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Abstract 

Developing quantum bits (qubits) exhibiting room temperature electron spin coherence is a key 

goal of molecular quantum information science. Here we develop a simple and powerful model 

for predicting relative T1 coherence times in transition metal complexes from dynamic ligand field 

principles. By considering the excited state origins of ground state spin-phonon coupling, we 

derive group theory selection rules governing which vibrational symmetries can induce 

decoherence. Thermal weighting of the coupling terms produces surprisingly good predictions of 

experimental T1 trends as a function of temperature and explains previously confounding features 

in spin-lattice relaxation data. We use this model to evaluate experimental relaxation rates across 

S = ½ transition metal qubit candidates with diverse structures, gaining new insights into the 

interplay between spin-phonon coupling and molecular symmetry. This methodology elucidates 

the specific vibrational modes giving rise to decoherence, suggesting symmetry-based design 
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strategies and providing insight into the origin of room temperature coherence in transition metal 

complexes. 

 

1. Introduction 

The use of paramagnetic transition metal complexes as molecular electron spin quantum bits 

(qubits) has generated considerable interest over the past decade (Figure 1A).1–6 When placed into 

a magnetic field, the Zeeman effect splits the energies of the MS sublevels into a quantum two-

level system that can be leveraged for applications in computing, sensing, and communication 

(Figure 1B).2,7 Among these, molecular quantum sensing constitutes a particularly exciting 

application,2 as molecular electron spin qubits can be synthetically tuned and located in a targeted 

fashion within chemical microenvironments and interfaces to read out properties of relevance in 

areas such as catalysis and medicine. The microenvironments of interest often exist under ambient 

conditions. Thus, developing molecular qubits that operate at room temperature remains a key goal 

in the field.1,8,9 

The utility of molecular electron spin qubits is limited by the phase coherence lifetime T2, 

which describes how long phase relations are retained between members of the ensemble.10 As 

temperature increases in spin-dilute environments, T2 becomes limited by T1, the spin-lattice 

relaxation time. T1 describes how quickly spin energy is transferred to the vibrational bath.11 In 

solid lattices, this process is controlled by spin-phonon coupling.12 Three mechanisms for spin-

phonon coupling deteriorate the performance of molecular qubits at room temperature, known as 

the direct, Raman, and Orbach processes (Figure 1B).10,13,14 The direct process dissipates spin 

energy through acoustic phonon emission and exerts the greatest contribution at low temperatures 

(e.g., < 10 K).15 The Raman process dissipates spin energy through inelastic scattering of phonons 
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from a virtual state, with acoustic phonons contributing at intermediate temperatures and optical 

phonons (i.e., local modes6) dominating at elevated temperatures near ambient conditions.12,16 In 

S = ½ systems, the Orbach mechanism generally does not contribute strongly.16 Room temperature 

coherence lifetimes of molecular electron spin qubits are controlled by spin-phonon coupling with 

the molecular vibrational modes.4,17 

 

Figure 1. Overview of molecular electron spin qubits. (A) V(IV) and Cu(II) qubits considered in 

this study.8,9,18,19 VOPc = vanadyl phthalocyanine; CuPc = copper phthalocyanine; [Cu(bdt)2]2- = 

copper bis(1,2-benzenedithiolate); [Cu(bds)2]2- = copper bis(1,2-benzenediselenlate); 

[VO(dmit)2]2- = vanadyl bis(1,3-dithiole-2-thione-4,5-dithiolate); [V(bdt)3]2- = vanadium tris(1,2-
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benzenedithiolate); [V(bds)3]2- = vanadium tris(1,2-benzenediselenate); (B) Electronic structure 

and relaxation mechanisms of molecular qubits. (Left) Electronic states (example: VOPc) in 

single-valued point groups and double groups (Bethe notation) inclusive of spin-orbit coupling. 

Charge-transfer states not shown. (Right) T1 relaxation mechanisms. Atomic color scheme: C 

(grey), N (blue), O (red), S (yellow), Se (orange), Cu (brown), V (pink). H atoms not shown for 

clarity. 

