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Abstract 
 
We present a convolutional neural network (CNN) framework for classifying different types of 

plastic materials that are commonly found in mixed plastic waste (MPW) streams. The CNN 

framework uses experimental ATR-FTIR (attenuated total reflection-Fourier transform infrared 

spectroscopy) spectra to classify ten different plastic types. An important aspect of this type of 

spectral data is that it can be collected in real-time; as such, this approach provides an avenue for 

enabling the high-throughput characterization of MPW. The proposed CNN architecture (which 

we call PlasticNet) uses a Gramian angular representation of the spectra. We show that this 2-

dimensional (2D) matrix representation highlights correlations between different frequencies 

(wavenumber) and leads to significant improvements in classification accuracy, compared to the 

direct use of spectra (a 1D vector representation).  We also demonstrate that PlasticNet can reach 

an overall classification accuracy of over 87% and can classify certain plastics with 100% accuracy. 

Our framework also uses saliency maps to analyze spectral features that are most informative.  
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1. Introduction 

Plastics are essential materials that are used in a wide range of applications such as food packaging, 

construction, transportation, health care, and electronics. Since 1856 (when the first plastic 

celluloid was invented), the plastics industry has grown rapidly not only in terms of volume, but 

also in terms of the variety of materials produced. This rapid expansion has resulted in a massive 

environmental footprint; to give some perspective, in 2015, nearly 381 million tons of mixed 

plastic waste (MPW) were produced, this is more than the total weight of humans on earth (316 

million tons). Notably, only 20% of all plastics produced were recycled (Ritchie and Roser, 2018); 

this recycling rate is notably low compared to that of other materials (e.g., aluminum has a 

recycling rate of nearly 100%). Most MPW end up in landfills and incinerators; landfills are 

unsustainable, especially when land availability is constrained (Abdel-Shafy and Mansour, 2018). 

MPW incineration reduces the need for landfills, but this process can release hazardous substances 

into the atmosphere (Hopewell et al., 2009).  

 

MPW recycling is essential for mitigating the environmental impact of plastics, but this practice 

faces many obstacles (Schlesinger, 2013). Most of the recycled plastic is reprocessed into 

downgraded products (of a lower value); for instance, plastics used for food packaging are often 

converted into cheaper building materials such as plastic lumber (Awoyera and Adesina, 2020). In 

other words, recycled plastic products are less valuable and thus there are limited incentives to 

produce them. Another key factor that hinders plastic recycling is our limited ability to effectively 

characterize and sort MPW streams (which can be quite complex) (Milios et al., 2018). 

Traditionally, plastic components in MPW can only be partially identified based on techniques 

such as coding, density differences, and froth-flotation (Gundupalli et al., 2017). These 
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technologies are easy to implement but are low-throughput and have several other limitations (Zhu 

et al., 2019); for example, density separation in water can effectively separate polypropylene (PP) 

and polyethylene (PE) from polyvinyl chloride (PVC), polyethylene-terephthalate (PET), and 

polystyrene (PS); however, PVC cannot be removed from PET in this manner because their density 

ranges overlap (Hopewell et al., 2009). Automated sorting with high-throughput, high-accuracy, 

and low-labor is necessary for effective MPW management. 

 

Recent innovations in recycling technology include increasingly reliable detection instruments and 

improved materials identification algorithms; these have improved the accuracy and productivity 

of automated sorting. Methods such as spectroscopy, hyperspectral imaging (HSI), ultrasonic 

techniques, X-ray diffraction (XRD), thermal imaging or infrared imaging, combined with 

machine learning (ML) algorithms, have been successful in accurately identifying plastics that are 

commonly found in MPW (da Silva and Wiebeck, 2020; Karlsson et al., 2016; Siddiqui et al., 2008; 

Signoret et al., 2020, 2019; Wu et al., 2015). Michele et al. analyzed four different spectroscopic 

methods with various machine learning (ML) algorithms, such as k-nearest neighbors (KNN), 

linear discriminant analysis (LDA), and support vector machines (SVM), to identify marine plastic 

debris and consumer plastic (Michel et al., 2020). Among the four spectroscopic methods, the 

attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) technique 

performed best, with an accuracy of 89-98%. Da Silva et al. developed a method to identify nine 

different types of plastics, including polyamide (PA) and polycarbonate (PC), based on μFTIR 

hyperspectral imaging and ML (Da Silva et al., 2020). Roh et al. used laser-induced breakdown 

spectroscopy with an algorithm-based radial basis function neural network to identify black 

plastics, including PP, PS, and acrylonitrile-butadiene-styrene (ABS), and achieved an accuracy 
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of over 95% (Roh et al., 2018). Wu et al. proposed an automated sorting system using near-infrared 

spectroscopy to identify waste from electronic and electrical equipment (WEEE) (Allen et al., 

