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ABSTRACT: We reported the statistical profiling for rate-enhancing mutant hydrolases with 
single amino acid substitution. We constructed an integrated structure-kinetics database, 
IntEnzyDB, which contains 3,907 experimentally characterized hydrolase kinetics and 2,715 
hydrolase Protein Data Bank IDs. The hydrolase kinetics data involve 9% rate-enhancing 
mutations. Mutation to nonpolar residues with a hydrocarbon chain shows a stronger preference 
for rate acceleration than to polar or charged residues. To elucidate the structure-kinetics 
relationship for rate-enhancing mutations, we categorized each mutation into one of the three 
spatial shells of hydrolases. We defined the spatial shells by reference to either the active site or 
the center-of-mass of the enzyme. In either case, mutations in the first shell (i.e., closest to the 
reference point) appear on average more rate-deleterious than those in the other two shells (i.e., 
~1.0 kcal/mol in ∆∆G‡). Under the active-site reference, mutations in the third shell (i.e., most 
distal to the active site) exhibit the highest likelihood of rate enhancement. This propensity is 
significant for larger-sized hydrolases. In contrast, under the center-of-mass reference, mutations 
in the second shell (i.e., 33.3th to 66.7th percentile rank of spatial proximity to the center-of-mass 
of the enzyme) show the highest likelihood of rate enhancement. This trend is significant for 
smaller-sized hydrolases. The studies reveal the statistical features for identifying rate-enhancing 
mutations in hydrolases, which will potentially guide hydrolase discovery in biocatalysis.  
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1. Introduction 

Hydrolases, such as esterases, glycosidases, peptidases, and nucleosidases, are the 

building blocks for modern pharmaceutical, food, and laundry industries.1-3 They serve as 

promising candidates for biodegradation of environmental wastes, such as PFAS4-5 and 

poly(ethylene terephthalate) (PET).6 The design and discovery of new hydrolases that enable 

efficient conversion of natural and non-natural chemical transformations have been largely 

advanced by the development of directed evolution strategies7-10 and de novo enzyme design 

algorithms.8, 11-12 

Identifying beneficial mutant hydrolases with enhanced rate, selectivity, stability, 

solubility, and expressibility is critical for the prediction of new enzyme variants for challenging 

chemical transformations. Among these, the rate-enhancing mutation is arguably the most 

difficult to attain because enzyme kinetics are globally encoded across the entire protein 

sequence and are highly substrate-dependent (e.g., Tn5 transposon-derived kinase13 and 

amidase14).15 Genome sequencing techniques and high-throughput assay (e.g., deep mutational 

scanning16-19 and high-throughput microfluidic enzyme kinetics20) have largely boosted the 

discovery of rate-enhancing mutants via simultaneously screening ten thousands of mutations for 

specific reactions. However, given the gigantic combination number of possible enzyme variants 

and the low yield of beneficial mutants from screening (i.e., typically less than 5% according to 

deep mutational scanning21 and directed evolution experiments22), it remains a critical challenge 

in the community to develop new strategies for designing rate-enhancing mutations.  
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Statistical modeling,23 among other molecular simulation-based computational 

strategies,8, 11-12, 24-27 have been extensively augmented with experiments to build metabolic 

models28 and to guide the discovery of rate-enhancing mutations by reducing the experimental 

testing candidates a priori.7 The statistical models have been constructed to inform the 

population and spatial distribution of rate-enhancing mutations for specific enzymes with a few 

substrates (e.g., amiE14 and PafA16).16, 22, 29-31 Remote mutations (>10Å from active site) have been 

widely reported to be critical for rate-enhancement,32 while a statistical study of 55 rate-

enhancing enzyme variants by Morley et al.29 show that close mutations can also be rate-

enhancing. For hydrolases, Lim, Fernandes, and coworkers have reported the statistical studies 

for activation free energy and enzyme efficiency in 339 wild-type hydrolases.3, 33 However, 

across a diverse range of hydrolase sequences, functions, and substrate types, the properties and 

spatial distributions for rate-enhancing mutations remain unexplored. This is primarily caused by 

the challenges for integrating enzyme structural data and kinetics data – they are stored in 

different databases (e.g., PDB,34 UniProt,35-36 BRENDA,37 and SABIO-RK38) with a diverse range 

of data formats and standards, which is very difficult to collect and clean. 