 

A natural question arises: which vibrational modes exhibit the strongest spin-phonon 

coupling? Because the Raman process requires thermal population of an existing phonon mode,10 

vibrational modes higher in frequency than 400 cm-1 are not expected to contribute significantly 

to the spin-lattice relaxation. While the phonon density of states and dispersion relation below 400 

cm-1 can be probed using terahertz spectroscopy20 and four-dimensional inelastic neutron 

scattering,21 ascertaining the spin-phonon coupling of those modes remains an outstanding 

experimental challenge. In lieu of experimental evidence, several studies have sought to assign the 

most impactful spin-phonon coupling modes through computational studies.17,22–24 There exists an 

emerging recognition of the importance of the symmetry of the vibrational mode, with recent 

studies empirically concluding that gerade modes exhibit heightened spin-phonon coupling over 

ungerade modes for square planar compounds.22,24 However, no general theory yet exists for 

predicting which vibrational symmetries exert the greatest spin-phonon coupling and modeling the 

implications for temperature-dependent T1. This hinders rational molecular design and constitutes 

an important challenge in the field.6 

Here we derive group theory selection rules for determining vibrational modes that are 

active for spin-phonon coupling. We show that the coupling modes are those that are group 
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theoretically allowed to undergo ligand field excited state distortions. These vibrational modes 

dynamically change the amount of ground state orbital angular momentum. We then show that a 

simple thermal weighting of these molecular vibrational mode spin-phonon coupling coefficients 

furnishes an excellent agreement with experimental spin-lattice relaxation rate trends, thus 

describing how different vibrations dominate T1 over different temperature regimes. 

 

2. Results and Analysis 

2.1. Symmetry effects on spin-phonon coupling. Spin-phonon coupling arises when some 

portion of the spin Hamiltonian is modulated by a vibrational mode.6,25 The 𝑔 tensor, 𝒈, describing 

the Zeeman effect has been implicated as a major source of spin-phonon coupling in molecular 

qubits.15,24 Therefore, to understand the impact of symmetry on spin-phonon coupling, we first 

turn to the molecular origins of the 𝑔 values in a transition metal complex. 

A free electron has an isotropic 𝑔 value of 𝑔! = 2.0023 owing to its intrinsic spin angular 

momentum; deviations from this value arise when the electron additionally possesses ground state 

orbital angular momentum, as quantified by the Landé formula. While the presence of a ligand 

field quenches orbital angular momentum in tetragonal transition metal complexes, spin-orbit 

coupling with ligand field excited states reintroduces orbital angular momentum into the ground 

state. Thus, changes in the 𝑔 value arise from changes in spin-orbit coupling. In order for the ith 

vibrational mode to have a nonzero first-order spin-phonon coupling coefficient, 𝜕𝒈/𝜕𝑄", the 

magnitude of spin-orbit coupling must therefore change as a function of the vibrational mode 

coordinate 𝑄". The expression for the 𝑔 value of a transition metal complex due to the spin-orbit 

perturbation is given by26 
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𝑔" = 𝑔! − 	2𝜆.
/𝛹#1𝑳3 𝒊1𝛹!4/𝛹!1𝑳3𝒊1𝛹#4

𝐸! − 𝐸#!%#

 (1) 

where 𝜆 is the many-electron spin-orbit coupling constant, 𝛹# and 𝛹! are the ground and excited 

states with energies 𝐸# and 𝐸!, respectively, 𝑳3𝒊 is an orbital angular momentum operator, and 𝑖	 =

	𝑥, 𝑦, 𝑧 refer to the	𝑔 tensor principal axes and the molecular quantization frame, which are aligned 

for the tetragonal qubits considered in this work. Equation 1 shows that the 𝑔 values have a 

sensitive dependence on the energy gap between the ground and excited states involved in the 

spin-orbit coupling. (The precise excited states involved can be determined from double groups 

(Figure 1B) using Tables S11 and S12 and tables of d-orbital rotations.6,27) If the ground and 

excited state potential energy surfaces reach a minimum at the same value of the vibrational 

coordinate 𝑄", then the energy gap 𝐸! − 𝐸# can at most vary quadratically as a function of 𝑄", 

implying 𝜕𝒈/𝜕𝑄" = 0 (Figure 2B). However, if the equilibrium geometry of the excited state is 

different than that of the ground state equilibrium geometry along 𝑄", the energy gap 𝐸! − 𝐸# can 

vary linearly as a function of 𝑄" and give rise to 𝜕𝒈/𝜕𝑄" ≠ 0 (Figure 2B). We refer to such modes 

as the distorting modes.27 The first-order coupling coefficient 𝜕𝒈/𝜕𝑄" is predicted to exert the 

leading influence on spin-lattice relaxation times.15,24 Therefore, the most important vibrational 

modes for spin-phonon coupling are precisely these distorting modes.22  
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Figure 2. The excited state origins of ground state spin-phonon coupling. (A) Schematic potential 

energy surfaces for the 𝑏&' bending mode in CuPc. The ground and excited state potential energy 

minima coincide, implying no excited state distortion and thus no linear spin-phonon coupling. 