1999). Gundupalli et al. used a thermal imaging camera integrated with a robotic manipulator to 

classify recyclable materials in MSW and achieved a 90% accuracy (Gundupalli et al., 2017). 

While these results are highly encouraging, these methods are slow and low-throughput and are 

not tailored to real-time sorting (they rely on manual sample collection).  

 

ATR-FTIR can analyze plastic components found in MPW in real-time; as such, one can envision 

the development of fast, online ML techniques that can analyze ATR-FTIR spectra to characterize 

MPW streams. Recently, ML methods such as convolutional neural networks (CNNs) have been 

used to analyze spectral data (Ng et al., 2019). A key advantage of CNNs over other ML methods 

is their ability to automatically extract and organize discriminative features directly from raw data 

(without the need to pre-compute hand-crafted features). The training of powerful CNN models 

can be facilitated by the availability of advanced computing hardware (e.g., GPUs) and of vast 

data streams found in online systems. The integration of online ATR-FTIR and CNNs thus 

provides a potential avenue to sort plastic waste with high accuracy and throughput in real-time. 

 

In this work, we propose a computational framework to characterize plastic components of MPW 

by analyzing ATR-FTIR spectra using CNNs. Experimental data was obtained by preparing small 

sheets of plastics of different shapes and used ATR-FTIR to scan sheets for 10 different types; this 

data collection approach mimics how rigid waste plastics are found in online processing of MPW 

streams. The proposed framework uses CNNs to analyze the spectra and sort/classify plastic 

components. The spectra collected can be represented as 1D vectors and analyzed by using 1D 
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CNNs (Chen et al., 2019). The 1D CNN extracts features of a spectrum by convolving it with 

different filters. A limitation of this approach, however, is that it might fail to capture correlations 

across frequencies (wavenumbers which may compromise the prediction accuracy). To deal with 

this issue, we present a new data representation that captures signal correlation information; 

specifically, we represent a spectrum as Gramian angular fields (GAFs).  GAFs are matrices (2D 

data objects) that can be analyzed using 2D CNNs (Wang and Oates, 2015) and these data objects 

can better capture spectral correlations. A problem with this approach, however, is that the training 

of 2D CNNs is significantly more computationally expensive than that of 1D CNNs. To ameliorate 

this issue, we use a Piecewise Aggregate Approximation (PAA) approach to reduce the dimension 

of the input GAF matrices (Keogh and Pazzani, 2000). This framework also uses saliency analysis 

(Sundararajan et al., 2017) to understand the most important features of spectra that can help 

identify different plastic components. We demonstrate that this CNN framework (which we call 

PlasticNet) can reach an overall classification accuracy of over 87% and can classify certain 

plastics with 100% accuracy. The conjunction of ATR-FTIR and CNN creates a powerful, low-

cost, and rapid method for analyzing the composition of plastic waste and enables future recycling 

and reproduction of high-quality plastics. 

 

2. Experimental Data Collection and Preparation 

The dataset studied included ATR-FTIR spectra for 10 different, commercially-available plastic 

materials (see Figure 1). These include thermoplastic polymers, natural, and synthetic rubber that 

are common in the MPW. Specifically, these were ABS, acrylic (AC), PE, PET, polybutadiene 

(BR), polycarbonate (PC), polyisoprene (PI), PS, PP, and PVC. The spectra were collected using 

a Thermo Scientific, Nicolet-iS5 FTIR spectrometer equipped with an attenuated total reflectance 
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(ATR) accessory (ZnSe crystal, iD5), taken with 64 scans with 4 cm-1 resolution between 2000 to 

4000 cm-1. Spectral data was collected using Omnic v9.8 software, and then extracted using TQ 

analyst EZ software (Thermo Nicolet) and compiled for analysis.  

