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  Molecular dynamic (MD) simulation plays an essential role in understanding protein functions at 

atomic level. At present, MD simulations on proteins are mainly based on classical force fields. 

However, the accuracy of classical force fields for proteins is still insufficient for accurate descriptions 

of their structures and dynamical properties. Here we present a novel protocol to construct machine 

learning force field (MLFF) for a given protein with full quantum mechanics (QM) accuracy. In this 

protocol, the energy of the target system is obtained by fitting energies of its various subsystems 

constructed with the generalized energy-based fragmentation (GEBF) approach. To facilitate the 

construction of MLFF for various proteins, a protein’s data library is created to store all data of 

subsystems generated from trained proteins. With this protein’s data library, for a new protein only its 

subsystems with new topological types are required for the construction of the corresponding MLFF. 

This protocol is illustrated with two polypeptides, 4ZNN and 1XQ8 segment, as examples. The 

energies and forces predicted from this MLFF are in good agreement with those from density 

functional theory calculations, and dihedral angle distributions from GEBF-MLFF MD simulations 

can also well reproduce those from ab initio MD simulations. Therefore, this GEBF-ML protocol is 

expected to be an efficient and systematic way to build force fields for proteins and other biological 

systems with QM accuracy. 
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Molecular dynamics (MD) simulation is an import tool to understand how the structure of a protein 

molecule determines its function in a cell. It is generally believed that ab initio MD simulations based on 

quantum mechanics (QM) methods can be used to obtain accurate and reliable simulation results. 

However, due to the high computational cost of QM calculations for large biomolecules, ab initio MD 

simulations are not available for proteins. Currently, MD simulations with the classical force fields1-6 have 

been widely applied for large biomolecules including proteins.7,8 However, the accuracy of classical force 

fields is still insufficient for reliable descriptions of some proteins. For example, the α-helical propensity 

is underestimated by the AMBER99SB force field compared to the corresponding experimental values.9 

The classical force fields cannot accurately describe temperature-dependent folding.10 

Nowadays, the machine learning (ML) method has been increasingly applied to develop more accurate 

atomistic potentials with very general functional forms than the conventional force fields with physically 

inspired functional forms.11-19 The resulting machine learning potentials, also called as ML force fields 

(MLFFs), have been demonstrated to be quite successful for a variety of different systems.20-27 In MLFFs, 

the total energy of a target system is generally expressed as a sum of local environment-dependent atomic 

energies. By “learning” from reference data sets obtained from QM calculations for a given system or a 

type of systems, MLFFs may reach similar accuracy as QM methods at a cost which is orders of magnitude 

less than that required to do QM calculations for the same systems. 

Due to the chemical complexities of proteins and high computational costs of QM methods for large 

systems, building MLFFs for proteins remains a great challenge. Energy-based fragmentation (EBF) 

approaches28-38 provide a practical and attractive solution to achieve QM calculations of large molecules 

including proteins. With this approach, the ground-state energy of a large system can be evaluated as the 

linear combination of ground-state energies of small subsystems, which are representation of different 

local regions of a large system. The combination of ML technique with fragment-based approaches 

enables the construction of the MLFFs for a large system with only QM energies (or forces) of small 

subsystems. In previous studies, a residue-based neural network (NN) approach has been developed to 
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construct preliminary MLFFs for proteins.39,40 In their approach, a protein is first fragmented into various 

dipeptides, in which an amino acid is capped with two terminal groups (acetyl group and N-methyl amide 

group), as shown in Figure 1. Then, the total energy of a protein is expressed as the linear combination of 

the energies of all these dipeptides, each of which can be represented as NN potentials. The resulting ML 

potentials represent the first step towards ab initio quality protein force fields. However, these potentials 

are not yet accurate enough, with the root-mean-square errors (RMSEs) for the energy and forces of (Ala)9 

being 0.15 kcal/(mol·atom) and 4.75 kcal/(mol·Å), respectively, with respect to reference density 

functional theory (DFT) data.39 Obviously, the accuracy of MLFFs for proteins should be significantly 

improved so that accurate simulations of their structures and dynamical properties are available. 