(B) Schematic potential energy surfaces for the 𝑎(# symmetric stretch in CuPc. The ground and 

excited state minima are offset, implying excited state distortion and linear ground state spin-

phonon coupling. 

 

Crucially, the excited state distortion can be expressed through a matrix element27 

involving vibrational perturbations of the ligand field Hamiltonian (𝐻)*): 

 

Δ𝑄" = −
@𝜓!+!,! B C𝜕𝐻)*𝜕𝑄"

D
-
B𝜓!+!,! E

𝑘"
 (2) 
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Here Δ𝑄" gives the excited state distortion along the vibrational mode 𝑄", 𝑘" is the force constant, 

and 𝜓!+!,!  is the excited state wave function that spin-orbit couples into the ground state. The matrix 

element is evaluated at the ground state equilibrium geometry. The key utility of this expression 

lies in the application of group theory symmetry selection rules to the integral. The state symmetry 

of 𝜓!+!,!  and 𝑄" (Γ!+!, and Γ.!, respectively) can be assigned through textbook techniques.28 The 

ligand field Hamiltonian always has the totally symmetric irreducible representation in the 

molecular point group, so the derivative has the symmetry Γ.!. Therefore, the symmetry of the 

integrand is given27 by a direct triple product. For the integral to be nonzero, Equation 3a must 

contain the totally symmetric irreducible representation: 

 

(Γ!+!,	 ×	Γ.! 	× 	Γ!+!,) 	= 	𝑎( 	+ 	⋯ (3a) 

  

Here 𝑎( in Equation 3a signifies the totally symmetric representation in the desired point group, 

and the excited state is group theoretically allowed to undergo distortion when the condition in 

Equation 3b is met: 

 

[Γ!+!,	 ×	Γ!+!,] 	= 	 Γ.! (3b) 

 

The square brackets in Equation 3b denote the symmetric direct product operation, appropriate for 

the product of Γ!+!,	with itself, and Γ.! represents all mode symmetries that are allowed to 

couple.27,29,30 This selection rule enables facile calculation of which vibrational symmetries will 

be able to exhibit linear spin-phonon coupling terms for a given coordination geometry and 
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electronic structure. This analysis shows that the critical modes to consider are those that are group 

theoretically allowed to undergo ligand field excited state distortions. For nondegenerate states, 

only the totally symmetric modes will couple, while other nontotally symmetric modes can couple 

for degenerate excited states. We note that this consideration is a more general basis for 

understanding forces in molecules (i.e., the Hellmann-Feynman force31), including those of 

relevance for transition metal photophysics32,33 and those predicted by the Jahn-Teller theorem to 

give rise to the instability of orbitally degenerate states.29 

To illustrate the power of this approach in understanding spin-phonon coupling 

contributions to decoherence in molecular qubits, we turn to a comparison between vanadyl 

phthalocyanine (VOPc) and copper phthalocyanine (CuPc) (Figure 1A).19 VOPc belongs to the 

non-centrosymmetric point group C4v, while CuPc belongs to the centrosymmetric point group 

D4h. The electronic ground state of VOPc has the state symbol 2B2 (dxy), which spin-orbit couples 

with the 2B1 (dx2-y2) excited state to introduce orbital angular momentum into 𝑔0. The situation is 

reversed in CuPc owing to the hole formalism, with a 2B1g (dx2-y2) ground state and a 2B2g (dxy) 

excited state. The relevant lowest lying excited state for 𝑔0 is nondegenerate in both cases. Because 

the direct product of any nondegenerate irreducible representation with itself gives the totally 

symmetric irreducible representation, Equation 3b reduces to 𝑎( =	Γ.! for VOPc in order for 

𝜕𝑔0/𝜕𝑄" ≠ 0. An identical analysis holds for CuPc, where 𝑎(# is the totally symmetric 

representation in D4h. Thus, the group theory model predicts that the strongest spin-phonon 

coupling for 𝑔0 should arise from totally symmetric vibrational modes. Indeed, previous 

computational studies have observed that 𝑎(# or 𝑎( modes exhibit large coupling coefficients,22,24 

with D2d CuCl42- possessing more spin-phonon coupling than D4h CuCl42- owing to a greater 

number of totally symmetric modes.22 
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Though totally symmetric vibrational modes dominate 𝑔0 coupling for both VOPc and 