Here we built a database, IntEnzyDB, that stores clean and tabulated structural and 

catalytic data for hydrolases. Using IntEnzyDB, we curated 3,907 kinetics parameters for 

investigating what types of amino acids are more likely to induce rate-enhancement, and 505 

kinetics-structure pairs for studying the spatial distribution of rate-enhancing mutations. The 

study shows that mutation to bulky nonpolar residues is more likely to induce rate enhancement 

than to the polar or charged residues. The study reveals the spatially-resolved and protein-size-

dependent likelihood for identifying rate-enhancing mutations.   
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2. Computational Details 

Database Construction We built a relational database for hydrolases, IntEnzyDB, with 

the flattened data structure to facilitate statistical analysis and data-driven modeling. The 

database is publically accessible through the MongoDB Compass connection string: 

mongodb+srv://access_1:Aa123@cluster0.5ey45.mongodb.net/test. Unlike Protein Data Bank 

(PDB) and other object-oriented database that stores information of a protein using one 

individual data file, IntEnzyDB uses one table for hydrolase kinetics and three tables for 

structure data of different scale, including chain table, amino acid table, and atom table. Each 

table contains entries of all hydrolases stored. Different tables are connected by the keywords 

(i.e., foreign keys):  UniProtKB, PDB ID and enzyme commission (EC) number. To ensure 

precise mapping of enzyme kinetics to structure, we manually aligned the mutation residue 

sequence reported in kinetics database (or labeled in Uniprot) with the PDB structure.  

The kinetics data of hydrolases were collected from BRENDA37 and SABIO-RK.38 

Enzyme entries lacking the wild-type or mutant kcat values, substrate information, or unknown 

experimental temperature were excluded. The kinetics table of the database contains 3,907 

entries for 411 hydrolases. The kinetics table stores turnover number kcat, reaction type, substrate 

name, mutation type, experimental conditions (e.g., temperature, pH, and pressure), and so on. 

The protein structure data were collected from RCSB Protein Databank.34 The structure table of 

IntEnzyDB contains 2,715 structures. The enzyme chain table contains structure name, sequence, 

resolution, missing residue, global stoichiometry, organism, and FASTA sequence. The enzyme 

amino acid table contains amino acid type, sequence number, coordinates of the Cα, and center-

of-mass coordinate of the entire amino acid. The atom table contains atom type, sequence 

number, amino acid to which the atom belongs, coordinates, and atomic mass. 
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Data Curation Using UniProtKB as the key,35-36, 39 the kinetics data and the structural data 

were paired. The data entries were excluded that involve either missing kinetics or PDB structure 

data. The kinetics data (i.e., turnover number, kcat, s-1) for hydrolases were curated based on the 

following filtration criteria: 1) the data entry has been assigned a UniProtKB and there is at least 

one known PDB structure under the UniProtKB, 2) the data entry stores mutation (or wild-type) 

and substrate information, 3) the data entry includes temperature, 4) the data entry corresponds to 

either a wild-type enzyme of a single-amino-acid-substitution mutant, and 5) there is at least one 

wild-type enzyme/mutant pair with shared substrate and temperature condition. This yields 1,500 

kinetics data entries for hydrolase-substrate complexes that consist of 221 unique hydrolases 

(i.e., UniProtKBs), 910 mutant hydrolases with single-amino-acid substitution, and 362 

substrates. Among the curated data, 95% of the enzymatic kinetics were experimentally 

measured in the temperature range from 295.15 to 343.15 K (Supporting Information, Figure 

S1). IntEnzyDB contains nine types of hydrolases that act on ester bonds (EC 3.1), N-glycosidic 

bond (EC 3.2), ether bonds (EC 3.3), peptide bonds (EC 3.4), carbon-nitrogen bonds other than 

peptide bonds (EC 3.5), acid anhydrides (EC 3.6), carbon-carbon bonds (3.7), halide bonds (3.8), 

phosphorus-nitrogen bonds (EC 3.9, Supporting Information, Figure S2).  