In this work, we develop a general protocol for constructing MLFFs for proteins with full QM quality. 

This is achieved by fitting atomic energies from QM calculations on subsystems with realistic local 

chemical environments and taking the long-range interactions outside various subsystems into account. 

To simplify the parametrization in the construction of MLFFs, the nonparametric Gaussian approximation 

potentials (GAP)12 proposed by Csányi is chosen to learn the ground-state energies of various subsystems 

and the energy of the target protein is predicted by GAP directly as the summation of atomic contributions. 

The generation of subsystems for a protein segment 4ZNN is illustrated in Figure 1. With the generalized 

energy-based fragmentation (GEBF) approach,28 we will generate various subsystems, each of which 

contains a fragment and its neighboring fragments and capping hydrogen atoms if necessary (in grey oval). 

Clearly, subsystems constructed in this way are better representation of the local chemical environment 

of different regions in a protein than those in residue-based neural network (NN) approach (also shown 

in Figure 1). However, a general protein may contain as many as 20 different types of amino-acid residues, 

thus the number of different topological types of subsystems (with three or more residues) that could be 

constructed for different proteins is enormous. Thus, a cost-effective practical strategy for building the 

MLFF of a given protein is to fit the energy (or forces) of this protein as the summation of atomic 

contributions from QM calculations of various subsystems for the studied protein. Because a subset of 
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subsystems generate from a protein may have the same topological structure in chemical space as those 

from another protein, we may introduce transfer learning41 to avoid redundant QM calculations on these 

subsystems. In our approach, we create a protein’s data library, which contains all data of subsystems 

generated from trained proteins. For a new protein, a subset of subsystems with same topological types 

that are already in the protein’s data library can be directly taken as a part of the training set, together with 

some newly generated subsystems. An online active learning42 is adopted here to generate these new 

subsystems for the studied protein. This protocol is applied on two polypeptides (4ZNN and 1XQ8 

segment) to construct the corresponding MLFFs and their accuracy and efficiency are validated with 

reference QM calculations. Our results indicate that this GEBF-ML force field can reproduce QM results 

very well at speeds several orders of magnitude faster than ab initio calculations. We expect that this 

protocol will greatly promote the development of fast and accurate MLFFs for various biological systems.  

 

 

 

Figure 1. Fragmentation scheme utilized in the construction of MLFFs. In our GEBF method, fragments 

are capped with its environmental fragments. In previous residue-based method, fragments are capped 

with an acetyl group (ACE) and N-methylamide group (NME).
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Results. 

Accuracy and efficiency of machine learning force field. As a proof of concept, MLFFs of two 

polypeptides, 4ZNN segment (ACE-GVVHGVTTVA-NME) and 1XQ8 segment (ACE-

GVVHGVATVA-NME), are constructed by our GEBF-ML scheme. Both protein segments are capped 

with ACE and NME. First, online machine learning MD simulations are performed on 4ZNN to 

generate the training set of subsystems. During the 1-ns MD simulation at 500 K, QM calculations are 

carried out for only 0.15% of generated subsystems and the number of subsystems with different 

topological types or different configurations in the training set is only 8147, as shown in Table 1. After 

the MLFFs of 4ZNN have been constructed, all subsystems of 4ZNN in the training set are divided 

into sub-datasets according to their topological types and stored in the data library. When we construct 

MLFFs for 1XQ8 segment, we load the corresponding sub-datasets in the data library to the training 

set. As the 4ZNN and 1XQ8 segments differ from each other by only one amino acid residue, about 

4000 subsystems are loaded from the data library. Then, online active learning is performed for the 