CuPc, the change in point group between C4v and D4h nonetheless has important consequences for 

spin-phonon coupling. CuPc displays a single 𝑎(# mode below 400 cm-1 corresponding to the 

totally symmetric Cu-N stretch (Figure 3A). Owing to the reduced number of irreducible 

representations in the C4v point group, VOPc displays five total 𝑎( vibrational modes below 400 

cm-1, encompassing mixtures of both the symmetric stretch and metal out-of-plane motion (Figure 

3B). The portion of the vibrational density of states which matters for spin-phonon coupling is thus 

very different: CuPc possesses a lone linear coupling mode at 262 cm-1, while VOPc possesses 

five spin-phonon active modes below 400 cm-1 (Table 1). Calculation of the 𝜕𝑔0/𝜕𝑄" coefficients 

for CuPc and VOPc via calibrated density functional theory (DFT)34 according to a previous 

procedure22 (see also Supporting Information, Section 1) shows that the totally symmetric 

vibrations have the largest coefficients by orders of magnitude, confirming the group theory 

analysis (Figure 3C). The coefficient for CuPc is an order of magnitude larger than those for VOPc 

owing to the larger spin-orbit coupling constant of Cu(II) relative to V(IV).19 For both VOPc and 

CuPc, only a very small portion of the vibrational density of states contributes to spin-phonon 

coupling for 𝑔0 (Figure 3A,B) 
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Table 1. Linear 𝑔0 spin-phonon coupling 

modes for VOPc and CuPc. All modes have the 

totally symmetric representation. 

VOPc CuPc 

E (cm-1) (𝜕𝑔0/𝜕𝑄)& E (cm-1) (𝜕𝑔0/𝜕𝑄)& 

42 5.5 × 10-8 262 2.8 × 10-5 

178 1.5 × 10-6   

262 6.3 × 10-7   

317 2.9 × 10-6   

395 1.9 × 10-6   
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Figure 3. Impact of symmetry on spin-phonon coupling. (A) Normalized vibrational density of 

states (lavender, left y-axis) and spin-phonon coupling active vibrations (red, right y-axis) for 

CuPc. (B) Normalized vibrational density of states (lavender, left y-axis) and spin-phonon 

coupling active vibrations (red, right y-axis) for VOPc. (C) Analysis of selected modes for VOPc. 

Arrows indicate atomic displacements; additional pictures are provided in Tables S2-S6. 

Symmetry selection rules are evaluated for the 2B1 (dx2-y2) excited state (𝑔0 spin-phonon coupling) 

via Equation 3b. 1×10-10 constitutes the limit of numerical precision. 
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A similar analysis can be performed for 𝜕𝑔1/𝜕𝑄". For both VOPc and CuPc, orbital 

angular momentum is introduced to 𝑔1 principally via spin-orbit coupling with the dxz/dyz excited 

states, which are orbitally doubly degenerate and have the representations 2E in C4v and 2Eg in D4h. 

Evaluation of Equation 3b for VOPc now yields (𝑎( + 𝑏( + 𝑏&) = 	Γ.!, showing that 𝑎(, 𝑏(, and 

𝑏& vibrational modes are able to have 𝜕𝑔1/𝜕𝑄" ≠ 0 by symmetry. (𝑎& is produced by the 

antisymmetric direct product and is therefore discarded.)30 Similarly, Equation 3b for CuPc yields 

O𝑎(# + 𝑏(# + 𝑏&#P = 	Γ.!, showing that multiple nondegenerate gerade modes are able to couple 

for 𝑔1. Note that the gerade selection rule would hold true even if the electronic state symmetry 

were ungerade, because Equation 3b contains the electronic symmetry twice. While group theory 

states which modes are allowed to couple by symmetry, as with any selection rule, this does not 

guarantee a large nonzero coefficient.27 

Comparison between the coupling modes for CuPc and [Cu(bdt)2]2- (bdt = 1,2-

benzenedithiolate) illustrates the impact of descending in symmetry from D4h to D2h (Figure 4). 

