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Abstract

Network  data  is  composed  of  nodes  and  edges.  Successful  application  of  machine  learning/deep

learning algorithms on network data to make node classification and link prediction have been shown

in the area of social  networks through which highly customized suggestions are offered to social

network users. Similarly one can attempt the use of machine learning/deep learning algorithms on

biological  network  data  to  generate  predictions  of  scientific  usefulness.  In  the  presented  work,

compound-drug target  interaction  network  data  set  from bindingDB has  been  used  to  train  deep

learning neural network and a multi class classification has been implemented to classify PubChem

compound queried by the user into class labels of PBD IDs. This way target interaction prediction for

PubChem compounds is carried out using deep learning. The user is required to input the PubChem

Compound  ID  (CID)  of  the  compound  the  user  wishes  to  gain  information  about  its  predicted

biological activity and the tool outputs the RCSB PDB IDs of the predicted drug target interaction for

the input  CID.  Further  the tool  also optimizes  the compound of interest  of the user  toward drug

likeness properties through a deep learning based structure optimization with a deep learning based

drug likeness  optimization protocol.  The tool also incorporates  a feature to perform automated  In

Silico modelling for the compounds and the predicted drug targets to uncover their  protein-ligand

interaction  profiles.  The  program  is  hosted,  supported  and  maintained  at  the  following  GitHub

repository

https://github.com/bengeof/Compound2DeNovoDrugPropMax

Anticipating the use of quantum computing and quantum machine learning in drug discovery we use 

the Penny-lane interface to quantum hardware to turn classical Keras layers used in our machine/deep 

learning models into a quantum layer and introduce quantum layers into classical models to produce a 

quantum-classical machine/deep learning hybrid model of our tool and the code corresponding to the 

same is provided below 

https://github.com/bengeof/QPoweredCompound2DeNovoDrugPropMax

https://github.com/bengeof/QPoweredCompound2DeNovoDrugPropMax
https://github.com/bengeof/Compound2DeNovoDrugPropMax


1 Introduction

A network data is composed of nodes and edges[1]. An example of such network data would be social

network data where nodes are people and their interests and edges are inter- connections between

them[2-5]. Many useful applications such as customized suggestions for social media users have been

developed through the use of Machine/Deep learning algorithms which accomplish this through node

classification and link prediction protocols[5-10]. Similar techniques are transferable to gain insights

and  predictions  from  biological  network  data.  Biological  network  data  include  protein-protein

interaction networks, differential gene expression and regulatory networks, metabolic pathways and

cell signaling networks, etc [11,12]. Using these techniques Vazquez, Alexei, et al have developed a

tool  for  protein  function  prediction  from  protein-protein  interaction  networks  [13].  Similarly,

Hashemifar,  Somaye,  et  al,  and other  groups have developed a tool  for predicting protein-protein

interaction  using  deep  learning  algorithms  [14,15].  From gene  expression  network  data  different

groups  have  developed  tools  that  use  deep  learning  algorithms  to  classify  cancer  types  [16-18].

Similarly advances in understanding differential gene expression from gene expression networks have

also been carried out using Deep Learning techniques by different groups [19,20]. The previous works

of our research group have involved incorporating machine/deep learning techniques for automation in

screening PubChem compound library and identifying the best small drug molecules for a particular

drug target [21-23]. In keeping with our research focus, the present work presents a complementary

approach  to  drug  screening,  wherein,  given  a  particular  PubChem compound  ID for  a  particular

compound, the developed tool predicts the most likely pharmaceutical activity of the compound and

followingly  performs  an  automated  In  Silico  modelling  to  uncover  the  molecular  details  of  its

pharmaceutical activity. To accomplish the task mentioned above we have implemented a multi-class

Deep Learning neural network to predict the target labels(PDB IDs} for a given PubChem Compound

ID(CiD). To accomplish this the deep neural multi-class classifier was trained on a training dataset on

protein-compound  interaction  network  data  downloaded from BindingDB with  PDB IDs  as  class

labels  into  which  PubChem Compound  IDs  {CIDs)  are  classified  [24,25].  Further,  the  tool  also

optimizes  the  compound  of  interest  of  the  user  toward  drug-likeness  properties  through  a  deep

reinforcement learning based structure optimization protocol. The tool also performs an automated In

Silico modeling and profiling of the interaction of the compound and the predicted targets [26].