1XQ8 segment to sample new subsystems, only 0.009 % of newly generated subsystems are needed 

for QM calculations, and the total number of subsystems in the training set is only 4810 (Table 1). The 

fraction of QM calculations for 1XQ8 segment is much smaller than that for 4ZNN segment, since a 

large number of subsystems generated from 4ZNN can be reused. The online training process shows 

high sampling efficiency for building the training set. It is worth mentioning that the data library will 

be continuously expanded when more proteins are trained, and much less QM calculations on 

subsystems may be required for the construction of MLFFs for any new protein. 
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Table 1. The Root Mean Squared Errors (RMSEs) of the MLFFs energies [in kcal/(mol·atom)], 

and forces [in kcal/(mol·Å)] (with respect to the conventional ωB97X-D/6-31G* results) for the 

test set, fraction x1(%) of the QM calculations during the online active learning and numbers of 

subsystems Nst for the training set.  

System 4ZNN 1XQ8 segment 

RMSE E 0.025 0.022 

RMSE F 1.475 1.482 

x1 0.145 0.009 

Nst 8147 4810 

 

 

 

Figure 2. The comparisons of correlations between the forces from MLFFs, PM6, and ff14SB, and the 

ωB97XD/6-31G* ones. 
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 The accuracy of the generated MLFFs is then evaluated. As the GEBF-PM6 method is employed 

as the baseline of the MLFFs, 10 randomly chosen conformers of 4ZNN and 1XQ8 segments are 

calculated with the GEBF-PM6 method to verify whether the GEBF-PM6 method can reproduce the 

conventional PM6 results. The deviations of GEBF-PM6 energies relative to conventional PM6 ones 

are listed in Table S1. Our calculations show that the mean absolute errors (MAEs) of energies for both 

two systems are only 0.003 kcal/(mol·atom). Thus, the errors of GEBF-PM6 results with respect to the 

conventional PM6 ones are negligible for the two polypeptides. Then, 1000 structures are randomly 

chosen from the trajectories at 300 K for both systems as test sets, and the accuracy of our MLFFs is 

evaluated on them. The RMSEs between the MLFF results and the conventional ωB97XD/6-31G* 

calculations are summarized in Table 1. The RMSEs are less than 0.025 kcal/(mol·atom) and 1.5 

kcal/(mol·Å), respectively, indicating that the MLFFs could accurately predict the energies and forces 

for both systems. For comparison, the RMSEs of PM6 and ff14SB force field results in energies and 

forces, relative to the conventional ωB97X-D/6-31G* results, are also shown in Table S2. For two 

polypeptides, the RMSEs with ff14SB are 0.13 kcal/(mol·atom) and 12 kcal/(mol·Å), respectively. 

The RMSEs with PM6 are 0.06 kcal/(mol·atom) and 14 kcal/(mol·Å), respectively. These results 

indicate that our MLFFs are much more accurate than the PM6 or ff14SB method, and the previous 

MLFF from the residue-based neural network approach. To further show the accuracy of MLFFs, 

Figure 2 plots the correlations between the forces from MLFFs (top), PM6 (center), and ff14SB 

(bottom) and the ωB97XD/6-31G* ones for all configurations in test sets. The coefficient of 

determination (R2) between these results and ωB97XD/6-31G* results is 0.995 (MLFFs), much higher 

than 0.56 for PM6 or 0.67 for ff14SB. The whole range of force amplitudes predicted by MLFFs is 

almost the same with that from reference ωB97XD/6-31G* calculations. Therefore, our GEBF-ML 
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protocol can automatically build MLFFs of these two polypeptides with full QM quality.  

