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Abstract

Force-field development has undergone a revolution in the past decade with the

proliferation of quantum chemistry based parameterizations and the introduction of

machine learning approximations of the atomistic potential energy surface. Never-

theless, transferable force-fields with broad coverage of organic chemical space remain

necessary for applications in materials and chemical discovery where throughput, con-

sistency, and computational cost are paramount. Here we introduce a force-field devel-

opment framework called Topology Automated Force-Field Interactions (TAFFI) for

developing transferable force-fields of varying complexity against an extensible database
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of quantum chemistry calculations. TAFFI formalizes the concept of atom typing and

makes it the basis for generating systematic training data that maintains a one-to-one

correspondence with force-field terms. This feature makes TAFFI arbitrarily extensi-

ble to new chemistries while maintaining internal consistency and transferability. As

a demonstration of TAFFI, we have developed a fixed-charge force-field, TAFFI-gen,

from scratch that includes coverage for common organic functional groups that is com-

parable to established transferable force-fields. The performance of TAFFI-gen was

benchmarked against OPLS and GAFF for reproducing several experimental proper-

ties of 87 organic liquids. The consistent performance of these force-fields, despite their

distinct origins, validates the TAFFI framework while also providing evidence of the

representability limitations of fixed-charge force-fields.

1 Introduction1

Molecular dynamics (MD) simulations are a ubiquitous tool in contemporary materials and2

chemical characterization. The development of approximations to the atomistic potential en-3

ergy surface (PES) has been central to extending MD simulations to address large systems,4

condensed phases, and long timescales.1–7 Over the past several decades, many PES approxi-5

mations (i.e., force-fields) have been implemented, spanning the gamut from relatively simple6

non-reactive, fixed-charged, and harmonic forms8–15 to more recent and complex machine-7

learning based approximations.16–25 Along this continuum there is an intrinsic trade-off8

between accuracy and complexity, with fixed-charge force-fields being the most economical9

description but also exhibiting the most limited representability with respect to approxi-10

mating the PES. Nevertheless, for specific force-field forms it is still unclear in the extent11

to which representability limitations versus limited training data cause errors in the prop-12

erties simulated by MD. This distinction is crucial because representability limitations are13

fundamental to the form of the force-field,26–29 whereas errors associated with training data14

or parameterization protocols can be redressed without increasing the computational cost or15
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complexity of the force-field.30–37 It would thus be desirable to develop a framework capa-16

ble of parameterizing force-fields of varying complexity against common training data such17

that representability limitations could be established. In the current work, we demonstrate18

the implementation of such a framework to benchmark a new fixed-charged force-field from19

scratch, with the long-term goal of flexibly matching force-field complexity to the required20

accuracy of an MD simulation.21

Apart from the specific form of the PES approximation, force-fields are also distinguished22

by whether they are transferable across chemical species or only applicable to specific sys-23

tems. The latter strategy is in principle more accurate and easier to implement, as transfer-24

ability imposes additional requirements on the force-field that may lead to accuracy trade-offs25

and also necessarily more training data. In a typical system-specific workflow, a user supplies26

one or more molecules that they want to simulate, a set of quantum chemistry calculations27

are performed to generate training data, and a one-off approximate force-field is parameter-28

ized to the training data.38–40 However, there are many applications, including molecular29

discovery and reactive systems, where transferable force-fields with general applicability are30

clearly desirable due to the cost of parameterizing a force-field from scratch every time a new31

molecule or material is encountered. Nevertheless, the on-the-fly parameterization concept32

is potentially still applicable to extending transferable force-fields if the associated quan-33

tum chemistry data is stored and parameterizations of new molecules are performed in a34

backwards-compatible fashion. This is the approach adopted in the force-field framework35

developed here.36

The most mature transferable force-fields are based on the concept of atom types, where37

the local bonding environment about each atom is used as the basis for transferring force-38

field terms across recurring bonding motifs. Atom typing reduces the number of parameters39

required to simulate new molecules, and the concept has precedence in thermodynamic incre-40

ment theories going back to Pauling. However, even in modern machine learning force-fields,41

atom types are often latent variables that are learned during training.20,23 The challenge42
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for transferable force-fields has always been with extending them to include coverage for43

new chemistries.41–46 Among the specific challenges are generating training data for new44

chemistries that are consistent with the existing training corpus and performing new param-45

eterizations with backwards compatibility with the rest of the force-field. For these reasons,46

the most popular transferable force-fields with the largest chemical coverage are built on47

top of legacy force-fields with decades of development (GAFF,47,48 CGenFF,49,50 and OPLS-48

AA15,42,51,52). Nevertheless, expanding the coverage of these force-fields still typically involves49

retraining the whole force-field. Although not yet fully realized, machine learning force-fields50

present a parallel approach to achieving transferability by simply expanding training data51

to the point that de facto transferability is achieved. Among the ideas presented here, is52

that these two approaches are not as incompatible as they seem. Specifically, the data gen-53

eration problem for machine learning force-fields is largely shared with the data generation54

problem for simpler force-fields, and a framework that systematically expands a corpus of55

training data on the basis of new atom types would be advantageous regardless of the specific56

functional form used for the force-field.57

The current work addresses the challenges of producing arbitrarily extensible and trans-58

ferable force-fields based on quantum chemistry training data. The presented framework,59

topology automated force-field interactions53–55 (TAFFI), accomplishes this by formalizing60

the concept of atom types using molecular graphs and defining a one-to-one correspondence61

between force-field parameters and the model compounds used to generate training data.62

These features are compatible with on-the-fly parameterization of new force-field parameters63

while maintaining self-consistency and backwards compatibility. The result is an extensible64

force-field supported by a continuously growing body of training data that can be fit to65

flexible force-field forms. In the current work, TAFFI is used to derive a fixed-charge force-66

field (TAFFI-gen) for 87 organic molecules as a case study to illustrate the methodology67

and benchmark its performance. Additionally, over 2000 distinct force-field terms involving68

270 unique atom types for TAFFI-gen are distributed with this work, including coverage69
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for many common organic moieties. Condensed-phase simulation results using TAFFI-gen70

are compared with the GAFF and OPLS-AA force-fields for the reproduction of a range71

of experimental liquid properties. The consistent performance of these force-fields, despite72

their distinct origins, validates the TAFFI framework while also providing evidence of the73

representability limitations of fixed-charge force-fields.74

2 Methods75

2.1 Methodology Overview76

An overview of the three stages of data generation and force-field parameterization within77

the TAFFI framework is provided here using diethyl carbonate as an example to guide the78

reader (Fig. 1). A detailed description of each step is provided in the subsequent sections79