2 Material and methods

The bindingDB database [27] was downloaded and a network was constructed using NetworkX[28]

wherein the nodes were compounds and proteins and edges were the interactions between them. The

lower the IC50 value for a compound to inhibit a particular protein, the shorter the edges were that

link them together. Each compound is identified using the PubChem Compound ID (CID) and proteins

are identified with the Protein Data Bank ID (PDB ID). The dataset visualized using NetworkX and

select visualization is shown in Fig.1. The Dataset consists of 536435 unique CIDs and 2707 unique

PDB IDs. To generate embeddings of the network, the node2vec [29] python package was used. The

model the embeddings of 65 graphs and they were used to perform a deep-learning based multi-class

classification. The model classifies the CIDs into class labels which are PDB IDs [30-35]. The deep

neural network architecture involves an input layer, three hidden layers that were activated by a RELU

activation function, and an output layer that uses a sigmoid activation function to perform the multi-

label classification. The categorical labels were vectorized using the OneHotEncoder method. Given

an input node which is a PubChem compound ID (CID), the program generates a sub-network of

structurally related CIDs to the input CID and performs a multi-class classification using the Deep

Neural Network to classify the input CID into the PDB ID class it belongs to or to say it otherwise,

predict the PDB ID of the protein the compound with a given input CID is likely to interact with.

Dropouts were used as a regularization technique to overcome over-fitting and the neural network

performed prediction with a validated accuracy of 83%. This protocol we call compound2drug and it

is  block-diagrammatically  represented  in  Fig.2.  This  is  followed  by  the

Compound2DeNovoDrugPropMax protocol  wherein  the  actor-critic  based  reinforcement  model  of

DeepFMPO [36]  is  used to  optimize  the compound of interest  toward possessing drug likenesses

properties. The DeepFMPO [36] reinforcement learning model takes as input SMILES of compounds

that are active against predicted targets and is used to generate compounds de novo which are drug-

like optimized versions of the input molecules. PAINS, BRENK, NIH and ZINC filters are also added

to  the  optimization  process[37-40]  The  tool  also  performs  an  automated  In  Silico  modeling  and

profiling of the interaction of the optimized compounds and the predicted targets and stores the results

in the working folder of the user. To assess the interaction of the target and the lead compounds, the

tool performs a fast and computationally cheap and efficient  In Silico  modeling and analysis of the

protein-ligand  interaction  using  AutoDock-Vina  and  stores  the  results  in  the  working  folder.

Following this, a computationally more expensive In Silico modeling method of molecular dynamics

using  GROMACS is  used  to  study  the  protein-ligand  interaction  and  complex  formation  for  the

protein-ligand complex associated  with the lowest  binding energy score from the AutoDock-Vina

based virtual screening protocol. Our main program through the ‘runGromacs.sh’ bash script initiates

an automated MD protocol which first identifies the complex with best protein-ligand interaction from

the autodock-vina virtual screening using the ‘find_best_affinity.py’ and generates



RMSD(Root  Mean  Square  Deviation),  RoG(Radius  of  Gyration),  RMSF(Root  Mean  Square

Fluctuation)  plots  which reveal  the stability  of  the  protein-ligand system based on the Molecular

Dynamics simulation carried out for the protein-ligand system using the bash script ‘runGromacs.sh’.

The ligand parameterization used in the automated MD protocol follows Bernardi et. al. [41]

The program is required to be run in python3 environment in the Linux OS with the following 

dependencies, code files, and models kept in the working folder of the user which are downloadable

from the links given below.

Fig.1 NetworkX visualization of compound-drug target interaction network

Fig. 2 Overall algorithmic workflow



Dependencies

gensim==3.8.3 tensor2tensor==1.15.7
gunicorn==20.0.4 tensorboard==2.3.0
Keras-Preprocessing==1.1.2 tensorboard-plugin-wit==1.7.0

kfac==0.2.0 tensorflow==2.3.0
matplotlib==3.3.0 tensorflow-addons==0.10.0

networkx==2.4 tensorflow-datasets==3.2.1

node2vec==0.3.2 tensorflow-estimator==2.3.0

nodevectors==0.1.22 tensorflow-gan==2.0.0
numpy==1.19.1 tensorflow-hub==0.8.0
pandas==1.1.1 tensorflow-metadata==0.22.2

scikit-learn==0.23.2 tensorflow-probability==0.7.0

scipy==1.5.2 tensorflow-text==2.3.0
seaborn==0.10.1 xgboost==1.1.1
mgltools==1.5.6 autoDock vina==4.2.6