 

The plastics purchased consist of different shapes; round-shaped beads were cut into less than 1 

mm thickness and converted into flattened thin sheets (10 mm ×10 mm). For each plastic sample, 

50 spectra were measured as the training set for the ML algorithms, and 20 spectra were used as 

the testing set. To obscure the spectra, the sample was not kept in close contact with the crystal 

and each spectrum was taken with only one scan. The background was repeated after every 

measurement with 64 scans.  For each plastic, 70 online measurements of were obtained. Each 

spectrum had 4150 data points, where each point represents the intensity at a given wavenumber 

(cm-1). Each spectrum is encoded in a vector in ℝ!"#$. For the 10 types of plastics, a total of 700 

IR spectra were obtained. For the analysis, all spectra were normalized to be in the range [0, 1]: 

𝑥# =
𝑥 −min	(𝑋)

max(𝑋) − min	(𝑋), 

where 𝑥 ∈ ℝ!"#$  is the original vector (a raw spectrum), 𝑥# ∈ ℝ!"#$  is the normalized vector 

(normalized spectrum), and 𝑋 ∈ ℝ%$$×!"#$ is a matrix obtained by stacking all raw spectra. By 

stacking all the normalized vectors, we obtain the normalized spectra matrix 𝑋1 ∈ ℝ%$$×!"#$ , 

which is randomly partitioned into a training set and a test set. The training set is the dataset used 

in the learning process to fit the parameters of the ML models. The test set is a dataset that is 

independent of the training set and is used to examine the performance (accuracy) of the ML model.  

A total of 30% of the elements of the training set were randomly selected and used as the validation 

set for tuning the ML architecture and preventing overfitting (Ng and Ng, 1997). For validation, 

we use a five-fold cross-validation approach; here, the original dataset is randomly split into five 
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subsets of equal size. Among the five subsets, a subset was retained as the test set, and the 

remaining four subsets were used as training data. The cross-validation process was repeated five 

times, with each of the five subsets used exactly once as test data. A schematic of the five-fold 

cross-validation process is shown in Figure 2. The training, validation, and test set consist of 392, 

168, and 140 spectra, respectively. A stratification was implemented to ensure that each fold 

represents all strata of the data. That is, in each fold, each plastic type accounts for 10% of the data 

in the training and test sets. The final reported accuracy is the average of all accuracies of the five 

folds. The model is robust and generalizable if the test sets of each fold have similar accuracy. 

 

The types of plastic (labels) that need to be predicted by the ML models are one-hot encoded. 

Specifically, each label can be represented by a vector of size 10 (only one entry in the vector is 

1 and all other entries are 0). This vector representation is necessary to calculate the loss of 

categorical cross-entropy in our ML models. 

3. Computational Framework 

The proposed framework includes a CNN architecture, that we called PlasticNet; this architecture 

can process spectra as vectors (1D data objects); as such, PlasticNet can operate as a 1D CNN. The 

framework also includes a Gamian angular transformation method that transforms the spectra 

vectors into GAF matrices (2D objects); as such, PlasticNet can also operate as a 2D CNN. The 

framework also includes saliency analysis techniques, which are useful tools that allow us to 

understand features that the CNN might be searching for in the spectra in classifying plastic types.  
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3.1. 1D CNN 

IR spectra vectors can be analyzed directly with a 1D CNN; 1D CNNs are widely in applications 

such as electrocardiography (Kiranyaz et al., 2016), near-infrared spectroscopy (Chen et al., 2019), 

and optimal control (Jiang and Zavala, 2021). The architecture of the proposed 1D CNN is shown 

in Figure 3. 1D CNNs extract and summarize features from spectra using convolution and pooling 

operations. In our architecture, each convolution filter is a vector of size three. The output of a 

convolution operation is a single scalar value that marks the presence (high value) or absence (low 

value) of the pattern the filter is trying to identify or highlight. A single convolution operation 

maps a given vector to another vector of the same dimension after a nonlinear transformation (i.e., 

rectified linear unit). In the architecture used, a set of these filters is referred as a convolutional 

layer. Convolutional operations greatly increase the amount of information that needs to be 

proposed; therefore, it is necessary to summarize such information. In our architecture, we use a 

max-pooling layer to reduce dimensionality. A max-pooling operation takes a subset of a given 

vector, in this case a part of size two, and reduces it to a single value by extracting only the 

maximum value. This greatly reduces the dimensionality of the vectors created by the 

convolutional layer and distills the important information extracted by the convolutional filters.  