(2.2-2.4).80

In Stage 1 (Fig. 1a-c), the atom types and modes associated with the user-supplied81

molecule(s) are determined (Fig. 1a, Sec. 2.2.1) and the model compounds necessary to pa-82

rameterize any missing terms are generated (Fig. 1b, Sec. 2.2.2). Rules based on chemical83

topology are used for both of these steps to yield a unique dependency graph that can be84

sorted (Fig. 1c, Sec. 2.2.3) to schedule the parameterization calculations. Assuming no pre-85

vious parameters exist, parameterization (i.e., Stages 2 and 3) begins with simple molecules86

like ethane and methanol which are at the base of the sorted dependency graph (Fig. 1c,87

group 1) followed sequentially by larger molecules like ethanol, methoxyethane, and dimethyl88

carbonate. There is a one-to-one mapping between force-field terms and model compounds,89

such that each term is derived exclusively from the quantum chemistry training data of a90

single model compound, which ensures the extensibility and backwards compatibility of the91

force-field. At higher levels of the dependency graph, force-field parameters inherited from92

model compounds at lower levels are held fixed during parameterization.93

In Stage 2 (Fig. 1e), the data generation and force-field parameterizations associated94
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with intramolecular modes are performed. Each model compound is first initialized in a95

canonical conformation (Sec. 2.3.1) then optimized at the target quantum chemistry level96

of theory. The optimized geometry is then used as an input for constrained mode scans97

of unique bonds, angles (Sec. 2.3.2), and dihedrals (Sec. 2.3.3). The intramolecular force-98

field modes associated with the model compounds are then parameterized to the quantum99

chemistry mode scans self-consistently with all other intramolecular parameters.100

In Stage 3 (Fig. 1f), the data generation and force-field parameterizations associated101

with intermolecular interactions are performed. Condensed-phase molecular dynamics is102

used to sample molecular and pairwise configurations of each model compound (Sec. 1.1 in103

the S.I.). Quantum chemistry calculations of electrostatic potentials and interaction energies104

are performed on the molecular and pairwise configurations, respectively, and serve as the105

reference data for parameterizing the intermolecular force-field terms (Sec. 2.4.1-2.4.2).106

Finally, the intramolecular modes associated with the model compounds are refit to ensure107

self-consistency with the final intermolecular terms (e.g., partial charges and Lennard-Jones108

interactions).109

Model compounds that are in the same group of the dependency graph are parameterized110

in parallel during Stages 2 and 3. In the current example, the intramolecular and intermolec-111

ular terms for methanol and ethane would be derived first, followed by the compounds in112

group two (Fig. 1c), and so forth, until all parameters are obtained that are necessary to113

simulate diethyl carbonate. The TAFFI database is updated at each step of the process to114

avoid redundant calculations when parameterizing new molecules. For example, the force-115

field terms associated with ethanol and ethane are at the base of the dependency graphs116

of many potential organic species, but they are only evaluated once and then stored for all117

future parameterizations.118
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2.2 Stage 1 - Organization of Calculations119

Stage 1 of TAFFI consists of identifying the requisite force-field parameters (Fig. 1a, Sec.120

2.2.1), generating model compounds for those parameterizations (Fig. 1b, Sec. 2.2.2), and121

ordering the parameterizations to ensure internal consistency (Fig. 1c, Sec. 2.2.3). Chem-122

ical topology (i.e., the molecular graph) plays a central role in Stage 1 for automating the123

assignment and parameterization of the force-field. The chemical topology can be expressed124

in a computationally useful form as an adjacency matrix, A, with dimensions equal to the125

number of atoms in the molecule, and elements defined by126

Aij =


1 if a bond exists between atom i and atom j

0 if a bond does not exist between atom i and atom j.

(1)

Chemical topology is used in Stage 1 in three ways: (i) the definition of atom types, (ii)127

the definition of the model compounds, and (iii) for determining the molecular dependencies128

and order of calculations.129

2.2.1 Definition of Atom Types130

In TAFFI, the concept of an atom type is formalized based on the local molecular subgraph131

about each atom out to a specified number of bonded neighbors, d. In turn, bonds, angles,132

and dihedrals are uniquely defined based on the atom types involved in each mode. For the133

current work, a bond-depth d = 2 has been uniformly used for defining atom types. This134

choice enables TAFFI-gen to support a greater degree of chemical specificity than is present135

in other transferable force-fields (e.g., a mixture of d = 1 and d = 2 types are common136

depending on the available experimental parameterization data) while still being usefully137

transferable.138

Atom typing in TAFFI occurs via breadth-first searches of the molecular graph out to139

d-bonds from the atom being typed. This procedure is seeded by querying the row of the140
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adjacency matrix (Eq. 1) corresponding to the atom being typed and identifying the atoms141

bonded to it. This process is recursively applied d−1 additional times by reseeding the search142

with the bonded atoms and excluding the atom seed from the previous generation to avoid143

backtracking. The subgraphs obtained in this way uniquely define the atom types in the144

molecule. TAFFI utilizes a string syntax for canonicalizing these subgraphs and expressing145

them in a machine-readable format. In this syntax, all numbers refer to atomic numbers146

(i.e., 1 corresponds to hydrogen, and 6 to carbon), open brackets (“[”) designate bonds, and147

closed brackets (“]”) designate the end of bonded groups (i.e., either the point at which d148

bonds is reached or at which a branch terminates). A bond is indicated between the atom149

directly following the open bracket, “[” , and the first atom preceding the bracket that is not150

enclosed by a “]”. The atom being typed is always designated first. For example, the atom151

type of the central carbon atom in ethanol is encoded as [6[6[1][1][1]][8[1]][1][1]], where the152

first 6 refers to the central carbon atom itself, the [6[1][1][1]] refers to the bonded methyl, the153

[8[1]] refers to the bonded alcohol, and the final [1][1] specifies the two hydrogens directly154

bonded to the central carbon. To resolve the ambiguity associated with graph isomorphism,155

the ordering of branches within each atom type is determined by the mass of the bonded156

atoms, followed by the mass and number of next-nearest bonded atoms (similar to Cahn-157

Ingold-Prelog priority rules). Labels for unique bond, angle, and dihedral types are defined158

based on the atom types involved in each mode (e.g., “[6[6[1][1][1]][8[1]][1][1]] [1[6[8][6][1][1]]]”159

is the bond type associated with the C-H bond about the central carbon atom in ethanol).160

2.2.2 Definition of Model Compounds.161

In TAFFI, all force-field parameters are derived from a set of algorithmically generated model162

compounds for which reference quantum chemistry data can be generated. For a given force-163

field term (e.g., a partial charge, bond type, angle type, etc.), the model compound is defined164

as the smallest acyclic molecule that both exhibits the required force-field term and conserves165

the Lewis structure of the associated atom types. For example, as shown in Fig. 1b for d = 2,166
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the model compound used to parameterize the partial charges of the terminal alkyl hydrogen,167

[1[6[6][1][1]]], is ethane, because ethane is the smallest molecule containing that atom type.168