Under a specific UniProtKB, the PDB structure of hydrolases was selected that allows a 

successful matching of the mutation and active-site spots labeled in the kinetic database to the 

PDB sequence. The distribution of the number of the missing residues and the resolution for each 

curated structure is shown in the Supporting Information, Figure S3a and S3b, respectively. Only 

one chain was selected to represent the whole structure. This yields 80 different PDB structures, 

corresponding to 80 UniProtKBs.  
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The cleaned kinetics data table and the paired kinetic-structure data table, along with the 

code we used for data cleaning, can be found in the zip file of the Supporting Information. All 

statistical analysis, including the histogram, boxplot, bar graph, percentage bar graph, were 

generated using R package.  

3. Results and Discussion 

3a. IntEnzyDB Integrates Structure and Kinetics Data for Hydrolases  

We have built a new hydrolase database, IntEnzyDB, which integrates clean and 

tabulated structure and kinetics data in one place (Figure 1). Unlike the Protein Data Bank (PDB) 

that stores protein data files individually, IntEnzyDB adopts a relational architecture with the 

flattened data structure, in which each data table stores all hydrolase entries. We have created 

one data table for hydrolase kinetics, and three separate tables for different scales of hydrolase 

structure information, including enzyme chain table, amino acid table, and atom table. These 

tables share the keywords: PDB ID, UniProtKB, and EC Number, which can be used for 

mapping hydrolase kinetics-structure pairs (Figure 1). Besides easy pairing of enzyme kinetics 

and structure data, IntEnzyDB is also advantaged by the efficiency of data processing – 

IntEnzyDB outperforms PDB by hours of efficiency when processing a large number of enzyme 

structures (e.g., 1.2 hours faster for 1,000 hydrolase structures, Supporting information, Table 

S1). This is because IntEnzyDB avoids repetitive file I/O operations of individual structure files 

by loading all data entries simultaneously to the CPU memory.  
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Figure 1. Design architecture for the integrated structure-kinetics database, IntEnzyDB. The 

database consists of four tables: three tables are used for storing structural data (i.e., protein 

chain table, protein amino acid table, and protein atom table), and one table for kinetics data. The 

tables share keywords, including PDB ID, EC Number, and UniProtKB. 

Enabled by IntEnzyDB, we have curated two datasets of mutant hydrolases for analysis. 

The first dataset involves kinetics parameters for 1,500 mutant hydrolases-catalyzed reactions, 

consisting of 211 unique hydrolases, 910 mutant hydrolases with single amino acid substitution, 

and 362 substrates. This dataset will be applied to investigate the percentage of rate-enhancing 

mutations among all mutations and the rate-enhancing propensity of mutation to a certain type of 

the 20 canonical amino acids. The second dataset involves kinetics-structure pairs for 505 mutant 

hydrolases-catalyzed reactions where the active-site residues information is labeled either in 

UniProt or PDB. The dataset consists of 80 unique hydrolases, 350 mutant hydrolases with single 

amino acid substitution, and 136 substrates. This dataset enables us to statistically profile the 

spatial distributions for the rate-enhancing mutants. 