The command line user interface of the tool is shown below (Fig.3a & b) and the usefulness of the tool

is demonstrated by performing a few select examples using a randomly selected CID input. When the

user runs the main program he is prompted to enter the CID of the compound for which he requires

prediction of drug targets.

Fig.3a Tool Interface



Following this, the tool carries out the prediction task and prints out the predicted target PDB 

IDs as follows

Fig.3b – Drug target prediction by the tool

For each given input CID, the program also performs automated  In Silico  modeling (as shown in

Fig.4) and stores the visualized results of protein-ligand interaction in the working folder of the user.

The structures of the ligand(compound) and the protein are automatically downloaded from PubChem

and  RCSB  Protein  Data  Bank  and  they  are  prepared  for  molecular  docking  using  the  standard

AutoDock scripts available through MGLTools. The program uses Web API to perform PLIP protein-

ligand interaction profile and stores the results of the protein-ligand interaction profile in the working

folder of the user. The 'runGromacs.sh' bash script which is run through the main program initiates an

Automated  molecular  dynamics  protocol  in  GROMACS for the complex with the lowest  binding

energy from the molecular docking protocol and generates results such as RMSD, RMSF, and RoG

which reveal the stability of complex formation



Fig.4 – Automated In Silico modelling and protein-ligand interaction profiling

The tool is required to be run with the following files as shown in the working folder (Fig.5). 

They are downloadable from the links given below.

Fig.5 – Working folder

The trained models, vectors, pickle file can be downloaded from the drive link given below 
https://drive.google.com/drive/folders/1wwgrS6EWCnUFnPRohDFmzzShjZDb0GFe?usp=s
haring https://drive.google.com/drive/folders/1JOpIdckxhCVz1A5R67YzXPxBWOlkFLJs? 
usp=sha ring https://drive.google.com/file/d/1ENt5pb7liNctR_8CE54g35hBU1WQ1TPx/ 
view?usp=sharin g



The bindingDB database used can be obtained from the following link

https://drive.google.com/file/d/1s6c4k7RgBS4reF6b_K9l7-4bqK397JAS/
view?usp=sharing

The code is downloadable from the GitHub repository link given below 

https://github.com/bengeof/Compound2DeNovoDrugPropMax

Anticipating  the  exciting  prospect  of  quantum  computing  and  with  the  developers  of  quantum

hardware such as IBM, Google, Microsoft provide programming interface   to   their   hardware   which

go   by   names   Qiskit,    Cirq   and   Q#   respectively   for   the development of real-world

applications that leverage the of quantum hardware using quantum algorithms  [42-46] we provide a

version of  our tool  that  utilizes  quantum machine  learning algorithms.    Although   fault-tolerant

quantum   computers   may   be   far   off,   solving   real world   quantum   machine learning  problems

using   near-term   quantum   devices   is   possible   through Pennylane which programming interface

to use any of the quantum hardware providers mentioned above [47]

We  use  the  pennylane  interface  to  quantum  hardware  to  turn  classical  Keras  layers  used  in  our

machine/deep learning models into a quantum layer and introduce quantum layers into classical models

to  produce  a  quantum-classical  machine/deep  learning  hybrid  model  of  our  tool  and  the  code

corresponding to the same is provided below 

https://github.com/bengeof/QPoweredCompound2DeNovoDrugPropMax

https://github.com/bengeof/QPoweredCompound2DeNovoDrugPropMax
https://github.com/bengeof/Compound2DeNovoDrugPropMax


3 Results and Discussion

To demonstrate the use of the tool with a randomly selected user input, the tool was run as described

in the methodology section with a randomly chosen PubChem CID : 69584980. The tool generated a

list of predicted targets and automatically estimated the strength of interaction of the compound with

the predicted targets and the results are given below in Table 1. The strongest interaction was found to

be with the target identified with PDB ID : 1gsd which is identified to be the enzyme Glutathione

Transferase. Glutathione Transferase inhibitors increase the sensitivity of cancer cells to anti-cancer

drugs and also possess several other therapeutic applications [48].