Starting with the target compound supplied by the user, these model compounds are169

generated in two steps. First, all atoms more than d bonds away from the targeted term170

are removed to form a preliminary compound. For atom types, bond types, and angles, this171

means truncating all atoms more than d + 1 bonds away from any atom involved in the172

targeted mode. For dihedrals, this means truncating all atoms more than d+ 1 bonds away173

from the atoms defining the rotatable bond (i.e., the 2-3 atoms of the dihedral). Second,174

any undercoordinated atoms that result from this truncation are hydrogenated to a level175

that is consistent with the hybridization of the subgraph and necessary to form a valid176

Lewis structure. We emphasize that the resulting model compounds are independent of the177

specific user-supplied structure that initiated their generation. That is, each force-field term178

is parameterized using a unique model compound, and the user-supplied structures only play179

a role in identifying force-field terms in need of parameterization.180

This definition of model compounds has two shortcomings that we note here but leave181

to future work to address. First, this definition leads to ambiguity in cases involving double182

bonds between nearest and next-nearest neighbors of the atoms associated with the force-field183

term (e.g., keto-enol tautomers). In these cases, double bonds with the highest bond energy184

are preferentially formed in the model compound.55–57 For example, the model compound185

for the atom type [6[6[1][1][1]][6[8][6]][1][1]] is 2-butanone rather than 1-buten-2-ol (i.e., the186

ketone as opposed to the alcohol, consistent with the Erlenmeyer rule). This ambiguity187

could be addressed in the future by introducing bond-orders into the atom labels (e.g.,188

using distinct symbols for double and triple bonds instead of specifying bonds generically189

with ‘[’ and ‘]’) such that distinct tautomers would be parameterized to distinct model190

compounds. Second, this definition leads to force-field terms associated with cyclic structures191

being derived from data for acyclic model compounds. We note that rings, and similarly192

conjugated groups, have intrinsically non-local contributions to their configurational energy193
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that represents a challenge to the locality assumption of any force-field based on atom types.194

This could be addressed in the future by using model compounds for rings and conjugated195

subunits that preserve these components, but this is outside of the scope of the current study.196

It may happen that the model compounds exhibit new force-field terms that are distinct197

from the parent molecule. Thus, model compound generation is recursively performed for198

these new force-field terms until all model compounds have been generated for all unknown199

terms. Because each model compound is smaller than its parent, this recursion will eventually200

terminate with small model compounds containing approximately d non-hydrogen atoms.201

This procedure yields model compounds that are generally small and amenable to high-level202

quantum chemistry calculations. For example, 90% of model compounds generated in this203

study had six or fewer heavy atoms (the mode is four), and no model compound had greater204

than eight heavy atoms (Fig. S1).205

2.2.3 Definition of the Dependency Graph.206

The recursive generation of model compounds creates dependencies based on shared force-207

field terms. To account for these dependencies, it is necessary to order data generation208

and parameterizations (Subsections 2.2-2.3) such that all force-field terms, besides those209

associated with a given model compound, have been obtained prior to performing each210

parameterization. These dependencies are enumerated during model compound generation211

and stored in a dependency graph. The dependency graph has nodes for all model compounds212

and directed connections between all dependent compounds (e.g., ethanol depends on ethane213

for the partial charges of atom type [1[6[6][1][1]]], but ethane does not depend on ethanol,214

Fig. 1c). Prior to performing force-field parameterizations, a topological sort is applied to215

the dependency graph such that no dependencies exist within the same level of the sorted216

graph. Data generation and parameterization (Stages 2 and 3) are then performed beginning217

with model compounds in the bottom level of this graph and working to the top (i.e., level218

1 to level 4 in Fig. 1c). This addresses the issue of force-field terms potentially being219
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missing during parameterization because the terms at each level can be directly determined220

when all of the dependent terms in the lower levels of the dependency graph are known.221

The algorithm for model compound generation (Sec. 2.2.2) in TAFFI has the important222

property that dependent model compounds are always identical to or smaller than their223

parent molecule. Consequently, the dependency graph for any molecule is directed and224

acyclic, and it is always possible to order calculations such that all dependencies exist at the225

time of parameterization.226

2.2.4 Force-field Expression227

While the particular force-field expression used for fitting the data in the TAFFI database is

flexible, this choice does guide which calculations are performed on the model compounds in

the subsequent stages. For the current study, we employ the following fixed-charge functional

form:

VFF =
∑
bonds

kr (r − r0)2 +
∑

angles

kθ (θ − θ0)2 +
∑

dihedrals

4∑
i=1

1

2
Vi
(
1 + (−1)i+1cos(iφ)

)
+
∑
i>j

{
qiqje

2

4πε0rij
+ 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]}

, (2)

where kr and r0 are a bond-specific force constant and equilibrium displacement, respec-228

tively; kθ and θ0 are an angle-specific force constant and equilibrium angle, respectively; the229

Vi terms are dihedral-specific Fourier coefficients, rij are the interatomic separations, qi are230

the atomic partial charges, e is the elementary charge, and εij and σij are the Lennard-Jones231

(LJ) parameters for each pairwise interaction. The summation for the Lennard-Jones and232

Coulomb potentials runs over all intermolecular atomic pairs and all intramolecular atomic233

pairs separated by more than three bonds (i.e., 1-4 intramolecular interactions are excluded).234

All dihedrals that rotate about double-bonds are modeled as invertible harmonic modes by235

only using the i = 2 term in the dihedral expression. These functional forms are largely236

standardized in general force-fields and are broadly implemented in existing MD packages,237
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which makes them an obvious starting point for this initial benchmark study.238

2.3 Stage 2 - Intramolecular Parameterizations239

Stage 2 consists of generating reference quantum chemistry data and performing force-field240

parameterizations related to the intramolecular force-field parameters (Sec. 2.3.1-2.3.3).241

Parameterizing intramolecular modes is a prerequisite for generating reference data for in-242

termolecular force-field terms in Stage 3. Thus, Stage 2 occurs first to yield a provisional243

force-field, with the final intramolecular force-field terms refit after the Stage 3 intermolecular244

terms.245

2.3.1 Conformer Generation246

The first step in generating reference quantum chemistry data for fitting intramolecular247

force-field terms is generating an optimized geometry for the model compounds. Here, all248

model compounds are initialized as the conformer with trans relationships for all backbone249

dihedrals (i.e., the all-trans conformer). The all-trans conformer is generated by (i) iden-250

tifying the atoms belonging to the longest connected path in the molecular graph (i.e., the251

molecular backbone), (ii) aligning the backbone dihedrals in all-trans geometries, and (iii)252

repeating with the remaining branches of the molecular graph until all non-terminal dihe-253

drals exhibit trans relationships. Since the all-trans designation leaves the conformation of254

terminal dihedrals ambiguous (e.g., the dihedral involving chlorine in 1-chlorobutane), the255

conformation of end groups is determined by explicitly generating and optimizing all end256

group conformers by steepest descent using the Universal Force Field (UFF),58 then using257

the lowest energy conformer as the input structure for quantum chemical geometry optimiza-258

tion. This procedure yields a deterministic conformer and initial geometry for each model259

compound.260
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2.3.2 Parameterization of Harmonic Modes261