Lower than 400 cm-1, CuPc displays a single active mode with 𝜕𝑔0/𝜕𝑄", the 𝑎(# symmetric 

stretch. Two modes for CuPc display nonzero	𝜕𝑔1/𝜕𝑄", including both the 𝑎(# symmetric stretch 

and the 𝑏(# antisymmetric stretching mode. The presence of the linearly coupling 𝑏(# mode is 

enabled by the degeneracy of the 2Eg electronic state. However, no degenerate irreducible 

representations exist in the D2h point group, so the dxz and dyz orbitals are split into the B&# and 

B2# representations. All electronic states implicated in the 𝑔1 and 𝑔3 spin-phonon coupling are 

nondegenerate for [Cu(bdt)2]2-, implying that only totally symmetric 𝑎# vibrational modes will 

display linear coupling for all three canonical orientations. Indeed, examination of the spin-phonon 

coupling coefficients for [Cu(bdt)2]2- shows that the most prominent coupling modes are the same 
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for both 𝜕𝑔0/𝜕𝑄" and 𝜕𝑔1/𝜕𝑄" and possess 𝑎# symmetry as predicted (Figure 4). The coupling 

𝑏(# mode from CuPc correlates to a 𝑏(# mode in [Cu(bdt)2]2-, implying that the linear coupling of 

this antisymmetric stretch mode has been turned off by the descent in symmetry. Conversely, the 

𝑏&# in-plane scissoring mode in CuPc correlates to 𝑎# symmetry for [Cu(bdt)2]2- and is activated 

for 𝑔0 coupling. Thus, descent in symmetry from D4h to D2h retains the total number of linear 

coupling modes for 𝑔1, but changes the identity of those modes (Figure 4). Similar behavior is 

observed for the C2v qubit [VO(dmit)2]2-, with many 𝑎( modes exhibiting coupling for both 𝑔1 and 

𝑔0. Global molecular symmetry can impact the spin-phonon coupling modes even for apparently 

similar coordination geometries, a surprising result elucidated by group theory. This result 

establishes control of degenerate electronic excited states as an important design consideration for 

controlling activation of spin-phonon coupling vibrational modes.  

 

 

Figure 4. Orientation-dependent spin-phonon coupling coefficients for CuPc, [Cu(bdt)2]2-, and 

[VO(dmit)2]2-. 
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A previous study of two D4h Cu(II) complexes empirically concluded that gerade modes 

exhibited the strongest coupling.24 Our work differs in two important ways. First, the present 

approach provides a predictive group theory analysis not dependent on a centrosymmetric point 

group. In addition to the Cnv point groups consider in this work, this will also enable extension of 

spin-phonon coupling symmetry analysis to qubits with trigonal coordination environments.35,36 

By analogy to gerade/ungerade, point groups containing the prime/double prime representations 

should see coupling only from the single-prime vibrational modes, as the double direct product of 

the electronic excited state in Equation 3b will yield a single-prime representation irrespective of 

the electronic representation, and the totally symmetric representation will always have a single-

prime value. Furthermore, evaluation of Equation 3b for the D4h point group reveals that the 𝑎&# 

mode is not predicted to exhibit linear coupling despite possessing gerade symmetry. This 

prediction is in agreement both with previous calculations24 and our own.  

Second, a point of variance with the previous study24 arises over the role of the degenerate 

𝑒# vibrations, which are found to couple in that study, but not predicted to couple by the present 

group theory analysis. This is because the present analysis has considered the spin-phonon 

coupling coefficients corresponding to the canonical orientations of the 𝑔 tensor; namely, 𝑔1, 𝑔3, 

and 𝑔0. By contrast, Santanni et al. averaged all nine 𝜕𝒈/𝜕𝑄 values for the non-diagonalized 𝑔 

tensor.24 Nonzero off-diagonal derivatives correspond to dynamic rotation of the principal axes of 

the 𝑔 tensor. Indeed, the 𝑅1 and 𝑅3 rotation operators transform as 𝐸# in D4h, and pictures of the 

𝑒# vibrational modes show that the first coordination sphere undergoes a rigid rotation out of the 

xy-plane (Table S4). A minimal square-planar coordination environment such as D4h CuCl42- does 

not posses 𝑒# normal modes,22 as these would correspond to pure rotational degrees of freedom. 

In CuPc, however, counterrotation of the phthalocyanine ligand framework enables 𝑒# normal 
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modes. As local rotation does not affect bonding in the first coordination sphere, 𝑒# vibrational 

modes do not dynamically alter 𝑔1, 𝑔3, and 𝑔0, in accordance with our group theory predictions. 

