outperform EI. This is likely due to EI’s specific exploration/exploitation balancing skewed towards
exploration. We would expect EI to perform better in more diverse datasets where exploration
would be better rewarded.

Both Greedy functions behaved very similarly to each other in all cases presented here. They
consistently performed better than the other two acquisition functions at low sample counts and
were seen to be overtaken by Thompson at larger sample counts. The better behaviour at lower
sample counts can be explained by their propensity to exploitation, as hinted by the steps observed
for those functions around 200 samples in figure 3a as well a 400 and 800 in figure 3c. Those steps
typically occur as the local pool of well-performing materials gets depleted and the algorithm
starts to explore again.

Thompson always exhibited a slower onset and only outperformed the Greedy algorithms at high
sample count in the case of methane (hCOF) on the ranges we studied. Thompson is based on
ML model sampling: with few samples, it is heavily biased towards exploration but as the number
of samples increases, it leans more and more towards exploitation. This both explains the slower
uptake at the start but the steeper slope in figures 3a/b at the highest sample counts. It is also
more sensitive to noisy data and non-normal data distributions which likely explains its worse
performance in figure 3c compared to the Greedy approach.

At this stage, it is important to acknowledge that counting the number of top 100 performers,
while very helpful to prove the AMI works, is both arbitrary and impossible to do in a real run,
when data is calculated on-the-fly, and thus, the performance across the entire dataset is not
known. To solve this problem, we compared the distributions of target values obtained through
ML to a reference distribution (here calculated on the full dataset but in real runs, could be
obtained by random sampling of the dataset). The data, shown in figure 4, were presented as
cumulative distribution function (CDF) (i.e. the cumulative integral of the more usual probability
density functions frequently seen as histograms). At a given target value (i.e. performance level),
the CDF is the proportion of the sampled dataset with performance at most that target value.
The advantage of this representation is that the lower and the more to the right the curve is, the
more performant the acquisition function is overall for the number of samples considered. Said
differently, these graphs show how well the different ML algorithms skew their selection towards
better performing materials.
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Figure 4: Cumulative distribution function of target values of materials sampled by the AMI using
different acquisition functions: expected improvement (blue), Thompson (red), Greedy N (green), Greedy
tau (orange). The CDF of the target values for the entirety of each data set is also presented for comparison
(black dash). Targets shown are: a) methane deliverable capacity (hCOF), b) Wiersum API for methane
(hCOF), c) Selectivity API for CO2 and N2 (hMOF). Each plain curve is the total CDF of all 16 repetitions
over 450 samples each for hCOF and 900 samples each for hMOF.

As noted earlier, the EI acquisition function is consistently performing the worst among acquisition
functions, with some oversampling of the lowest 10 - 15 % (compared to our reference) due to the
more exploratory nature of EI. Once again, there might be datasets where EI’s approach could
turn out to be an advantage though it is not the case here.

For COF deliverable capacity target (figures 4a/b), the Greedy and Thompson acquisition func-
tions explored nearly identical regions of the database. Some reproducible discrepancies are ob-
served between Greedy and Thompson when considering the Wiersum API. Though small, those
differences illustrate both Greedy’s propensity to exploitation and the bias we introduced in choos-
ing the top 100 in 3c.

The selectivity API data (figure 4c) illustrates the same point: though Thompson eventually
identified only half of the top 100 materials that Greedy methods identified at the end of the 900
samples, this way of looking at the data show that Thompson actually stays very competitive:
it did not identify the absolute best performing materials as well but still performed well at
identifying best-performing materials in general. Just like with EI, it is very probable that a more
varied dataset would favour Thompson.

4 Conclusions

In this work, three target applications for the hCOF and hMOF databases were assessed for the
first time using a novel Bayesian mining approach. Our approach with the AMI was able to
consistently sample 84 (83-86 at 99% confidence level) and 92 (91-93, idem) percent of top 100
performing COFs for deliverable capacity and Wiersum API, respectively, and 56 (49-61, idem)
percent of top 100 performing MOFs after assessing less than one percent of the database in each
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target instance (500, and 950 materials, respectively). This undoubtedly demonstrates the power
of our Bayesian mining approach over brute-force high throughput screening or conventional ML
assisted high throughput screening, both requiring tens or hundreds of thousands of materials to
be simulated for each target investigated. This dramatic reduction in materials that need to be
assessed for their performance opens the possibility to conduct screening of large databases for
complex applications. We anticipate that our approach will enable the investigation of applications
of porous materials which currently require complex molecular simulations to assess performance
and are simply infeasible using current approaches. While we used previously published data
as a proof of principle in this paper, the AMI can be readily combined with different simulation
programs to predict the performance of a material or even with experimental results. To encourage
the adoption of our Bayesian mining approach within porous materials research, the AMI is to be
released as an open source software package, designed to integrate with the “Raspa” molecular
simulations software [37] (see supporting information). By combining the power of our Bayesian
mining approach to material screening and the opportunity for other members of the research
community to adapt the AMI to their needs, it is hoped that AMI will revolutionise how high
throughput screening of porous materials is conducted.
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S1 AMI Model and Availability