3b. The Rate-enhancing Mutant Hydrolases Occupies 9% in IntEnzyDB   
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We first investigate the percentage of the rate-enhancing mutations. Figure 2 shows the 

histogram of free energy barrier changes upon mutation (i.e., ΔΔG‡) for all hydrolase variants, in 

which the ΔΔG‡ is converted from kcat
mutation/kcat

wild-type
 using the Eyring’s equation. R is the gas 

constant, T is the temperature, and kcat is the apparent turnover number for the enzymatic 

reaction:  

∆∆𝐺‡ =–𝑅𝑇 ln
𝑘+,-./-,0-

𝑘+,-
12345-678  

The distribution conforms to a Gaussian shape with a heavier right tail, ranging from –4.1 

to 8.6 kcal/mol. The average of the ΔΔG‡ is 0.9 kcal/mol – this is consistent with the common 

experimental observation that mutations likely increase the activation free energy barrier and 

reduce the turnover number. To characterize the rate-perturbing effects, the mutations are 

categorized to be rate-enhancing (i.e., ΔΔG‡ ≤ –0.5 kcal/mol), rate-neutral (i.e., ΔΔG‡ > –0.5 and 

≤ 0.5 kcal/mol), and rate-deleterious (i.e., ΔΔG‡ > –0.5 kcal/mol). The proportion of rate-

enhancing mutations is 9% (Figure 2), which is a smaller composition compared to the rate-

neutral and -deleterious mutations. Nonetheless, this percentage biases towards overestimating 

the natural abundance of the rate-enhancing mutations due to the exclusion of mutations that are 

non-expressible or abolish hydrolase activity. In contrast, the percentage of beneficial single-

mutation has been reported to be around 5% for an aliphatic amide hydrolase amiE with three 

different substrates (i.e., acetamide, propionamide, and isobutyramide),14 and to be only 0.01–1% 

observed in the directed evolution experiments,9 albeit both are derived from a fitness metric 

rather than from ΔΔG‡.  
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Figure 2. The histogram of the activation free energy change upon mutation (i.e., ΔΔG‡) for 

1,500 hydrolase variants-catalyzed reactions. The bin size is 0.5 kcal/mol. Colored in red are for 

rate-enhancing mutations with their ΔΔG‡ less than or equal to –0.5 kcal/mol. Colored in grey 

are for rate-neutral (i.e., ΔΔG‡ > –0.5 and ≤ 0.5 kcal/mol) and rate-deleterious (i.e., ΔΔG‡ > –0.5 

kcal/mol) mutations. 

3c. Mutation to Nonpolar Residue Has the Highest Likelihood to Accelerate the Hydrolase-

Catalyzed Reactions 

We characterized the rate-enhancing propensity of mutation to a certain type of the 20 

canonical amino acids (Figure 3). For each type of amino acid, we calculated and ranked the 

percentage of rate-enhancing mutations (Figure 3a) and the median ΔΔG‡ for all mutations of the 

same amino acid type (Figure 3b). The percentage of rate-enhancing mutations ranges broadly 

from ~26% for Val to ~2% for Glu (Figure 3a), while the median ΔΔG‡ ranges from –0.1 

kcal/mol for Tyr to 1.2 kcal/mol for Asn (Figure 3b). Among the five amino acids with the 

highest percentage of rate-enhancing mutations, three are bulky nonpolar residues with a 

hydrocarbon side chain (i.e., Val, Ile, and Phe). Val and Ile are also among the top three amino 
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acid types that involve the lowest median ΔΔG‡. For both ranks shown in Figure 3, the common 

residues among the top ten involve four nonpolar (i.e., Val, Ile, Phe, and Pro), two polar (i.e., Tyr 

and Thr), and one charged (i.e., Arg) residue(s), while those among the bottom ten involve one 

nonpolar (i.e., Ala), two polar (i.e., His and Gln), and three charged (i.e., Glu, Asp, and Lys) 

residue(s). Notably, the only nonpolar residue in the bottom ten, Ala, is more humanly biased 

towards rate-deleterious than other residues because of its extensive use in alanine scanning to 

replace catalytically-competent residues for testing biochemical hypothesis. Quantitatively, 

mutation to bulky nonpolar residues with a hydrocarbon side chain has a 7% higher likelihood to 

enhance turnover number than other types of residues for hydrolases (Supporting information, 

Figure S4). Mutation from polar or charged residues to hydrocarbon chain-containing nonpolar 

residues is found to be the most rate-enhancing (~16%, Supporting information, Figure S5). 