Similarly, the non-coupling 𝑎&# modes transform as 𝑅0. 

The choice of which 𝜕𝒈/𝜕𝑄 values to include in a spin relaxation model is rendered 

unclear by the construction of the spin Hamiltonian.37 Off-diagonal derivatives alone might be 

predicted to couple by Fermi’s golden rule or spin-boson models,38 as these lead to matrix elements 

connecting Ms states in the Zeeman term of the spin Hamiltonian. However, variation of spin-orbit 

coupling along the vibrational coordinate must necessarily mix the spin eigenstate composition 

through vector coupling of angular momenta, enabling on-diagonal derivatives such as 𝜕𝑔0/𝜕𝑄 to 

induce spin relaxation. We take the view that the on-diagonal elements dominate the relaxation 

behavior observed for S = ½ systems, owing to (i) the known correlation between T1 times and 

static (i.e., canonical orientation) g values,16,23,39 and (ii) the superior fit to experimental 

temperature-dependent T1 times by models including only the on-diagonal elements (vide infra). 

Within the confines of the canonical orientation 𝜕𝒈/𝜕𝑄 values, the present group theory approach 

provides the procedure for determining the modes with first-order spin-phonon coupling 

coefficients. 

 

2.2. Thermally-weighted ligand field model of T1. Once the 𝜕𝒈 𝜕𝑄⁄  values for molecular 

vibrations have been calculated,22 relative T1 times can be predicted using a simplified model of 

the Raman spin-lattice relaxation process in molecular solids. A simple functional form for 

attributing Raman relaxation to molecular vibrations has been proposed on the basis of the two-

phonon Green’s function12 and used to fit experimental T1 data.24,40 We now employ this form to 

make comparative T1 predictions informed by the preceding symmetry analysis: 
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1
𝑇(
∝ 	 . C

𝜕𝒈
𝜕𝑄"

D
& 𝑒𝑥𝑝[𝐸" 𝑘4𝑇⁄ ]
(𝑒𝑥𝑝[𝐸" 𝑘4𝑇⁄ ] 	− 	1)&	

25	6	7

"	8	(

 (4) 

 

Here 𝐸" is the energy of the lattice vibration, 𝑘4 is the Boltzmann constant, 𝑇 is the lattice 

temperature, and the sum is over all normal modes of vibration. Modes without a linear coupling 

term do not contribute to the sum. Owing to the exponentially vanishing thermal weighting factor, 

it is sufficient to consider only modes below 400 cm-1. Here we present rate predictions using 

𝜕𝑔0/𝜕𝑄", while predictions using other elements of the Zeeman tensor are discussed in the 

Supporting Information Section 3 (Figures S9-S15). Equations 3 and 4 together provide an 

analytical link between molecular vibrations and temperature dependent electron spin relaxation 

rates. 

 

 

Figure 5. Thermally-weighted ligand field model for phthalocyanine qubits. (A) T1 predictions. 

Dashed lines: all spin-phonon active modes. Solid lines: only the two strongest modes at 317 cm-

1 and 395 cm-1 for VOPc and the single strongest mode at 262 cm-1 for CuPc . All T1 predictions 
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are normalized by the same factor, chosen for the VOPc all-modes prediction to match the 

experimental data at 300 K.  (B) Comparison to our previous experimental results from ref 19. 

 

Figure 5A shows the predicted temperature-dependent T1 times for VOPc and CuPc, which 

are in excellent agreement with our previously obtained experimental data19 (Figure 5B) 

considering the simplicity of the model employed. Equation 4 correctly predicts that VOPc has a 

longer T1 than CuPc at room temperature. Furthermore, Equation 4 correctly predicts the existence 

of a T1 crossover point at lower temperatures, below which CuPc displays the longer T1 time. 