The AMI uses a Gaussian process regressor with an RBF kernel and constant mean function as its
surrogate model. The Gaussian process regressor, kernel, and mean function were implemented
in the GPy python library [1] and used as part of the AMI back end with no modification made
to the GPy code.

As Gaussian processes become notably slower when using larger data sets [2] we used a sparse
sampling strategy to mitigate this. Our strategy was to condense the entire feature matrix into
only 500 data points (referred to as “inducing points”):

• 300 points were the centroids found when performing K-Means clustering on a sample of 5000
data points from the full feature matrix (as implemented in scikit-learn [3]). The distance
calculations when clustering were scaled using the length scales determined so far.

• 100 points were the features of the data points with the highest predicted means (predicted
using the GPy backend model).

• 100 points were the features of the data points with the highest predicted variance (predicted
using the GPy backend model).

This combination of data points allowed us to capture the main regions of the data base being
investigated (centroids), the region of database to exploit (high mean), and the region of database
to explore (high variance). When a prediction is needed for the entire feature matrix, the eu-
clidean distances between the points in the feature matrix and the inducing matrix are calculated
and moderated by applying a squared exponential. The calculated distance matrices were then
transformed to allow predictions to be made by the AMI more rapidly for the full feature matrix.

The AMI library is being finalised before release but can be found on gitlab “AMInvestigator/ame”.
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S2 Features

The physical features used were taken from the hMOF [4] and hCOF [5] databases respectively .
Chemical features were determined from the provided element density in both databases as shown:

Px =

{
1, ρx > 0

0, ρx = 0

Table S1: Features used by the AMI with units shown where appropriate. Binary chemical features are
denoted as Px. The feature groups are also specified.

Group HCOF HMOF

Physical

void fraction void fraction
density (kg m−3) density (t m−3 normalised by 1 t m−3 H2O)
surface area (m2 g−1) gravimetric surface area (m2 g−1)
largest included sphere diameter (Å) volumetric surface area (m2 cm−3)
largest free sphere diameter (Å) max pore diameter (Å)
largest included sphere along free sphere path diameter (Å) dominant pore diameter (Å)

Chemical

PF PF

PH PH

PN PN

PO PCl

PS PBr

PSi PV

- PCu

- PZn

- PZr

Topological

topological feature 1 topological feature 1
topological feature 2 topological feature 2
topological feature 3 topological feature 3
topological feature 4 topological feature 4
topological feature 5 topological feature 5
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S3 Feature Analysis

Tabulated values of the median number of top 100 materials sampled using Expected Improvement.

Table S2: Median number of top 100 materials sampled for each target after 500 sampled materials
for deliverable capacity and Wiersum API targets, and 950 for Selectivity API target. Materials were
sampled using “Expected Improvement”.

Deliverable Capacity Wiersum API Selectivity API
Features

PCT 46 48 17
PC 45 40 16
PT 44 52 10
P 43 44 8
T 20 8 4
CT 19 6 17
C 0 0 7
R 0 0 0
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S4 Distributions of Physical Features for hCOF Database

Figure S1: Histograms of individual physical features for the hCOF database. Values for COFs with the
top 100 Wiersum API values (blue). COFs with the top 100 deliverable capacity values (red). The entire
hCOF database (green). Each histogram is normalised such that the total heights of the bars is one.
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S5 AMI Performance with Different Feature Groups and
Acquisition Functions

Box plots showing the distribution of number of top 100 materials sampled using a given set of
features (x axis) and acquisition function (box colours). Each target explored in this work is
presented as a separate box plot.

hCOF - Deliverable Capacity

Figure S2: Box plots showing the number of sampled COFs with top 100 Deliverable Capacity values
sampled by the AMI. Each feature group shows the maximum sampling achieved by each acquisition
function and is constructed from 16 repeats.

hCOF - Wiersum API

Figure S3: Box plots showing the number of sampled COFs with top 100 Wiersum API values sampled
by the AMI. Each feature group shows the maximum sampling achieved by each acquisition function and
is constructed from 16 repeats.
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hMOF - Selectivity API

Figure S4: Box plots showing the number of sampled MOFs with top 100 Selectivity API values sampled
by the AMI. Each feature group shows the maximum sampling achieved by each acquisition function and
is constructed from 16 repeats.