These statistical results emphasize the important roles of mutation to nonpolar residues in 

accelerating the hydrolase-catalyzed reactions.  
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Figure 3. The rate-perturbing effects of mutation to a certain type of the 20 canonical amino 

acids. a) The normalized proportion of rate-enhancing (red), -deleterious (dark grey), and -

neutral (grey) mutation for each amino acid type of the mutation residue, ranked by the 

proportion of the rate-enhancing mutations. b) The ranked median ΔΔG‡ for each amino acid 

type of the mutation residue.  

The nonpolar residues with a hydrocarbon chain are chemically inert. They are not able 

to form strong and directional hydrogen bonding or electrostatic interactions with local residues 

but have the capability of tuning protein dynamics through hydrophobic interactions and steric 

frictions. Mutation to nonpolar residues has been reported to change enzyme conformational 

population and dynamics, substrate positioning, and the shape of the active-site, in ways to 
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stabilize the transition state.40-43 As an example, we show the structures for two typical 

hydrolases, cutinase (Thc_Cut2)44-45 and S-formylglutathione hydrolase (SFGH),46 which involve 

significant barrier reduction (i.e., ΔΔG‡ ≤ –1.3 kcal/mol) upon single amino acid substitution to 

Val and Ile, respectively (Figure 4). Both enzyme mutants involve the same type of catalytic 

triad (Ser-His-Asp)2 and show a similar magnitude of rate enhancement for the substrate 4-

nitrophenylbutyrate (i.e., ΔΔG‡ = –1.4 kcal/mol for Thc_Cut2 vs –1.3 kcal/mol for SFGH). The 

mutation residues are located with distinct spatial proximity and orientation to the catalytic triad 

(i.e., 27.0 Å for Thc_Cut2 and 12.7 Å for SFGH). Inspired by the observation, we investigated 

the rate-enhancing likelihood for mutations of various spatial proximity to the active site (section 

3d) and the center-of-mass of the enzyme (section 3e). 
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Figure 4. Typical mutant hydrolases that involve significant rate-enhancement upon single 

amino acid substitution to bulky nonpolar residues. a) Thc_Cut2 cutinase with A30V mutation, 

in which the active-site catalytic triad is Ser131-His209-Asp177. b) S-formylglutathione 

hydrolase (SFGH) with W197I mutation, in which the active-site catalytic triad is Ser161-

His276-Asp241. For both enzymes, the substrate is 4-nitrophenylbutyrate. The distances between 

the Cα of the variant residue and the center of mass of the catalytic triad are labeled.   

3d. Structure-Kinetics Relationship with Reference to the Active-Site 

We studied the structure-kinetics relationship for mutant hydrolases with reference to the 

active-site (Figure 5). We employed two types of criteria to characterize the spatial proximity of 

the mutation residues to the active site residues (labeled in UniProt or PDB). The distance-

criterion categorizes a mutation into the inner-shell (i.e., ≤ 10 Å), mid-shell (i.e., >10 and ≤ 20 

Å), or outer-shell (i.e., >20 Å) based on the distance of its Cα coordinate to the geometric center 

of the active-site residues Cα coordinates (Figure 5a). This results in 153, 260, and 92 mutations 

in the inner-, mid-, and outer shell. The percentile-criterion categories a mutation residue into the 

first- (i.e., > 66.7th percentile), second- (i.e., >33.3th and ≤ 66.7th percentile), or third-shell (i.e., ≤ 

33.3th percentile) based on its percentile rank of spatial proximity to the active-site among all 

residues of a hydrolase (Figure 5d). This results in 358, 95, and 52 mutations in the first-, 

second-, and third-shell. Notably, the shells defined here are intended to reflect a spatial cutoff – 

they are relevant but not identical to the well-known coordination shells defined based on the 

layers of contact residues surrounding the substrate. 