Relative energy prediction and structure optimization. To show the applicability of the MLFFs on 

relative energy prediction, we compare the relative energies for all conformers in the test set from 

MLFFs, PM6, ff14SB with the ωB97XD/6-31G* data. Here, the energy of the first conformer 

calculated with each method was taken as zero. The MAEs of relative energies predicted by MLFFs 

are 3.20 and 2.93 kcal/mol for 4ZNN and 1XQ8 segments, respectively, relative to the ωB97XD/6-

31G* results. Relative to the ωB97XD/6-31G* results, the MAEs predicted by PM6 for both systems 

are 7.22 and 7.34 kcal/mol, respectively, and the MAEs predicted by ff14SB are 22.60 and 14.38 

kcal/mol, respectively. Thus, both PM6 and ff14SB results are much less accurate than the present 

MLFF ones. For six structures randomly chosen from the test sets, the absolute deviations of relative 

energies (relative to the ωB97XD/6-31G* results) are shown in Figure 3a. One can note that the largest 

deviations are less than 6 kcal/mol for MLFF results, but are much larger (more than 18 kcal/mol) for 

PM6 and ff14SB results. Clearly, PM6 and ff14SB methods cannot correctly predict the relative 

stability of different conformers if these conformers are close in energies. The results indicate that the 

GEBF-MLFF method could be used to search for the low-energy conformers of systems under study.  

Further, to test if our MLFF could also be suitable for structure optimization, the conformers with 

the lowest energy predicted by MLFFs in test sets are considered as initial geometries. Figure 3b shows 

optimized structures obtained with MLFFs and ωB97XD/6-31G* for 4ZNN and 1XQ8 segments. The 

root-mean-square deviation (RMSD) between DFT and MLFF results is 0.31 Å and 0.36 Å on 4ZNN 

and 1XQ8 segment, respectively. The geometrical parameters obtained with our MLFFs are very close 

to the corresponding values from the ωB97XD method. In addition, the geometries optimized with  

PM6 and ff14SB are also calculated for comparison. At respectively optimized structures, the absolute 



9 
 

energy deviations predicted by MLFFs, PM6, ff14SB (relative to the ωB97XD/6-31G* results) are 

4.14, 13.96, 21.33 kcal/mol, respectively, for 4ZNN, and 0.85, 20.40, 24.60 kcal/mol, respectively, for 

1XQ8 segment. Among these three methods, only the relative energies of MLFFs at their optimized 

structures are in good agreement with those from ωB97XD. Therefore, the MLFFs can be directly used 

to obtain ab initio quality optimized structures for proteins. 

 

Figure 3. (a) The comparisons of the absolute deviations of the MLFF, PM6, and ff14SB relative 

energies (relative to the ωB97XD/6-31G* values) among 6 conformers. For both systems, the energy 

of the first conformer is taken as zero for each method. (b) Optimized structures of 4ZNN and 1XQ8 

segment. The superposition between the structure obtained with our MLFFs (red) and the DFT-

optimized structure (green) is shown for both systems. 

 

Molecular Dynamics Simulation. To investigate the applicability of our MLFFs on MD simulation. 

we first perform MD simulations for two polypeptides in the microcanonical (NVE) ensemble. Figure 

S1 shows total energy fluctuations whose initial velocities are consistent with T = 300 K. As shown in 
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Figure S1b and S1d, the energy drifts are negligible during the GEBF-PM6 simulation for both systems. 

For 4ZNN, Figure S1a shows that the energy drift is about 0.001 kcal/(mol·atom·ps) during the MLFF-

based MD simulation. For 1XQ8 segment the energy drift is even smaller during the MLFF-based MD 

simulation, as shown in Figure S1c. The energy drift of our MLFFs is much less than those in the 

AIMD simulations (for example, 0.023 kcal/(mol·atom·ps)43,44 for sodium-ion batteries) and in 

eReaxFF reactive force field MD simulations [0.01kcal/(mol·atom·ps)].45 Thus, our GEBF-MLFF 

could be employed for long-time MD simulations to investigate the conformational changes of two 

systems under study.  