Bonds, angles, and dihedrals about double bonds are modeled here with harmonic forms262

(Eq. 2). In cases where a model compound has multiple resonance structures, if a dihedral263

has a double bond in any resonance structure then it is modeled as a harmonic mode (e.g.,264

all dihedrals in benzene are considered harmonic in TAFFI-gen). All harmonic modes are265

self-consistently fit to constrained quantum chemistry mode scans. Bond mode scans consist266

of compression and extension by 0.1 pm about the optimized bond length in steps of 0.02 pm.267

Angle mode scans consist of compression and expansion by 0.5◦ about the optimized angle268

in steps of 0.1◦. Harmonic dihedral scans consist of compression and expansion by 0.5◦269

about the optimized dihedral angle in steps of 0.1◦. At each scan configuration, geometry270

optimizations are performed with the mode being parameterized constrained to a fixed value271

while optimizing all remaining degrees of freedom.272

The harmonic modes associated with the model compounds are parameterized to mini-273

mize the following objective function:274

χ2
harm =

∑
i

EQC,i −
∑

νj∈local

VFF(νj)

2

, (3)

where the index i runs over all scanned configurations, EQC,i is the single-point energy275

of configuration i relative to the minimum-energy configuration, the index j runs over all276

bonds, angles, and harmonic dihedrals that share an atom with the scanned mode (i.e.,277

“local” modes), and VFF(νj) is the force-field energy of mode νj in configuration i. The self-278

consistent fit over all local modes is performed because the force-field terms are generally279

not linearly independent. All fits are performed using the limited-memory Broyden-Fletcher-280

Goldfarb-Shanno algorithm with bound constraints (L-BFGS-B) to limit the fit variables to281

positive values. Initial guesses for the force-constant and equilibrium displacement for each282

scanned mode are obtained by a linear least-squares fit to the quantum chemistry single-283

point energies with respect to the mode being fit. This procedure is repeated until reaching284
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self-consistency among all intramolecular modes. During these fits, only the force-field terms285

associated with the model compound are parameterized, and any terms inherited from model286

compounds lower in the dependency graph are held fixed.287

2.3.3 Parameterization of Flexible Dihedral Potentials288

Dihedrals that rotate about single and triple bonds are modeled by TAFFI-gen with a289

truncated Fourier series. All flexible dihedrals are self-consistently fit to constrained quantum290

chemistry scans from [0, 2π) and [0,−2π), in 5◦ steps, about each rotatable bond. Two scans291

are performed to mitigate the path-dependence of the scan (e.g., this can be important292

for sterically crowded dihedrals) and the lowest energy union of the two scans is used as293

reference data for the parameterization. During each scan, the dihedral being parameterized294

is constrained to a fixed value while optimizing all remaining degrees of freedom. In the case295

where multiple dihedrals exist about the same bond, only the dihedral involving the heaviest296

atoms–or secondarily, the longest chain–is explicitly constrained during the scan.297

The Fourier coefficients are fit to minimize the residual between the quantum chemistry298

and force-field potentials for the constrained dihedral rotation according to the following299

objective function:300

χ2
Fourier =

∑
i

EQC,i −
∑
νj /∈fit

EFF,i(νj)−
∑
νj∈fit

4∑
k=1

1

2
Vj,k

(
1 + (−1)k+1cos(kφi,j)

)2

+ωL2N
−1
fit

Nfit∑
i,j∈fit

V 2
i,j,

(4)

where the index i runs over all scan configurations, EQC,i is the single-point energy of the301

configuration, the second summation runs over all force-field terms that are not being fit302

(i.e., bonds, angles, unscanned dihedrals, electrostatics, and Lennard-Jones terms), the third303

summation runs over all dihedrals that share the scanned bond (i.e., νj ∈ fit), Vj,k are the304

dihedral-specific force constants, and φi,j is the angle of dihedral j in configuration i. The last305

summation is an L2 regularization of the average magnitude of the dihedral fit coefficients306

that reduces overfitting to noisy data. ωL2 is set to 0.1 percent of the range of the fit307
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values (i.e. the difference between EQC,i and the second summation in Eq. 4). All fits are308

performed using the L-BFGS-B algorithm with bound constraints limiting the magnitude of309

the dihedral fit coefficients to two hundred percent of the range of fit potential.310

During Stage 2, the Lennard-Jones parameters and partial charges are not yet determined,311

so UFF parameters and approximate partial charges fit to the optimized geometry of the312

model compound (Sec. 2.4.1) are used as an approximation. After Stage 3, all intramolecular313

parameters are refit with updated partial charges and Lennard-Jones parameters using the314

same procedure.315

2.4 Stage 3 - Intermolecular Parameterizations316

Stage 3 consists of generating reference quantum chemistry data and performing force-field317

parameterizations related to the intermolecular force-field parameters (Sec. 2.4.1-2.4.2).318

Configurational sampling is critical for generating reference data for intermolecular terms,319

which requires Stage 3 to occur after a preliminary force-field is obtained from Stage 2.320

After configurational sampling (Sec. 1.1 in the S.I.) , quantum chemistry calculations on321

molecular and pairwise configurations are used to parameterize the partial-charges (Sec.322

2.4.1) and Lennard-Jones parameters (Sec. 2.4.2), respectively.323

2.4.1 Parameterization of Partial Charges324

The electric potential calculated on a grid about each molecule in each sampled configuration325

(see Sec. 1.1 in the S.I.) is used as reference data for the partial charge parameterization.326

The partial charges are fit to minimize the following objective function:327

χ2
q =

Nsamples∑
s

ωpotN
−1
pot

Npot∑
i

(VQC,i − VFF,i)
2 + ωD

3∑
i

(DQC,i −DFF,i)
2 + ωT

(
Natoms∑

i

qi − qT

)2
 ,

(5)

where the first summation (s) is over the sampled configurations, the second summation is328

over the squared deviations of the force-field description (VFF,i) from the reference electric329

15



Seo, Lin, Zhao, Webb, and Savoie - 16

potential (VQC,i) as calculated on the Npot grid points, the third summation corresponds to330

the element-wise deviations of the force-field description (DFF,i) from the reference molecular331

dipole (DQC), and the fourth summation corresponds to deviations from the total molecular332

charge (qT). ωpot, ωD, ωT are weighting coefficients for penalizing the electric potential,333

dipole, and total charge deviations, respectively. The s index is implied in all terms, but334

dropped for clarity. Partial charges (qi) are fit using ωpot = 1.0, ωD = 0.1, ωT = 1.0, specified335

in inverse atomic units. As implemented in ORCA v.4.1.2, the electric potential is calculated336

on a cubic grid with a grid spacing of 0.3 Å, and any grid points further than 2.8 Å from337

any atom or within the COSMO radius of any atom are discarded.338

The partial charges are fit in two steps. First, Eq. 5 is minimized while constraining339

polar atoms of identical TAFFI atom type to have the same partial charge. Polar atoms are340

considered to be any non-hydrogen atoms besides carbon, and hydrogen atoms that are not341

bonded to carbon. A second fit is then performed by minimizing Eq. 5 while holding the342

partial charges for the polar atom types constant and constraining all non-polar atoms of343

the same type to have the same partial charge. This two step procedure is similar to the344