Using the distance-criterion, we first investigated the distribution of ΔΔG‡ in each shell 

(Figure 5b). The mutations in the inner-shell involve higher median ΔΔG‡ (by 0.8 kcal/mol) than 



14 

 

those in the mid- or outer-shell. Similarly, when shifting to the percentile-criterion, the mutations 

in the first-shell also involve significantly higher ΔΔG‡ (by 0.6 kcal/mol) than those of the 

second- and third-shell (Figure 5e). These results show that mutations are statistically more 

deleterious when they are spatially proximal to the active site. This is intuitive because the 

active-site residues constitute the hydrolase catalytic functions, which include but are not limited 

to participate in bond arrangement (i.e., catalytic triad), stabilize the oxyanion hole, transfer 

proton, or bind substrate. Many of these residues are evolutionarily conserved, the mutation of 

which commonly causes a large increase of the ΔΔG‡, if not abolish the catalytic activity 

entirely.  

We further characterized the spatially-resolved likelihood of rate enhancement. As 

pointed out by Morley et al. (Paper14), the globular shape of the enzyme makes the mid- and 

outer-shells involve a larger population of residues than the inner-shell, which results in the 

observation of more mutations and accordingly more beneficial mutations remote to the active 

site. To normalize this effect, we computed the proportion of rate-enhancing mutations over all 

the mutations populated in a certain shell. Under the distance-criterion, the highest proportion of 

rate-enhancing mutations is found in the mid-shell, which contains residues between 10 and 20 Å 

away from the active site (12%, Figure 5c). The favorability of mid-shell mutations is consistent 

with the statistical survey by Morley et al. that indicates particularly a high population for 

activity-enhancing mutations located in the 9–20 Å from the active site.29  

Under the percentile-criterion, however, a significantly higher propensity for rate-

enhancing mutations is found in the third-shell which homes to the 33.3% of protein residues 

most distal to the active-site in each hydrolase (15%, Figure 5f). This indicates that the distal 

mutations for each hydrolase, however distant they actually are from the active site, hold the best 
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likelihood for rate enhancement. This is consistent with the widely-reported observation of the 

beneficial roles played by remote mutations in directed evolution experiments.32 

Noticeably, despite being more deleterious in terms of median ΔΔG‡, the mutations in 

the inner-shell or in the first-shell show a decent proportion of rate-enhancing mutations (~10%, 

Figure 5c and 5f, respectively), which is comparable to the average percentage of rate-enhancing 

mutations across shells (9%, Figure 2). Moreover, when separately analyzing the rate-enhancing 

mutations, the distribution of ΔΔG‡ for the inner-shell mutation has no significant difference 

from that for the other shells (Supporting Information, Figure S6). These results reveal that the 

inner-shell contains mutations with a diverse range of rate-perturbing effects, where the 

opportunities for rate enhancement and the tendency for activity abolishment co-exist. We also 

observed a particularly low population of the rate-neutral mutations in the inner-shell, which 

indicates their low likelihood of inducing neutral drift21, 47-49 (Supporting Information, Figure S7). 
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Figure 5. The spatially-resolved characterization for rate-enhancing hydrolase mutations with 

reference to the active-site. a) Three spatial shells, inner- (red), mid- (green), and outer-shell 

(blue) defined based on the distance of the mutation residue Cα coordinate to the geometric 

center of the active-site residues Cα coordinates. b) The distribution of ΔΔG‡ for the mutation 

residues in the inner-, mid-, and outer-shell. c) The proportion of the rate-enhancing mutations 

located in the inner-, mid-, and outer-shell. d) Three spatial shells, first- (red), second- (green), 

and third-shell (blue) defined based on the mutation residue’s percentile rank of spatial proximity 

to the active-site. e) The distribution of ΔΔG‡ for the mutation residues located in the first-, 

second-, and third-shell. f) The proportion of the rate-enhancing mutations located in the first-, 

second-, and third-shell. The boxplots include the median, the 25th quantile, and the 75th quantile 

as the middle bar, the lower bound, and the upper bound of the box. The graphic illustration for 

the three-shells with serum paraoxonase as the model hydrolase (PDB ID: 1V04).  