 

An IR vector of size 4150 is fed into the 1D CNN, which we call PlasticNet (1D). This architecture 

contains four convolutional layers, two max-pooling layers, and three fully-connected layers. This 

simple architecture achieves high accuracy and facilitates fast training. The convolutional layer 

has 64 filters of size 3 and the max-pooling layer has filters of size 2. Each of the fully-connected 

layers has 64 nodes and the activation functions between layers are rectified linear units (ReLUs). 

Between each of two fully-connected layers is a dropout layer with a dropout ratio of 0.2 to prevent 
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overfitting. The output layer uses a SoftMax activation function to perform classification. The 

output for plastic classification is a vector of dimension 10, corresponding to the probability of the 

IR spectra being from a specific type of plastic. The loss function coupled with the SoftMax 

activation function is the categorical cross-entropy. In the proposed CNN architecture, 

convolutional layers and max-pooling layers are performed recursively. The idea behind this 

recursion is to extract information at both local and global scales while condensing it so that simple 

classification can be performed, and the corresponding plastic types can be predicted. A recent 

review on fundamentals of CNNs can be found in Jiang and Zavala, 2021. 

3.2. Gramian Angular Fields 

Although the vector representation of IR spectra already carries rich information, the correlation 

between different frequencies is not explicitly encoded in the vector representation and this is 

difficult to extract using convolution operations. Recently, Gramian Angular fields (GAF) have 

been used to encode time-series objects into matrices that capture correlation structures and that 

are processed using 2D CNNs; this data transformation approach has been shown to improve 

classification accuracy (Wang and Oates, 2015). Our hypothesis was that a similar principle can 

be applied to IR spectra to improve prediction accuracy. A GAF represents vectors in a polar 

coordinate system and converts these angles into symmetric matrices using various operations. 

There are two types of GAFs: Gramian Angular Summation fields (GASF) and Gramian Angular 

Difference fields (GADF). Each element of GASF and GADF is the cosine of the sum and the sine 

of the difference of the angles, respectively. The first step in constructing the GAF matrix is to 

normalize the spectral data to a value between 0 and 1. After normalization, the second step is to 
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represent the normalized vector 𝑥#  in a polar coordinate system by using the following 

transformations: 

𝜙' = arccos(𝑥#) , 𝑖 = 1,… , 4150	

𝑟' =
𝑖

4150 , 𝑖 = 1,… , 4150, 

where 𝑖 is the index of the vector entry, 𝜙 ∈ ℝ!"#$ is the angle vector, and 𝑟 ∈ ℝ!"#$ is the radius 

vector. Finally, the GASF and GADF matrices are obtained as:  

𝐺𝐴𝑆𝐹 = cosB𝜙' + 𝜙(D = 𝑥#	)𝑥# 	− E𝐼 − 𝑥#	*
)
E𝐼 − 𝑥#	* 

𝐺𝐴𝐷𝐹 = sinB𝜙' − 𝜙(D = E𝐼 − 𝑥#	*
)
𝑥# 	− 𝑥#	)E𝐼 − 𝑥#	* 

where 𝐼 = [1, … , 1] is a unit row vector of size 4150.  

 

The resulting 𝐺𝐴𝑆𝐹, 𝐺𝐴𝐷𝐹 ∈ ℝ!"#$×!"#$  matrices are dense and large, but can be reduced using 

the Piecewise Aggregation Approximation (PAA) technique (Keogh and Pazzani, 2000). In this 

study, we also compared the effect of the magnitude of matrix reduction on the results. That is, we 

compared matrices with the shape of 50×50, 100×100, 150×150, 200×200, and 250×250. The 

conversion of spectra to GASF and GADF matrices is illustrated in Figure 4. Here, the matrices 

are represented as grayscale images.  

3.3. 2D CNN 

2D CNNs are typically used to classify images, which are multi-channel matrices (tensors). 2D 

CNNs are commonly used, for instance, to classify RGB images (each channel is a color channel).  