RESP algorithm59 and is meant to improve the accuracy of the electric potential near the345

polar atoms. This procedure differs from the RESP algorithm in (i) the form of the objective346

function and (ii) the use of 200 configurations rather than a single configuration. We note347

that fitting to multiple configurations tends to reduce the magnitude of the partial charges,348

alleviating the need for the heuristic hyperbolic restraint used in RESP. Partial charge fits349

are performed using the BFGS algorithm.350

2.4.2 Parameterization of Pairwise Interactions351

Counter-poise corrected interaction energies (IE) of the sampled pairwise configurations (see352

Sec. 1.1 in the S.I.) are used as reference data for the Lennard-Jones parameterization. The353
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Lennard-Jones parameters are fit to minimize the following objective function:354

χ2
LJ = ωIEN

−1
IE

NIE∑
i

(IEQC,i − IEFF,i)
2+ωεN

−1
ε

Nε∑
i

(εUFF,i − εFF,i)
2+ωσN

−1
σ

Nσ∑
i

(σUFF,i − σFF,i)
2 ,

(6)

where the first summation corresponds to squared deviations of the force-field interaction en-355

ergy (IEFF) from the counter-poise corrected interaction energy (IEQC) over all NIE pairwise356

samples, the second summation corresponds to the L2 regularization of the Lennard-Jones357

energy parameters (εFF,i) with respect to the UFF reference values (εUFF,i), and the third358

summation corresponds to the L2 regularization of the Lennard-Jones atomic radii (σFF,i)359

with respect to the UFF reference values (σUFF,i). The latter terms in the objective function360

are included to avoid extreme values in ε and σ that can occur when using only a least-361

squares objective function. The Lennard-Jones parameters are fit using ωIE = 1.0 mol/kcal362

ωε = 1.0 mol/kcal, and ωσ = 0.1 Å−1. A comparison of the interaction energies calculated at363

the UFF level and with the regularized and unregularized TAFFI-gen parameters (Fig. S2)364

confirms that the regularization terms have only a small effect on the reproduction of the365

interaction energies. The interaction energies are calculated in the force-field description as366

the sum of intermolecular Lennard-Jones and electrostatic terms between the molecules in367

each configuration. The partial charges are held fixed during the fitting of the Lennard-Jones368

parameters. Any configurations with unstable interaction energies (i.e., IEQC > 0 kcal/mol)369

are excluded from the fit. Lennard-Jones fits are performed using the L-BFGS-B algorithm.370

2.5 Dataset Description371

LAMMPS60 and ORCA v.4.1.261 were used to perform the molecular dynamics simulations372

and quantum chemistry calculations, respectively, associated with reference data generation.373

All quantum chemistry calculations were performed at the ωB97X-D362/def2-TZVP63,64 level374

of theory for training the version of TAFFI-gen reported here.375

To assess the performance of TAFFI-gen, we present a benchmark on the dataset of376
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small organic molecules introduced by Caleman et al. for GAFF and OPLS-AA.65 The377

original MD-based predictions of liquid properties by Caleman included 147 molecules in378

their benchmark set. In the current study, we have excluded ring, nitro, and phosphate379

containing compounds, as they require a more sophisticated treatment of atom types and380

model compounds that is beyond the scope of the current work. After these exclusions, a381

total of 87 molecules at 146 distinct state points (i.e., multiple temperatures per molecule382

where included by Caleman et al.) are in the presented benchmark. A list of all bench-383

mark compounds and individual property predictions are distributed in the supplementary384

information of this work.385

Six properties were calculated from the MD trajectories: the density, enthalpy of va-386

porization, static dielectric constant, volumetric thermal expansion coefficient, isothermal387

compressibility, and quantum-corrected heat capacity at constant volume. Following the388

reference benchmark by Caleman, three types of MD simulations were performed to extract389

these properties. Gas phase simulations were run to obtain the expected potential energy per390

molecule in the gas phase for the enthalpy of vaporization calculation. Relatively long liquid391

phase simulations (i.e., 10 ns) in the NPT ensemble were run to compute all properties other392

than the heat capacity. Short liquid phase simulations (i.e., 100 ps) were run in the NVT393

ensemble with high sampling frequency to calculate the constant volume heat-capacity using394

the two-phase method.66,67 Details of the simulation and analysis methods are described in395

the SI. We note that the dielectric constants of methanoic acid have been omitted in analysis396

due to lack of convergence, which will be revisited in the discussion. Besides this case, all397

available experimental data in Ref. 65 for the benchmark molecules has been included for398

comparison.399

Finally, four error measures are reported for comparing the results for TAFFI-gen against400

experimental data and the other force-fields (Eq. 7-10). The mean absolute difference (MAD)401

is calculated as402

MAD =
1

N

N∑
i

|xi,sim − xi,ref | (7)
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where N is the total number of data points, xi,sim is the simulated value for each data point403

and xi,ref is the corresponding reference value (DFT calculated value or experimental value).404

The mean signed difference (MSD) is calculated as405

MSD =
1

N

N∑
i

xi,sim − xi,ref (8)

with positive values indicating an average overestimation of the value by simulations. The406

mean absolute percent difference (MAPD) is calculated as407

MAPD =
100

N

N∑
i

|xi,sim − xi,ref |
xi,ref

(9)

The mean signed percent difference (MSPD) is calculated as408

MSPD =
100

N

N∑
i

xi,sim − xi,ref

xi,ref

(10)

We note that MAD and MSD are more sensitive to the large magnitude samples in the409

dataset, whose deviations tend to be correspondingly larger than the small magnitude sam-410

ples. MAPD and MSPD are more sensitive to the small magnitude samples in the dataset.411

3 Results and Discussion412

TAFFI-gen is parameterized to DFT reference data for small model compounds. Thus,413

the errors in TAFFI-gen predictions can be decomposed into errors associated with the un-414

derlying DFT parameterization data and representability errors associated with the limited415

functional form of the force-field. Regarding the first source of error, the dispersion-corrected416

range-separated functional used here is among the highest performing in benchmarks of con-417

formational energetics and cluster interactions for organic species.62,68–72 Nevertheless, even418

modern functionals have documented deficiencies for aqueous solutions and reaction barriers419
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that would require higher fidelity training data for models of water or reactive force-fields,420

which are beyond the present scope. Thus, for the current study, we acknowledge this poten-421

tial source of error but consider it negligible in comparison with the representability errors422

associated with the simple functional form of the force-field.423

To quantify the magnitude of errors associated with the functional form of the force-field,424

we have compared the TAFFI-gen predictions for normal modes and optimized geometries425

against DFT results for the benchmark compounds (Fig. 2). Comparing the normal mode426

frequencies provides a measure of the accuracy of forces in the force-field representation427