Although the distance-criterion has a straightforward chemical meaning and has been 

frequently applied to discuss the spatial distribution of protein mutations, the distance cutoff is 

not capable of accounting for the diverse range of protein size and shape. For instance, the 

number of residues in the outer-shell is much less for smaller-sized proteins than that for larger-

sized proteins. Consequently, in our following analysis, we adopted the percentile-criterion, 

which normalizes the difference in protein size. For each hydrolase, the percentile-criterion 

allows an approximately equal number of enzyme residues populated in each protein shell.  

Using the percentile-criterion, we studied how the spatial distribution of rate-enhancing 

mutations depends on the protein size. We evenly divided the hydrolases into larger-sized (i.e., 

sequence length > 324) and smaller-sized groups (i.e., sequence length ≤ 324) ranked by their 

sequence lengths (Supporting Information, Figure S8). In contrast, larger-sized and smaller-sized 
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hydrolases show the distinct spatial distribution for rate-enhancing mutations. For larger-sized 

hydrolases, the mutations in the third-shell involve a three-times higher proportion of rate-

enhancing mutations than those in the other two shells (21% in the third-shell versus 6-7% in the 

inner- or the mid-shell Figure 6a). For smaller-sized hydrolases, however, mutations in the three 

shells involve a relatively similar proportion of rate enhancement with the third-shell slightly 

more advantaged than the other two shells (12%, 11%, and 10% in the third-, second- and first-

shell Figure 6b). These results show that larger-sized hydrolases have a stronger preference 

towards rate-enhancing distal mutations. 

 

Figure 6. The proportion of the rate-enhancing mutations located in the first- (red), second- 

(green), and third-shell (blue) for larger-sized and smaller-sized hydrolases. The three shells are 
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defined based on the mutation residue’s percentile rank of spatial proximity to the active site of 

the hydrolase. 

3e. Structure-Kinetics Relationship with Reference to the Protein Center-of-Mass 

We investigated the structure-kinetics relationship for mutant hydrolases with reference 

to the center-of-mass of the hydrolase. Unlike the active-site whose position varies in different 

hydrolases (e.g., buried inside or close to the surface), the center-of-mass characterizes an 

interior geometric center for hydrolases with a folded globular shape. These two references are 

complementary: the active site reference relates to the enzyme function, while the center-of-mass 

reference concerns the protein geometry.  

Using the percentile-criterion, we categorized the mutation residues into the three shells 

based on the percentile rank of its spatial proximity to the center-of-mass of the hydrolase among 

all residues (Figure 7). This results in 287, 153, and 65 mutations in the first-, second-, and third-

shell. The mutations in the first-shell involve higher ΔΔG‡ by about 1.0 kcal/mol than those in 

the other two shells (Figure 7a). This observation is very similar to those defined using the 

active-site references (Figure 5e) because there is a significant overlap in the first-shell mutations 

defined using these two references (i.e., 258 mutations in common, Supporting Information, 

Figure S9). This indicates that mutations of the residues located in the protein geometric core is 

likely to be deleterious.  
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Figure 7. The spatially-resolved characterization for rate-enhancing hydrolase mutations with 

reference to the center-of-mass of the hydrolase, where the three spatial shells, first- (red), 

second- (green), and third-shell (blue) defined based on the mutation residue’s percentile rank of 

spatial proximity to the center-of-mass of the hydrolase. a) The distribution of ΔΔG‡ for the 

mutation residues and b) the proportion of the rate-enhancing mutations in the three shells. c) 

The proportion of the rate-enhancing mutations for larger-sized and smaller-sized hydrolases in 

the three shells. 