Then, MLFF-based MD simulations using a Langevin thermostat46 are performed at 300 K with a 

timestep of 1 fs in the canonical (NVT) ensemble. To verify the accuracy of our MLFFs, we have 

performed 20-ps MD simulations with MLFFs, ff14SB and PM6 methods, respectively. MD 

simulations with ωB97X-D/6-31G* are also carried out for comparison. Figure 4 displays the dihedral 

angle distributions calculated with the MLFFs and ωB97X-D/6-31G* method. For each backbone 

dihedral φ, ψ, and ꞷ, histograms are accumulated for all amino acid residues except Gly. The results 

suggest that the distributions obtained from the MLFFs and ωB97X-D/6-31G* methods are very close 

to each other. The distributions predicted by the ff14SB and PM6 methods are plotted on Figure S2 

and S3, respectively. The dihedral distributions from these two methods are quite different from the 

ωB97X-D/6-31G* results. For dihedrals φ and ψ, the shapes of distribution show great difference when 

compared with the results from ωB97X-D/6-31G*. For dihedral angle ꞷ, the peak intensity predicted 

by ff14SB is 20 % larger than the ωB97X-D/6-31G* result, and the deviation of the location of peak 

predicted by PM6 method from the ωB97X-D/6-31G* one reaches 10°. One can conclude that the 



11 
 

dihedral angle distributions from MLFFs are much more accurate than those from the ff14SB and PM6 

methods.  

After the accuracy of the MLFFs for MD simulation is validated, we perform 1-ns MD simulations 

for both systems using a Langevin thermostat at 300 K, starting at their chain-like structures. The end-

to-end distances between the Cα atoms of the first and the last amino acid residues during 1-ns MD 

simulations are plotted in Figure 5. One can see that the end-to-end distances decrease rapidly in the 

first 0.2 ns and reach the minimum values about 4 Å during the rest of the simulation time. Three 

representative structures at different times are plotted in Figure 5. The results show that the 

conformation of the polypeptides gradually changes from the chain-like extended structure to the 

folded one, indicating a large conformational change during the MD simulations. Although the 

conformational changes are quite large and complex during the simulation for these two systems, MD 

simulations based on GEBF-MLFFs can be used to explore different regions of the potential energy 

surface with high accuracy. It can be expected that this GEBF-MLFF is applicable for  accurately 

investigating the folding process of similar biological systems. 
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Figure 4. Backbone peptide dihedral distributions of 4ZNN (top) and 1XQ8 segment (bottom) 

obtained from 20-ps trajectories with DFT MD simulations (blue solid line) and MLFFs (red solid 

line), respectively. Distributions of dihedral angles, φ, ψ, and ꞷ are shown from left to right, 

respectively. 
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Figure 5.  End-to-end distance of 4ZNN and 1XQ8 segment during MLFF-based MD simulations. 

 

Discussion.  

In summary, we have developed a general GEBF-ML protocol to automatically construct MLFFs for 

proteins with quantum mechanics accuracy. For a given protein, only QM calculations on small 

subsystems containing a few residues are required in the construction of MLFFs. To facilitate the 

construction of MLFFs for various proteins, we create a protein’s data library, which contains all data 

of subsystems generated from trained proteins. With this protein’s data library, for a new protein only 
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its subsystems with new topological structures are required for the construction of the corresponding 

MLFF. This protocol was tested on two polypeptides 4ZNN and 1XQ8 segment. The accuracy of the 

constructed GEBF-MLFFs for both systems is validated by comparing the conformational energies, 

optimized structure, and MD simulation results with those from conventional DFT results. Our results 

show that GEBF-MLFFs can lead to quite accurate energies and forces similar to those from full QM 

calculations, and dihedral angle distributions from GEBF-MLFF MD simulations are in good 

agreement with those from ab initio MD simulations. With this strategy, we expect that the GEBF-

MLFFs with full QM accuracy can also easily be developed for other biological systems. Future work 

will aim to construct the GEBF-MLFFs for large proteins and other complex biological systems in 

vacuum and in aqueous solution. Eventually, GEBF-MLFF-based simulations are expected to be 

available for various biological systems in the physiological environments. 