(Fig. 2a). We observe a MAD of 52 cm−1 and MAPD of 6%, which is comparable to non-428

transferable quantum chemistry derived force-fields using more complex forms.39,40 This429

suggests that in general TAFFI-gen exhibits accurate force-behavior near equilibrium struc-430

tures. Notably, the largest percent deviations are associated with low frequency modes431

(< 1000 cm−1), which is expected given the lack of explicit coupling between dihedral terms432

and the exclusion of improper modes in the current force-field.433

The predicted equilibrium structures of the benchmark compounds provides a second434

point of comparison between TAFFI-gen and the reference DFT level of theory (Fig. 2b).435

These comparisons are performed by optimizing the compounds at the DFT and force-436

field levels starting from the same all-trans conformer, then aligning the structures via the437

Kabsh algorithm. First, we observe that the deviations of atomic positions (MAD=0.1Å),438

bonds lengths (MAD=0.002Å), and bending angles (MAD=0.7◦) are all extremely small on439

a per molecule basis, which confirms the generally excellent agreement between TAFFI-gen440

and DFT for local structural features. Larger deviations are observed for proper dihedrals441

(MAD=7◦) and improper dihedrals (MAD=6◦). From the distribution of proper dihedral442

deviations, it is evident that these errors are driven by a small number of outliers that443

adopt distinct conformers at the TAFFI-gen level upon geometry optimization. In particu-444

lar, terminal methyl groups proximate to esters and amides tend to twist relative to DFT445

predictions (Fig. S4), which occurs for methyl acetate (dihedral MAD=33◦), methyl formate446
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(36◦), acetyl acetate (37◦), N,N-dimethylacetamide (34◦), N-methylformamide (36◦), and N-447

methylacetamide (45◦). In contrast, the errors in improper dihedrals appear to be systematic,448

with a relatively large standard deviation in MAD across the reference structures (5.99◦).449

This is a consequence of not explicitly including improper modes in the force-field form.450

The errors in impropers are intuitively largest for planar conjugated units. For example, the451

largest error is exhibited by the improper defined about the carbonyl in 2,6-dimethylheptan-452

4-one, where TAFFI-gen exhibits an improper angle of 32◦ in contrast to 0◦ predicted by453

DFT. The optimized geometries for DFT and TAFFI-gen for the molecules with large MADs454

are compared in Fig. S4. Although we have focused on the largest error cases to illustrate455

the limitations of the common force-field form employed here, the overall mean performance456

is nevertheless very accurate (Table 1). Namely, the overwhelming majority of structural fea-457

tures are quantitatively reproduced by TAFFI-gen and the cases where incorrect conformers458

are stabilized are rare and isolated to the periphery of the molecules.459

We note that the above comparison has been performed for the benchmark molecules460

and not for the model compounds actually used for TAFFI-gen parameterization. Fig. S3461

presents the analogous comparisons with DFT results for model compounds only, which462

show very similar deviations compared with the benchmark structures. The similar errors463

observed between these two cases provides evidence that the d = 2 atom typing of TAFFI-464

gen leads to excellent transferability between model compounds and larger molecules for465

structural features, while the limited representability of the force-field is the main source of466

error with respect to the DFT reference data.467

MD Simulations of six liquid properties were performed to establish the performance468

of TAFFI-gen relative to OPLS-AA and GAFF in predicting experimental liquid properties469

(Fig. 3). These properties include the density (ρ), heat of vaporization (∆Hvap), static dielec-470

tric constant (ε), volumetric thermal expansion coefficient (αP), isothermal compressibility471

(κT), and quantum-corrected heat capacity at constant volume (cv) for the 87 molecules in472

the current benchmark. We note that among the liquid properties, ρ, ∆Hvap, and ε have473
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historically been utilized as part of the OPLS-AA and GAFF parameterizations, whereas474

for TAFFI-gen this data is not utilized in any way and represents a test for the force-field.475

Summary statistics across the benchmark are presented in Table 2, and the TAFFI-gen476

predictions for individual simulation conditions are presented in Table S1.477

The summary error statistics calculated across all systems for each force-field illustrates478

the similar accuracy (and inaccuracy) of the three force-fields for the various properties.479

Although some specific differences occur, which are discussed below, it is perhaps surprising480

that the mean performance is so consistent despite the distinct parameterization protocols481

and training data for the three force-fields. For instance, all of the force-fields exhibit rela-482

tively small errors for ρ and cv, large systematic errors for ε (e.g., R2 < 30% in all cases),483

and high correlation but large variances for ∆Hvap, αP, and κT. These trends can be ratio-484

nalized by the common functional form of these force-fields. For instance, the Lennard-Jones485

potential is capable of recapitulating the molecular volume, which is the leading order con-486

tribution to density, but is an approximate description of van der Waals interactions which487

significantly contribute to ∆Hvap. Similarly, a fixed point-charge model is an aggressive488

simplification of electrostatic interactions, which explains the poor dielectric results in all489

cases, and also contributes to the high variances of the other fluctuation-based condensed490

phase properties. The heat capacity is well reproduced in all cases, which is also consis-491

tent with the generally accurate reproduction of local configurational energetics (i.e., bond,492

angle, and to a lesser degree dihedral terms) in these force-fields. Thus, despite their in-493

dependent reference data, the force-fields exhibit similar average prediction behaviors that494

reflect the representability limitations of the functional form of the force-field. The approx-495

imate treatment of intermolecular interactions, in particular, leads to shared trade-offs in496

reproducing thermodynamic properties. This is further evidenced by the fact that interac-497

tion energy errors in TAFFI-gen exhibit the largest variance of all training properties (Fig.498

S2). Specifically, while TAFFI-gen exhibits excellent reproduction of the mean interaction499

energies (MSE of -0.09 kcal/mol for the model compound training data), the error residuals500
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exhibit very long tails (kurtosis=20.25) which is clear evidence of representability limitations501

associated with the pairwise fixed-charge form of the force-field.502

Although our interpretation of the similar mean performance of the three force-fields is503

that representability limitations dominate the general behaviors, this does not exclude some504

specific cases being the result of inaccurate parameterizations. For instance, the efforts of505

the Open Force-Field Consortium have highlighted many cases where additional accuracy506

can be squeezed from fixed-charge force-fields by refining specific parameters.15,73–77 Like-507

wise, the fact that OPLS generally outperforms the other force-fields illustrates that the508

specific force-field terms for TAFFI-gen might be improved by tuning the parameterization509

hyperparameters or supplementing the training data.510

To facilitate a more fine-grained comparison between the force-fields, the MAPD with511

respect to each liquid property is presented on a per functional group basis in Figure 4.512