Tabulated Values

Tabulated values of plots shown in section S5
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Table S3: Median values of the number of top 100 materials sampled for each target with the associated
acquisition function and feature group combination.

Deliverable Capacity Wiersum API Selectivity API
Acquisitor Features

Thompson PCT 85 92 30
PC 81 91 28
CT 25 9 28
PT 84 89 15
P 82 82 11
C 0 1 10
T 25 13 5
R 0 1 1

Greedy Tau PCT 84 88 59
CT 28 18 45
PC 80 89 37
PT 84 86 18
P 81 82 12
C 0 0 12
T 26 12 6
R 0 0 1

Greedy N PCT 83 84 62
CT 29 19 49
PC 81 81 34
PT 83 81 17
P 77 72 12
C 0 1 10
T 24 10 6
R 0 0 0

Expected Improvement PCT 46 48 17
CT 19 6 17
PC 45 40 16
PT 44 52 10
P 43 44 8
C 0 0 7
T 20 8 4
R 0 0 0
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S6 Persistent Homology

The aim of topological data analysis is to capture the “shape” or, more precisely, the topological
features which include the connectivity and higher-dimensional holes of a collection of data points
(also known as a “point cloud”). In this context, the point cloud is viewed as a 0-dimensional
representation of a higher-dimensional object. An example of a point cloud is shown in figure
S5. Persistent homology is a tool that is used to record the topological features of the higher-
dimensional object which will depend on the resolution (or length scale) at which we consider
the data. For example, at a higher resolution (or smaller scale), the data points may represent
something relatively disconnected and with fewer higher-dimensional topological features than at
a coarser resolution (or larger scale). The features which exist over a long range of length scales
are called “persistent”.

Figure S5: A point cloud (left) representing the pasta type “cappelletti” (shown as a surface plot on the
right) [6].

Given a point cloud, that is, a finite collection of points in an ambient space of some dimension
n, its persistent homology is computed as follows. For each fixed length scale r > 0, we build a
higher-dimensional object called a Rips complex on the points in the point cloud by the following
rule: Put n-dimensional balls of radius r centred at each data point; whenever k + 1 such balls
intersect, create the k-dimensional simplex defined by these points. So for k = 1 we get edges
between data points, for k = 2 we get surfaces etc. The collection of these simplices as well as the
relationships between them form the Rips complex. An example of this is given in figure S6. Note
that, unlike the perhaps better known simplicial complex from algebraic topology, this is a purely
abstract combinatorial construction that need not have a geometric realisation. However, as with
a conventional simplicial complex, the algebraic structure of the Rips complex allows us to define
what is known as the homology of the complex. This is a sequence of groups {Hk}k=0,1,... that,
loosely speaking, counts the number of non-contractible loops in each dimension k. H0 counts the
number of connected components and Hk is trivial for k ≥ n. In other words, the homology of
the Rips complex at length scale r is a measure of the connectivity and the number of holes in
different dimensions in the data at that length scale. The persistent homology of the point cloud
is the collection of all the homologies {Hk}k=0,1,... across all the length scales r > 0.

The information given in the persistent homology can be stored in the form of a barcode where
2r (the diameter of the balls in the construction of the Rips complex) goes along the x-axis and
each horizontal line corresponds to a connected component or a non-contractible loop in the Rips
complex [7]. Figure S7 shows an example of this. Starting with r close to 0, none of the radius r
balls will intersect and, therefore, the only non-trivial homology is in dimension k = 0 and each
point in the data set will represent a connected component in H0. But as we increase the length
scale r, more and more simplices are added to the Rips complex and as a result, we get fewer
and fewer connected components. At the same time, non-contractible loops in higher dimensions
appear. As we increase r further, more non-contractible loops may appear and some existing loops
will become contractible. In this way, the barcode represents a kind of topological fingerprint of
the point cloud in which more persistent features are represented by longer horizontal lines.

However, while the barcode is a useful graphical representation of the persistent homology, it has
the problem that it is not unique. For example, changing the order in which the non-contractible
loops are recorded may change the barcode entirely. Instead we use a summary of the barcode
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Figure S6: A point cloud in an ambient space of dimension 2 (left) and its Rips complex at two different
length scales r = r1 (middle) and r = r2 (right). For each length scale we have shown the point cloud
with balls of radius r (top) and the resulting Rips complex (bottom).