In our approach, we use a two-channel, data representation that embeds the GASF and GADF 

matrices as channels. Depending on the scale of reduction, the size of the input varies from 
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50 × 50 × 2 to 250 × 250 × 2. The 2D convolution operation extracts meaningful patterns from 

GASF and GADF matrices. In our architecture, each 2D convolution filter is a matrix of shape 

3 × 3. The output of a 2D convolution operation also indicates the presence or absence of the 

pattern that the filter is searching for. A 2D max-pooling operation to reduce the dimension of the 

convolved matrices was also used. A 2D max-pooling operation takes a subregion of  2 × 2 and 

reduces it to a single value by taking the maximum value.  

 

The two-channel GASF/GADF object is fed into a 2D CNN, which we refer to as PlasticNet (2D). 

PlasticNet (2D) contains four 2D convolutional layers, two 2D max-pooling layers, and three fully 

connected layers (Figure 3). The 2D convolutional layer has 64 filters of size 3 × 3  and the 2D 

max-pooling layer has filters of size 2 × 2. The settings for the fully-connected layers, activation 

functions between layers, dropout ratio, final layer activation function, and the loss function are 

the same as those used in PlasticNet (1D). 

3.4. Saliency Analysis  

Saliency maps are a powerful tool used for highlighting features in the input data that are 

considered relevant to the predictions of the CNN model. In our case, these techniques try to 

highlight aspects in a given input data object that the CNN is searching for. Among all saliency 

map methods, an integrated gradient (IG) was used that has the most theoretical completeness 

(Adebayo et al., 2018; Sundararajan et al., 2017). For the PlasticNet (2D) case, let 𝒱 ∈ ℝ*$$×*$$×* 

be the input and 𝜃 be the parameter vector, the CNN can be written as a large and complicated 

equation 𝐹(𝒱; 𝜃):	ℝ*$$×*$$×* ↦ ℝ"$, where the output is the classification probability. The loss 

function is then 𝐿B𝐹(𝒱; 𝜃)D:	ℝ"$ ↦ ℝ. The saliency map 𝑆 ∈ ℝ*$$×*$$×* calculated by the IG as:  
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𝑆 = 𝑎𝑏𝑠 V(𝒱 − 𝒱W) ⋅ Y
𝜕𝐿(𝐹(𝒱W + 𝛽(𝒱 − 𝒱W); 𝜃))

𝜕𝒱

"

$
𝑑𝛽] 

 

where 𝒱W ∈ ℝ*$$×*$$×* is a baseline input that represents the absence of a feature in the input 𝒱. 

Typically, 𝒱W only contains zero values. Saliency maps on the GASF/GADF will not only illustrate 

the signals that are significant at a given frequency (cm-1) but will also highlight important 

relationships between the signals. Saliency maps can help us understand why CNNs can accurately 

classify plastic types. 

 

4. Results and Discussion 

Classification results for PlasticNet (1D) and (2D) are presented in Figure 5, along with 

comparisons of different input sizes. The results reveal that PlasticNet (2D) has a higher accuracy 

when the input size is larger than 100×100, compared to PlasticNet (1D) on raw IR spectra (77.7%). 

Specifically, PlasticNet (2D) with an input size of 200×200 increases the accuracy of the PlasticNet 

(1D) by 12.4%; this confirms that correlation information in spectra is important for classification. 

The classification accuracy of PlasticNet (2D) improves as the input matrix size increases until 

reaching a size of 200×200. This suggests that larger input matrices may contain richer information, 

which is important for classification. The accuracy of the input size of 250×250 has a slightly 

lower accuracy (86.9%) than the one of 200×200 (87.3%). This indicates that the input matrix with 

a size of 200×200 contains sufficient information and continuing to increase the matrix size can 

lead to overfitting. Table 1 provides a comparison of the overall accuracy obtained with all CNN 

architectures explored. 



13 
 

 

 

Table 1. Overall classification accuracies found with different CNN architectures.  

1D 2D (50×50) 2D (100×100) 2D (150×150) 2D (200×200) 2D (250×250) 
77.77 % 78.14 % 84.29 % 85.57 % 87.29% 86.86% 

 

We obtain further insight into classification accuracies obtained for different plastic types by using 

confusion matrices. Each row of the confusion matrix represents instances of the predicted class 

and each column represents instances of the true class. The entries along the diagonal lines are 

where the instances are correctly classified. The confusion matrix for PlasticNet (2D) with an input 

size of 200×200 (Figure 6) indicates that plastic types are correctly predicted 87.3% of the time. 