 

Methods 

Computational details. The electronic structure calculations of these structures were carried out at 

the ωB97X-D/6-31G* level with the Gaussian 16 package47, and the PM6 calculations were performed 

with MOPAC package.48 The distance threshold and the maximum number of fragments in a 

subsystem are chosen as 3.0 Å and 4, respectively. Parameters of smooth overlap of atomic positions 

(SOAP) for 4ZNN and 1XQ8 segments are both listed in Table S3. The geometries were optimized 

with the BFGS algorithm49 (implemented in ASE package50). The MD simulations were performed 

using the ASE package at NVT ensemble and the integration timestep is set as 1 fs. 
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GEBF-ML force field. In our GEBF-ML force field, we employ an atomic ML model (GAP) to learn 

the energy difference of each subsystem between ωB97X-D/6-31G* and PM6 method, which is 

expressed as follows, 

                         
ML DFT PM6

m

m

m m m i

i S

E E E e


 = − =                                         (1) 

where 
mS  is the mth subsystem, 

m

ie  is the atomic energy of the ith atom in the mth subsystem. 

After training, we can easily get the energy contribution of each atom with different local environments 

in subsystems. Based on the similarity of atomic environments between subsystems and the target 

protein, the total energy difference of the target system is obtained with the summation of all atomic 

contributions as shown below, 
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Here, N is the number of atoms in the target system, ie is the energy of the ith atom in the target 

system. The total energy of the target system is the combination of the energy difference and the PM6 

energy (taken as the baseline) 

                
ML PM6E E E=  +                                   (3) 

The PM6 energy of the target system is calculated using the GEBF-PM6 method as shown below, 
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In the GEBF method, the ground-state energy of a target system is obtained as the linear combination 

of ground-state energies of a series of small subsystems (including primary and derivative subsystems). 

The details of subsystem construction and discrimination can be found in the Sec.4 of the supporting 

information. mE and mC are the energy and coefficient of the mth subsystem, respectively, and M is 

the number of subsystems. The long-range nonbonded interactions between each subsystem and 
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background charges on distant atoms are treated as the Coulomb interaction. The point charges are 

obtained from the natural population analysis (NPA) of primary subsystems, which are generated from 

the first configuration during the MD simulation (and assumed to be constant for all of other 

configurations). A
r  and QA  denote the coordinate of atom A and the point charge locating on atom 

A, respectively. All ML models are based on kernel ridge regression with the SOAP kernels. Details 

of ML models are provided in the Sec. 5 of supporting information.  

Outline of the MLFF construction To automatically construct machine learning force fields with 

high accuracy and efficiency, the GEBF-ML scheme was developed with active learning and transfer 

learning. The flowchart of the scheme is shown in Figure 6, in which the energy of the target system 

is predicted by “learning” from a subset of subsystems in the data library and some newly generated 

subsystems from online active learning. The details of each module in the flowchart are given below.  

Starting from a given conformer, MD simulation with NVT ensemble at 500 K is performed based 

on the GEBF-ML force fields. During the simulation, subsystems are generated using our GEBF 

approach. If the subsystem types are already in the data library, the corresponding sub-datasets are 

loaded to the training set. Otherwise, online active learning (see details in Sec 6 of supporting 

information) is employed to select the representative subsystems. When the training set is updated, the 

GEBF-ML force fields are also renewed to fit the energies and forces of conformers explored by online 

training.  
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Figure 6. Scheme diagram of the GEBF-ML method. Training sets are constructed from relevant sub-

datasets from the protein’s data library and some subsystems from online active learning.  

 

Data availability. The data that support the findings of this study are available from the corresponding 

author upon reasonable request. 

Code availability. Codes are available from the corresponding upon reasonable request. 
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