To characterize the spatially resolved likelihood of rate enhancement, we computed the 

proportion of rate-enhancing mutations for each shell. Distinct from the observation of the third-

shell residues being most rate-enhancing under the active-site reference (Figure 5f), the 
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mutations in the second-sell have the highest proportion of rate-enhancing mutations under the 

center-of-mass reference (13%, Figure 7b). When categorizing the hydrolases into two groups 

based on the sequence lengths as described in the section 2d, the mutations in the second-shell 

for the smaller-sized hydrolases were found to involve a two- to three-fold higher proportion of 

rate-enhancing mutations than those in the other two shells (i.e., 17% in second-shell versus 10% 

and 4% in the third- and first-shell, Figure 7d), while mutations in the three shells for the larger-

sized hydrolases involve a relatively similar proportion of rate-enhancement (8%, 9%, and 11% 

in the third-, second- and first-shell Figure 7c). These results show that smaller-sized hydrolases 

exhibit a stronger preference towards rate-enhancing second-shell mutations under the center-of-

mass reference. The protein-center-oriented description can thus complement the active-site-

oriented description to provide new metrics for evaluating the spatial dependence of the rate-

enhancing mutations.  

4. Conclusions 

We constructed a hydrolase database, IntEnzyDB, which stores clean and tabulated 

structure and kinetics data by adopting a relational architecture with the flattened data structure. 

The database allows the easy pairing of hydrolase structure and kinetics data and exhibits 

superior efficiency when processing a large amount of data. With IntEnzyDB, we curated two 

datasets of mutant hydrolases to statistically characterize the rate-enhancing single amino acid 

mutations. One dataset consists of 1,500 distinct kinetics entries and the other of 505 kinetics-

structure pairs.  

Using the kinetics dataset, we first converted kcat
mutation/kcat

wild-type to ΔΔG‡, and then 

categorized each mutation to be rate-enhancing, -neutral, and -deleterious. We found 9% of the 
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mutations are rate-enhancing, which overestimates the natural occurrence but provides abundant 

data for our analysis. Among the rate-enhancing mutations, we observed a particularly strong 

rate-enhancing propensity of mutation to bulky nonpolar residues with a hydrocarbon side chain. 

Since these nonpolar residues do not directly participate in forming strong polar or charged 

interactions with local residues, we suspect they play significant roles in tuning protein dynamics 

for promoting reaction rate.  

Using the kinetics-structure dataset, we studied the spatially-resolved likelihood of rate 

enhancement for mutation. With the active site as the reference point, we compared two criteria 

for defining the spatial shells. The distance-criterion categorizes a mutation into one of the 

spatial shells based on its distance to the active site. Despite being chemically intuitive, this 

criterion is incapable of normalizing the difference in protein size and shape. Rather, we adopted 

a percentile-criterion that categorizes a mutation into a spatial shell based on its percentile rank 

of spatial proximity to the active site. We observed the highest likelihood for locating rate-

enhancing mutations in the third shell, which is most distal to the active-site. This trend enhances 

for larger-sized hydrolases. When shifting the reference to the center-of-mass of the enzyme, we 

observed the highest likelihood for locating rate-enhancing mutations in the second shell, which 

contains residues that are 33.3th to 66.7th percentile rank of proximity to the center-of-mass of the 

enzyme. This trend enhances for smaller-sized hydrolases. Under either reference, mutations in 

the first shell (i.e., closest to the reference point) appear significantly more rate-deleterious than 

those in the other two shells (i.e., ~1.0 kcal/mol in ∆∆G‡). 

In a summary, this study provides a meta-analysis of the amino-acid-type and spatial 

distributions for mutations that are prone to induce rate enhancement for hydrolases. The study 

has the potential of guiding the identification of single amino acid mutations that accelerate the 
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hydrolase-catalyzed reactions. We hope the study will inspire further investigations on how 

specific enzyme functions and substrate properties influence the discovery of rate-enhancing 

mutant hydrolases. The IntEnzyDB we constructed will provide clean and tabulated structural 

and kinetics data, enabling easy construction of predictive models for enzyme kinetics based on 

statistical modeling or machine learning methods.  
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