The confusion matrix also indicates that PC has the lowest classification accuracy among the 10 

plastics, with 9% of PC classified as Acrylic and 6% as PB, respectively. It was also found that 

PE, PET, and PI have classification accuracies that were close to 100%.  These results indicate 

that certain plastics can be more easily classified than others (their spectra have more unique 

features). This information can be useful in identifying strategies to target specific types of plastics 

(e.g., by tuning IR equipment).  

 

To validate the effectiveness of the proposed CNN models, we compared the average accuracies 

over 5-fold cross-validation of 1D CNN and 2D CNNs with four commonly used ML classifiers, 

including Radial Basis Function (RBF) based Support Vector Machine (RBF-SVM) (Vapnik, 

1998), Random Forest (RF), k-Nearest Neighbors (kNN) (DICKERSON et al., 1992), Gaussian 

Process Classifier (GPC) (KI Williams, 2006). SVM is a learning method that was designed to 

find optimal decision boundaries between classes. The use of the RBF function in SVM allows for 
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mapping patterns nonlinearly into a high-dimensional feature space (Schölkopf et al., 1997), and 

it introduces a kernel parameter (𝛾) in addition to penalty parameter (i.e., 𝐶) in linear SVM. In our 

experiments, These are two parameters (𝛾 and 𝐶) were selected from a wide range of values, i.e., 

γ ∈ {10+*, 10+", 10$, 10", 10*} and 𝐶	 ∈ {10+*, 10+", 10$, 10", 10*, 10,}, using grid search 

approach (Staelin, 2003) that performed on the training data. RF is an ensemble ML method that 

utilizes predictions from many randomized decision trees and it is found to be well suited to high-

dimensional data modeling. There are two parameters in RF that need to be tuned to optimized the 

model performance, they are the number of trees to be grown in the run (ntree) and the number of 

features used in each split (mtry). We set ntree = 500 and mtry is set to the square root of the 

number of features as recommended by many studies (Immitzer et al., 2012; Sidike et al., 2019). 

KNN is another popular ML algorithm, which involves the measurement of k-nearest neighbors 

of a test sample and it is the class label that is decided on a majority vote. The number of neighbors 

in KNN is fixed to 5 in the experiments. GCP can be modeled based on a GP prior and the latent 

function. The default parameters used in GCP, as specified in the Scikit-learn (Pedregosa et al., 

2011) ML library. Table 2 provides a comparison of the overall accuracy of these ML algorithms. 

It can be observed that RBF-SVM yields the best accuracy, while kNN and GPC demonstrate 

similar performance but lower accuracy than RBF-SVM and RF.   

 

Table 2. Overall accuracies obtained with other ML algorithms. 
RBF-SVM RF k-NN GPC 

86.14 % 72.57 % 65.00 % 63.29 % 
  

A comparison between the CNN-based methods and other ML algorithms is shown in Figure 5. 

The accuracy of PlasticNet (2D) is slightly higher (~1%) than that of RBF-SVM when the input 

size is larger than 200 × 200. This indicates that RBF-SVM is comparable to CNN-based methods; 
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however, SVMs provide limited information on features that drive predictions and offer limited 

flexibility to capture different representations for IR data. The results obtained with SVM confirm 

that there appears to be enough separation (differences) in the spectra that can be exploited to 

classify different types of plastic materials. However, the accuracy of all methods saturates at 87%, 

which suggests that the dataset itself contains significant errors that neither the CNN-based nor the 

SVM methods can explain.   

To understand exactly what the CNNs have learned from the spectra, we used saliency maps to 

find the most important regions for classification. We used the results for PlasticNet (2D) with an 

input size of 200×200, since this has the highest accuracy. Figure 8 shows the average (a) GASF, 

(b) GADF, (c) saliency map, (d) spectrum and its important regions of PE. The average saliency 

map for each plastic was studied because each spectrum has some subtle differences, and the 

common significant patterns were of interest. The darker regions in Figure 8c are the most 

important ones. Specifically, the horizontal bands near 2900 cm-1 and vertical bands 2400 cm-1 

were dark, which indicates the importance of the signal at these frequencies. Figure 8d, shows the 

significant signal locations (shaded regions) and the raw spectrum. The bands between 2800 and 

2900 cm-1 were of importance. This region provides characteristic IR bands for PE. A similar trend 

is observed for other plastics, such as PC and ABS shown in Error! Reference source not found. 