Molecules were included in a category if they exhibit the specified functional group; thus,513

some molecules are included in multiple categories. We have also combined similar functional514

groups in some cases to avoid scarce or empty categories. We note that experimental data515

is not available for all compounds for all properties, thus the number of compounds in each516

category varies across properties, and bars have been omitted for cases where less than three517

datapoints were available. We note that a large number of distinct outliers are observable518

for GAFF that have previously been discussed by Caleman et al., and are thus not further519

remarked on here.520

There are several informative outliers observed for all of the force-fields that shed further521

light on representability limitations. For example, all of the force-fields exhibit underesti-522

mated dielectric constants for the amides, which suggests the need for polarizable terms to523

accurately account for the large molecular dipoles and strong hydrogen bonding associated524

with this functional group.78 Another noticeable trend is large overestimations of the volu-525

metric thermal expansion coefficient and isothermal compressibility for the halides, which are526

mainly driven by small molecules with multiple halogens such as chloroform (>48/74% devia-527
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tions, respectively), dichloro(fluoro)methane (>49%/n.a.), 1,1-dichloroethene (>43%/n.a.),528

and 1,1,2,2,-tetrochloroethane (>14/34%). There is also a trend for the heat capacity of529

halides to be underestimated (on average by >23%). It is known that halogens often exhibit530

anisotropic charge distributions with a positive electrostatic potential on the outermost part531

of the halogen, which cannot be accurately described using fixed-charge models.79,80 Based532

on this understanding, various models have been developed for halides that include a virtual533

site with positive charge,15,81–85 multipole electrostatics,86,87 polarizability,87–89 and angular-534

dependent LJ terms.90
535

A distinct outlier for TAFFI-gen is diethyl carbonate, which exhibits a large density536

underestimation in comparison with experiment (MSPD = −18%; this is the outlier visible537

in Fig. 3a at ρexp ∼ 0.9). This is the only carbonate in the benchmark, and carbonates538

are unique in that they are the only benchmarked functional group that extends beyond539

the d = 2 graph specificity explored here for TAFFI-gen. In particular, the d = 2 model540

compound for the backbone oxygens (atomtype [8[6[6][1][1]][6[8][8]]]) is ethoxyformic acid,541

which fails to preserve the carbonate structure. The other benchmarked properties of diethyl542

carbonate are also relatively poorly reproduced (∆Hvap:-21%, ε:-19%, αP:86%, κT:200%, cv:-543

10%), which we attribute to the poor congruence between the model compounds and the544

target carbonate. This is further confirmed by an experiment where we reparameterized the545

diethyl carbonate LJ force-field terms for the ether oxygens and the carbonate carbon with546

ethyl methyl carbonate, which preserves the carbonate. In this case, the errors in comparison547

with experiment are much smaller (ρ:-1%, ∆Hvap:4%, ε:-2%, αP:34%, κT:25%, cv:-4%). This548

is a revealing example of how a fixed graph specificity (i.e., d = 2 in the current study) can549

lead to non-systematic errors when applied to large functional groups.550

Methanoic acid is also a distinct outlier for all of the force-fields. This system exhibits551

long correlation times for the system dipoles, which have been previously established to552

originate from strong dimer interactions.65,91 For TAFFI-gen, the dipole correlation decay553

could not be converged even with longer 50 ns trajectories (not shown). Additionally, the554

24



Seo, Lin, Zhao, Webb, and Savoie - 25

overestimation of the heat of vaporization for the ketone, aldehyde, and carboxylic acid555

group is disproportionately affected by methanoic acid (>110% deviation), where the other556

outliers are relatively minor [1-methoxy-2-(2-methoxyethoxy)ethane (>30%), and pentane-557

2,4-dione (>35%)]. Excluding methanoic acid from the group for heat of vaporization results558

in the MAPD values similar to other oxygen-containing functional groups (GAFF:20.24%,559

OPLS-AA:13.94% and TAFFI:27.58%). This is an illustrative case of how fixing the force-560

field complexity does not lead to systematic errors across distinct chemistries. To achieve561

a target accuracy for a given set of properties, it is possible to simplify the force-field in562

some cases, while it is necessary to add complexity in others. The development of more563

sophisticated models for hydrogen-bonding in methanoic acid indirectly substantiates this564

point.91–95
565

As noted by Caleman et al., there are also cases where the simulation conditions may566

exacerbate prediction errors in comparison with experiment. For example, the benchmarks567

for some alcohols and amines, including propane-1,2,3-triol and (2-hydroxyethoxy)ethan-2-568

ol, and ethane-1,2-diamine, are performed near their melting point. This results in highly569

viscous liquids at the simulation temperatures (Table S1) and likely exacerbates errors in the570

fluctuation-derived properties that are not representative of simulations further away from571

the phase transition.572

4 Conclusions573

It would be useful to have a force-field framework that could bridge simple fixed-charge574

force-fields on the one hand and complex machine learning force-fields on the other. The575

present work takes the first step in this direction by establishing a parameterization frame-576

work (TAFFI) based on an extensible quantum chemistry dataset that can be used to fit577

transferable force-fields of varying complexity. With the TAFFI framework we have formal-578

ized the concept of atom typing and made it the basis for generating systematic training579
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data that maintains a one-to-one correspondence with force-field terms. This feature makes580

TAFFI arbitrarily extensible to new chemistries while maintaining internal consistency and581

transferability. As a demonstration of TAFFI, we have developed a fixed-charge force-field,582

TAFFI-gen, from scratch that includes coverage for many common organic moieties. The583

performance of TAFFI-gen was benchmarked against OPLS-AA and GAFF for reproducing584

several experimental properties of 87 organic liquids. The comparable accuracy between585

TAFFI-gen and existing force-fields in this benchmark is quite encouraging in light of the586

decades of optimization the existing force-fields have undergone and their use of experimental587

data. Nevertheless, a major conclusion from this case-study is that the similar qualitative be-588

haviors of these force-fields reflects the representability limitations of their simple functional589

form in approximating the atomistic PES. In particular, similar trade-offs and inaccuracies590

are observed in all of the force-fields which motivates a more sophisticated treatment of591

intermolecular interactions.592

We have been careful to document the shortcomings of TAFFI-gen, since our long-term593

goal is not to simply make the best fixed-charge force-field, but to develop a data-driven594

means of matching force-field complexity to simulation targets. For instance, amide and595

halogen containing molecules exhibited among the largest deviations in TAFFI-gen for var-596

ious liquid properties. Although it would be possible to introduce ad hoc corrections to the597

LJ parameters and partial charges associated with these functional groups, it would come at598

the expense of increasing errors in reproducing the interaction energies in the training data,599

and thus would likely lead to uncontrolled errors in other liquid properties. Such ad hoc600

corrections are what we want to avoid with TAFFI. From our perspective, a better pathway601

forward is to systematically increase the complexity of specific force-field terms based on602

well-defined error metrics. For example, selectively adding lone-pair sites or Drude particles603

to specific functional groups could foreseeably be done in a data-driven manner to improve604

the accuracy of a specific property without introducing ad hoc corrections. Likewise, we ob-605

served that carbonates require larger model compounds than other functional groups, which606
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motivates potentially treating distinct functional groups at variable levels of graph speci-607

ficity (i.e., in contrast to the fixed d = 2 specificity used here for all benchmarks). Within608

the context of the TAFFI framework, such comparative retraining against shared training609

data is possible while retaining transferability and on-the-fly extensibility. Additionally, the610

systematic expansion of training data based on the occurrence of new atom types is also a611

promising basis for training transferable ML force-fields for organic chemistry.612