Though observed in multiple systems in the molecular qubit literature,9,19 such crossover features 

have lacked a clear interpretation and have been attributed to variations in the Raman exponent 

under a Debye model treatment or local mode terms.16,41,42 

We now show this phenomenon has a direct chemical interpretation in terms of molecular 

vibrations. As given in Table 1, VOPc possesses five linear coupling modes, while CuPc possesses 

only one. However, the magnitude of the spin-phonon coupling coefficient is significantly larger 

for the CuPc mode than for any of the VOPc modes, a fact explained by the difference in spin-

orbit coupling coefficients between the two metals.19,22 Additionally, the lone CuPc mode sits 

higher in energy than three of the five VOPc modes. Thus, at the lowest temperatures modeled, 

the symmetric stretch of CuPc has negligible thermal population and minimal spin-phonon 

coupling. By contrast, VOPc possesses coupling modes as low as 42 cm-1 (Figure 3, Table 1), 

which are thermally populated at low temperature and contribute to VOPc having a shorter T1 than 

CuPc. As the temperature increases, higher energy vibrational modes of both VOPc and CuPc 

become thermally populated, but the spin-phonon coupling coefficient is largest for the CuPc 

symmetric stretch. This manifests in a larger T1 slope for CuPc versus VOPc. When all modes are 
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populated near room temperature, the larger 𝜕𝑔0/𝜕𝑄" of CuPc takes over, and VOPc has the longer 

coherence time at room temperature. The high and low temperature behavior of T1 thus relate to 

the magnitude of 𝜕𝑔0/𝜕𝑄" and the relative energy of the coupling vibrational modes, respectively. 

We note that the precise location of the crossover point likely also contains contributions from 

varying efficiencies of the direct process. This may relate to effective acoustic phonon symmetry 

in the 1:1000 magnetic dilution data modeled here, as the 42 cm-1 linear coupling mode in VOPc 

contains displacements similar to an acoustic phonon (Figure 3C). 

The crossover behavior predicted in the model can be unambiguously assigned to the low-

energy 𝑎( modes of VOPc by artificially manipulating the number of modes in the model. If only 

the two strongest-coupling modes of VOPc are considered (317 cm-1 and 395 cm-1), no crossover 

is observed (solid orange line, Figure 5A). Indeed a crossover is barely observed upon simply 

deleting the 𝑎( mode at 42 cm-1, indicating that low energy molecular vibrations produced by 

reduced symmetry can exert a large influence on the temperature-dependent T1 times even when 

their spin-phonon coupling coefficients are small. The overall good agreement lends credence to 

the general use of this model to a priori predict the observation of room temperature coherence in 

any transition metal complex. Note that when modes of 𝑒# and 𝑒 symmetry (local rotations, vide 

supra) are included in the model through off-diagonal 𝑔 tensor derivatives, they dominate the T1 

behavior for CuPc through thermal population owing to their low vibrational energy.24 This 

eliminates the predicted T1 crossover and fails to account for the power law exponents in the 

intermediate-temperature regime (50 – 125K; see Figures S9 – S15 and discussion), further 

motivating our choice to use only the canonical 𝑔 value derivatives. 

To demonstrate the broad applicability of the thermally-weighted ligand field model, we 

provide T1 predictions for [V(bdt)3]2-, [Cu(bdt)2]2-, [V(bds)3]2-, and [Cu(bds)2]2- (bds = 1,2-



 20 

benzenediselenate). Figure 6 shows the model predicts the same order of experimental high 

temperature T1 times observed previously:9 [Cu(bdt)2]2- > [Cu(bds)2]2- > [V(bdt)3]2- > [V(bds)3]2-. 

Interestingly, the model predicts a near T1 crossover between [Cu(bds)2]2- and [V(bdt)3]2- around 

100 K, as observed experimentally at 60 K. In the high temperature regime, [Cu(bds)2]2- is 

predicted to have a shallower slope than both [V(bdt)3]2- and [Cu(bdt)2]2-, but a lower intercept 

than [Cu(bdt)2]2-. Substitution of selenium for sulfur decreases the 𝜕𝑔0/𝜕𝑄"value for the 

[Cu(bds)2]2- symmetric stretch relative to [Cu(bdt)2]2-, but also lowers the energy of that vibrational 

mode. The onset of symmetric stretch spin-phonon coupling thus occurs at lower temperature in 

[Cu(bds)2]2- than [V(bdt)3]2-, but the high temperature magnitude of spin phonon coupling is 

greater in [V(bdt)3]2- than [Cu(bds)2]2- owing to the larger coefficients (Tables S7-S8), leading to 

the near T1 crossover. 