Figure S7: The Rips complex defined by a point cloud at three different length scales (top) and the
barcode for this point cloud (bottom).

data called a persistence diagram which is invariant under reordering of loops. Each horizontal
line in the barcode has a starting point and an endpoint corresponding to the birth (at 2r = b) and
death (at 2r = d) of a connected component/non-contractible loop in the data. The persistence
diagram summarises the barcode as a plot of all the birth-death pairs (b, d) (with separate plots
for each dimension k of the homology). So for a given point cloud, its persistence diagram consists
of n plots, namely, the birth-death pairs of H0, H1, . . . ,Hn−1 respectively. The further a birth-
death pair is away from the diagonal y = x in the persistence diagram, the more persistent is the
non-contractible loop that it corresponds to [8]. An example of a persistence diagram is shown in
figure S8.

The atoms in a MOF/COF form a periodic structure of repeated unit cells. The (x, y, z)-
coordinates of the atoms in such a unit cell define a point cloud in 3-dimensional space and
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Figure S8: Illustration of a distance measure using persistence diagrams.

the length scale in this case measures the proximity of atoms to each other. However, if we simply
computed the persistent homology of a unit cell, it would not accurately reflect the topology of the
MOF/COF in the areas near the atoms in the boundary of the unit cell as the radius-r balls from
atoms in adjacent unit cells would be ignored when constructing the Rips complex. We can get
around this problem with a simple adjustment. We note that the construction of the Rips complex
relies only on the distances between the data points rather than their positions. To reflect the
periodic boundary conditions, we can simply define the distance between two atoms A1 and A2

to be the minimum distance between the atom A1 in the chosen unit cell and all the copies of the
atom A2 in this unit cell as well as the 26 unit cells that surround it (see S9 for a two-dimensional
illustration).

Figure S9: A two-dimensional illustration of the distance measure used between the atoms in a
MOF/COF. The unit cell in the middle has 8 surrounding unit cells. The distance between the atoms A1

(in red) and A2 (in blue) is the minimum distance (shown in red) of the 9 possible distances between A1

and all the copies of A2.

There are several existing software packages that can be used to compute the persistent homology
of a given point cloud, including the Java library JavaPlex [9]. For each hypothetical MOF/COF
in our dataset we computed the adjusted distances described above for the atoms in a unit cell and
used these as input to JavaPlex to compute the birth-death pairs for the homologies H0 and H1 of
the persistence diagram. In practice we can only compute the homologies for finitely many values
of r. In JavaPlex this is done by only considering values of r that are multiples of a pre-specified
filtration value. This means that birth values b are rounded down to the nearest such value of r
and death values d are rounded up. We have chosen a filtration value of 0.05 to balance the need
for accuracy versus computational efficiency.
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In order to include the information from the persistence diagram in the predictive model for
MOF/COF performance, we convert it into a vector that we call the persistent homology feature
vector. For simplicity, we have only included the homologies H1 in the model (that is, the informa-
tion from the plot in the persistence diagram corresponding to loops in dimension 1) but the same
method could be applied in general. The purpose of the feature vector is to capture the essential
information from the persistence diagram in a format that can be input as a predictor in the
model and in a way that is consistent between different MOFs/COFs. The underlying structure
of the feature vector is a histogram. We partition the area covered by the persistence diagram
into horizontal strips (or “bins”) and for each MOF/COF, the histogram counts the number of
points in each bin. The histogram is therefore a summary of the persistence diagram which can
be made more or less coarse by the choice of bin size. Each of the points (b, d) in the persistence
diagram corresponds to a non-contractible loop in the MOF/COF and, loosely speaking, the death
value d measures the size of the corresponding pore while its persistence d− b measures how well
defined the pore is. The topological features with higher relative persistence d−b

d are likely to be
the more important ones and we reflect this in the histogram by applying the relative persistence
of each point as a weight. Finally, we scale the histogram according to “surface area/volume” of
the corresponding MOF/COF. This scaling ensures a level of consistency between the way that
different MOFs/COFs are included in the model.

In summary, the feature vector is defined as follows. Let {[Di, Di+1[}i=1,...,l be a partition into l
intervals of the possible death values in the persistence diagrams. This defines l horizontal strips.
For a given MOF/COF with “surface area/volume” of S, let {(bi, di)}i=1,...,N , denote the points
in its persistence diagram. The elements of the feature vector (x1, . . . , xl) for this MOF/COF are
then given by

xj =
1

S

∑
Dj≤di<Dj+1

di − bi
di

where xj is 0 if there are no death values in the interval [Dj , Dj+1].
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