and Figure 9. Saliency analysis shows that the regions of interest for PlasticNet (2D) are exactly 

the most physically informative regions. This confirms intuition that might be exploited by humans 

to compare different spectra.  
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5. Conclusions 

A convolutional neural network (CNN) framework for classifying different types of plastic 

materials that are commonly found in MPW based on ATR-FTIR spectra was developed. An 

important aspect of this type of spectral data is that it can be collected in real-time; as such, this 

approach provides an avenue for the high-throughput characterization of MPW. The proposed 

CNN framework (which we call PlasticNet) uses a Gramian angular representation of the IR 

spectra and we show that this approach reaches overall classification accuracies of 87%. Moreover, 

it has been found that certain plastics can be classified with 100% accuracy.  As part of future 

work, we aim to test the proposed framework using high-throughput data collected in an online 

system and to account for other sources of complexity and noise arising in MPW systems (e.g., 

presence of pigments).   
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Figure 1: Normalized infrared spectral intensities of various plastic materials. Each spectrum is a 
vector of length 4150. The resulting spectra contain significant noise and systematic errors. 

 

 
Figure 2: Schematic illustration of 5-fold cross-validation procedure used to train and test models. 
The training-to-testing split is 4:1. Within the training set, we randomly select 30% of the data as 
the validation set to tune the parameters of the model. 
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Figure 3: Architectures of (a) PlasticNet (1D) and (b) PlasticNet (2D). PlasticNet (1D) inputs a 
vector of 4150 and outputs the predicted plastic type. It contains 4 1D convolutional layers (each 
has 64 filters of dim 3), 2 1D max-pooling layers (each has a pooling window size of 2), a flatten 
layer, and 3 fully-connected layers (each has 64 units and a dropout ratio of 0.2). The activation 
functions between the layers are ReLUs. The final output activation function is softmax. PlasticNet 
(2D) inputs a GASF and a GADF matrix. The input size varies from 50×50×2 to 250×250×2. It 
has 4 2D convolutional layers (each has 64 filters of 3×3), 2 2D max-pooling layers (each has a 
pooling window size of 2×2). The flatten, fully-connected layers and activation function setups 
are the same as the ones of PlasticNet (1D). 

 
Figure 4: Conversion from 1D signal to GASF and GADF matrices. The 1D signal is first mapped 
to the polar coordinate system and finally converted to GASF and GADF matrices. Encoding the 
1D signal into GAF matrices captures the relationship between the signal intensity at different 
wavenumbers. 
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Figure 5: Comparison of the accuracy of CNN-based methods and other ML algorithms. PlasticNet 
(2D) with an input size of 200×200×2 has the highest accuracy of 87.29%. SVM with RBF kernels 
has a comparable accuracy of 86.14%. The accuracy of PlasticNet (2D) is always higher than that 
of PlasticNet (1D), indicating that the conversion from the original 1D signal to 2D GAF matrices 
captures more information. The accuracy of PlasticNet (2D) increases as the input matrix increases, 
indicating that a larger input matrix contains more information. 
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Figure 6: Confusion matrix for PlasticNet (2D) with an input size 200×200×2. The overall 
accuracy is 87.3%. Each column represents a true plastic species, and each row represents a model 
predicted plastic species. The entries along the diagonal are where the plastic species are correctly 
classified. Many diagonal entries are close to one, indicating that the PlasticNet (2D) has excellent 
classification accuracy. However, some plastic types cannot be classified with high accuracy (e.g., 
PC and AC).  
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Figure 7: Saliency analysis for PE. The average (a) GASF and (b) GADF matrices of size 200 × 
200, where darker colors represent larger values. (c) The average saliency map of size 200 × 200. 
The darker regions are the most important regions for classification. (d) The average IR spectrum 
and the most important signals, shaded in gray. The most important region includes the bands 
between 2800-2900 cm-1, which are the characteristic IR peaks of the PC. 
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Figure 8: Saliency analysis for PC. The average (a) GASF and (b) GADF matrices of size 200 × 
200. (c) The average saliency map of size 200 × 200. (d) The average IR spectrum and the most 
important signals, shaded in gray. 



23 
 

 
Figure 9: Saliency analysis for ABS. The average (a) GASF and (b) GADF matrices of size 200 
× 200. (c) The average saliency map of size 200 × 200. (d) The average IR spectrum and the 
most important signals, shaded in gray. 
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