The current study is limited to liquid simulations of neutral non-cyclic organic species,613

but several extensions to other classes of molecules and force-field forms are obvious and614

underway. Because TAFFI is based solely on quantum chemistry data, it can be extended615

to ionic and radical species that have limited coverage in existing experimentally based616

force-fields. The extension to ions and radicals will require a more general treatment of617

formal charges in the atom types and model compounds than has been presented here. We618

have also noted that cyclic molecules and large conjugated groups fundamentally challenge619

the locality assumption implicit in the use of atom types. A workable near-term solution620

is to parameterize such systems whole and later use the data generated in this way to621

establish general ring and conjugation corrections. With respect to extending TAFFI to622

support the parameterization of more complex force-fields, it will be necessary to augment623

the calculations currently performed on model compounds to include properties like atomic624

polarizability, heat of formation, and bond-dissociation energies that would justify more625

complex parameterizations. The small model compounds used by TAFFI for generating626

reference data is an advantage in this respect, as higher levels of theory and more extensive627

characterizations can be afforded while pursuing broad coverage of organic chemical space.628
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Figure 1: Structure to simulation overview of the TAFFI methodology using diethyl carbon-
ate as an example. (a) Topological criteria are used to determine the necessary parameters
for the simulation and identify the missing parameters in the database. (b) An unsorted
graph of the molecular dependencies for simulating diethyl carbonate. For simplicity only
the dependencies associated with atom types (i.e., not bonds, angles, etc.) are shown, arrows
point toward dependencies, and unique atom types at a bond depth of two are distinctly
colored. (c) TAFFI model compound rules produce directed acyclic dependency graphs that
can always be linearized to sequentially organize calculations. (d) Hierarchical organization
ensures that all dependencies exist prior to attempting the parameterization. (e) Intramolec-
ular modes are parameterized using constrained mode scans from quantum chemistry. (f)
Intermolecular interactions are parameterized using quantum chemical calculations on molec-
ular configurations sampled from molecular dynamics. The TAFFI database is updated each
cycle and all quantum chemistry data is retained for future refitting and force-field extension.
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Figure 2: (a) Comparison of the TAFFI-gen and ωB97X-D3/def2-PVTZ (DFT) normal
mode frequencies for the benchmark compounds. (b) The distributions of signed deviations
(xTAFFI− xDFT) for selected structural features over all benchmarked compounds are shown
in each violin plot. The distribution of atom deviations corresponds to the MAD in the
atomic positions after alignment of the TAFFI-gen and DFT optimized structures. The
other distributions correspond to the signed differences in the bond lengths, bending angles,
dihedral angles, and improper angles in the optimized TAFFI-gen geometries and in the
optimized DFT geometries. The mean and standard deviation of the mean absolute differ-
ences (MAD, blue) and mean signed differences (MSD, green) for each quantity calculated
across all benchmark compounds are shown in the bar plots. Impropers are only included
for 3-coordinate atoms.

Table 1: Summary of TAFFI-gen performance in reproducing the DFT normal mode
frequencies and structural features of the 87 molecules in the benchmark set.

Structure MAD MSD N Molecules

Normal Modes (cm−1) 52.1 -14.7 2908 87

Atoms (Å) 0.103 -a 1151 87

Bonds (Å) 0.00181 0.000665 1064 87

Angles (degrees) 0.743 0.0714 1842 87

Dihedrals (degrees) 6.56 -0.520 1919 80

Impropers (degrees) 5.99 1.32 58 40

aTrivially zero due to structural alignment.
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Figure 3: Comparisons of the experimental values for (a) densities, (b) enthalpies of va-
porization, (c) static dielectric constants, (d) volumetric thermal expansion coefficients (e)
isothermal compressibilities, and (f) quantum-corrected heat capacities at constant volume
with those predicted by GAFF (red), OPLS-AA (blue), and TAFFI-gen (green).
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Figure 4: Mean absolute percent difference (MAPD) of the liquid properties for each func-
tional group. The benchmark molecules are classified by the functional groups exhibited by
each molecule. Each bar represents the average of the MAPD for all molecules belonging to
each group. The numbers of molecules in each case are indicated above the bars and proper-
ties with less than three values have been omitted. GAFF (red) and OPLS-AA (blue) data
are from reference65 whereas TAFFI-gen (green) data are from MD simulations performed
in the current study.
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Table 2: Comparison of the errors in the liquid properties for the GAFF, OPLS-AA, and
TAFFI-gen force-fields. The mean absolute difference (MAD), mean signed difference
(MSD), mean absolute percent difference (MAPD), the mean signed percent difference
(MSPD), the root mean square deviation (RMSD) from experimental values, and the
correlation coefficient R2 are reported.

Force-field MADa MSDa MAPDb MSPDb RMSDa R2 b N

ρ (g/cm3)

GAFF 0.0590 -0.0060 5.0970 0.8421 1.00 94.17 145

OPLS-AA 0.0311 0.0114 2.9424 1.2046 0.48 98.24 145

TAFFI-gen 0.0484 0.0231 5.0971 3.2570 0.58 97.94 145

∆Hvap (kJ/mol)

GAFF 7.7691 6.4625 19.7032 16.0226 11.10 78.69 143

OPLS-AA 4.3424 2.9003 11.2727 7.7738 6.18 87.17 143

TAFFI-gen 7.3489 5.9987 19.5204 16.9972 8.89 78.62 143

ε

GAFF 6.1100 -4.9042 30.1701 -13.9654 19.90 29.84 97

OPLS-AA 6.9686 -4.7846 40.7308 -9.5976 18.67 25.60 103

TAFFI-gen 7.2708 -5.2487 37.8468 -25.1088 19.03 30.39 113

αP (10-3/K)

GAFF 0.2411 0.1124 21.9688 9.5985 0.34 50.00 140

OPLS-AA 0.2528 0.1906 22.2424 16.9217 0.33 54.80 140

TAFFI-gen 0.1821 0.1308 16.5202 12.5512 0.27 58.43 140

κT (1/GPa)

GAFF 0.2475 -0.0577 27.6643 -6.8676 0.31 43.49 73

OPLS-AA 0.1875 0.0273 20.3002 2.8656 0.29 52.02 73

TAFFI-gen 0.2584 -0.0811 27.5593 -5.7311 0.38 22.18 73

cV (J/mol K)

GAFF 17.7962 -15.4722 11.5785 -10.5375 21.01 93.89 50

OPLS-AA 16.5314 -12.0042 11.0421 -8.9901 20.48 93.51 50

TAFFI-gen 18.4626 -15.7177 12.3048 -11.1073 21.68 94.21 50

aIn indicated units
bIn units of %
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