 

 

Figure 6. Thermally-weighted ligand field model for dithiolate and diselenate qubits. (A) T1 

predictions according to Equation 4. All T1 predictions are normalized by the same factor, chosen 

to match the experimental data for [Cu(bdt)2]2- at 280 K. (B) Comparison to experimental results 

from ref 9.  
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3. Discussion 

It has become commonplace to fit temperature-dependent spin-lattice relaxation data with a set of 

polynomial and exponential functions derived from the Debye model description of direct, Raman, 

Orbach, and local mode relaxation processes. These fits yield values such as the Debye frequency 

and the Raman exponent. However, recent literature has increasingly demonstrated that Debye 

model parameters have no unambiguous chemical interpretation for molecular solids, as the Debye 

model makes incompatible assumptions regarding the nature of crystalline vibrations.6 This 

hinders rational molecular design for quantum information science. A new molecular paradigm 

based on symmetry and vibrational principles is required.4,6,24 

We argue the present study provides a novel and attractive perspective for modeling T1 on 

distinctly chemical grounds. Dynamic ligand field theory successfully predicts the magnitude22 

and symmetry-based selection rules for the spin-phonon coupling coefficients. Coupled with 

thermal weighting, this model successfully predicts relative T1 trends and crossovers for a variety 

of structurally diverse molecular qubits. The group theory selection rules and functional forms 

employed for temperature-dependent T1 times are explicitly grounded in physical quantities for 

molecular solids, unlike in the Debye model. Previous work has considered the role of bonding 

descriptors such as covalency, excited state energy, and the spin-orbit coupling constant in 

predicting the overall magnitudes of the spin-phonon coupling coefficients between different 

molecules.19,22,23 These insights can be integrated with the group theory and thermal weighting 

approaches described herein. We anticipate that this group theory methodology will yield similar 

insights into the molecular origins of T1 times across a broad range of molecular electron spin 

qubits, including applications to S > ½ systems.  



 22 

 

Figure 7: Symmetry flowchart of spin-phonon coupling coefficients. Convergent arrows indicate 

that vibrational modes mix under reduced-symmetry point groups, and boxes indicate the selection 

rules derived from Equation 3b. 

 

In this study, we have analyzed archetypal qubits from four point groups: D4h, D2h, C4v, and C2v. 

Because D2h, C4v and C2v are all subgroups of D4h, the impact of symmetry on spin-phonon 

coupling can be broadly understood by descent in symmetry on the CuPc structure (Figure 7). 
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True D4h complexes such as CuPc and D4h CuCl42- exhibit only a single 𝑔0-active mode in the 

thermally accessible region, corresponding to the 𝑎(# totally symmetric ligan-metal stretch (Table 

S4). The 𝑏(# antisymmetric ligand-metal stretch and the 𝑏&# scissoring mode are also able to 

couple for 𝑔1. Descent in symmetry to C4v activates the 𝑎&' (D4h) out-of-plane modes, which 

transform as 𝑎( in C4v. Phthalocyanine ligand scaffolds support many such low-energy 𝑎&' modes, 

with CuPc possessing four 𝑎&' modes below 400 cm-1 (Table S4). These are activated for coupling 

in VOPc (Table 1, Table S3), resulting in a smaller T1 slope than CuPc and a characteristic 

crossover point. Descent in symmetry to D2d is known to activate new modes for spin-phonon 

coupling, as the 𝑏&' bending mode in D4h transforms as 𝑎( in the distorted D2d point group.22 

Descent in symmetry to D2h shuts down 𝑔1 spin-phonon coupling for the antisymmetric stretch 

𝑏(# mode while activating 𝑔0 coupling for the 𝑏&# (D4h) scissoring mode, which transforms as 𝑎# 

in D2h. The resulting 𝑎# modes contain a mixture of symmetric stretch and scissoring character. 

This suggests that spin-phonon coupling could be decreased by selectively hindering bond-angle-

altering modes in lower symmetry point groups, a novel symmetry-based design strategy for 

molecular qubits. 

In summary, we have developed a novel thermally-weighted dynamic ligand field model 

to describe and ultimately predict T1 in molecular electron spin qubit candidates. Simplicity makes 

it accessible to researchers with diverse backgrounds. The methodology has allowed for the 

determination of the specific vibrational modes that give rise to decoherence in the T1-limited 

regime, ultimately elucidating the critical spin-phonon coupling, chemical bonding, and symmetry 

factors leading to room temperature coherence. It can be employed to a priori predict the 

observation of this phenomenon in any S = ½ transition metal complex. Group theory prediction 

of anisotropic spin-phonon coupling coefficients may prove particularly important in the context 
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of quantum sensing, where anisotropic 𝑔 values provide a key motivation for employing transition 

metal complexes as versatile molecular quantum sensors. 
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