Table 1 – Results of protein-ligand interaction prediction and modeling by the tool

Compound 
Information

Target 
Information Interaction Strength

PubChem CID RCSB PDB ID Binding Affinity (Kcal/mol)
69584980 3e4e -7.6

2xml -9.2
1w0e -9.1
6d6t -7
4zji -7.1
1erk -7
1g3f -6.4
4qbq -7
3wf3 -8.6
2wwu -7.5
1fx9 -8.4
4ln7 -7.4
3l6b -7
2a8x -9.1
1gsd -9.9
4awn -6.7
1hkb -7.3
3dkg -7.1
3mi9 -7.9
2igq -7.9
5dgo -7.3
1tb5 -9.3
4nh9 -8.6



The results of AutoDock-Vina based In Silico modelling of the interaction of the drug like optimized 

compounds and the target can be accessed using the link and a selection of the results are tabulated in 

Table 2 along with their protein-ligand interactions shown in Fig.6 

https://drive.google.com/drive/folders/1M6wOXG2Z1g9EDJUxCG7xB_ZDPx4S8mam?usp=sharing

Table 2 – In Silico Modelling Compoundt2DeNovoDrugPropMax

S.No. Ligand (de novo generated SMILES) Target

Binding

Energy

(Kcal/mol)

1- 

SMI

OPT

Cc1cc2cn(C3CCC4NNC(NC(=O)C5CC(Cc6nc(I)ncc6F)CN(C)C

5)C4C3)nc2cc1 1gsd -10.9

2- 

SMI

OPT Cc1cc2ccccc2nc1OC(=O)c1ccc[n+](Br)c1 -10.4

3- 

SMI

OPT

Cc1cc(C2NNC3CCC(C(=O)NN4CCC(Br)

(Cn5cc6ccccc6n5)C4)CC32)ccn1 -10.8

4- 

SMI

OPT Cc1ccc(CNc2ccc(SCc3cnc4[nH]cc(C)c4c3)c(I)n2)nc1 -10.2

5- 

SMI

OPT Cc1ccc(C(=O)C2COCCN2Cc2cc(-c3nocn3)cnc2)cc1-n1nccn1 -10.7



Fig.6a -  Target-compound interaction of the de novo generated SMILES 1-OPT-SMI

Fig.6b -  Target-compound interaction of the de novo generated SMILES 2-OPT-SMI



Fig.6c -  Target-compound interaction of the de novo generated SMILES 3-OPT-SMI

Fig.6d -  Target-compound interaction of the de novo generated SMILES 4-OPT-SMI



Fig.6e - Target-compound interaction of the de novo generated SMILES 5-OPT-SMI

The RMSD plot revealing the stability of complex formation for the complex associated with the lowest 

binding energy from autodock-vina virtual screen is shown below in Fig 7. The plots are automatically 

generated in the workflow using the ‘runGromacs.sh’ bash script which identifies the complex associated

with the lowest binding energy and performs molecular dynamics simulation using the GROMACS 

package. 

Fig. 7 – RMSD plot generated by the ‘runGromcas.sh’ script for complex with lowest binding energy



4 Conclusion

In the present work, the compound-drug target interaction data set from bindingDB has been used to

train a deep learning multi-class classifier which was used to predict the drug targets for any PubChem

compound. The user is required to input the PubChem Compound ID (CID) of the compound the user

wishes to gain information about its predicted biological activity and the tool outputs the RCSB PDB

IDs  of  the  predicted  drug  targets  for  the  compound.  The  tool  also  generates  de  novo  drug-like

optimized versions of the compound of interest for the user. The tool also incorporates a feature to

perform automated  In Silico  modeling and profiling of the protein-ligand interaction of compounds

and the predicted drug targets.  To demonstrate  the use of the tool a randomly selected PubChem

Compound ID (CID) was given as input to the program and the use of the tool in identifying the in

silico bio- activity of the compound was demonstrated.

Data and Software availability

https://github.com/bengeof/Compound2DeNovoDrugPropMax

https://github.com/bengeof/QPoweredCompound2DeNovoDrugPropMax
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