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Abstract

Kinetic parameters for surface reactions can be predicted using a combination of

DFT calculations, scaling relations, and machine learning algorithms; however, con-

struction of microkinetic models still requires a knowledge of all the possible, or at least

reasonable, reaction pathways. The recently developed Reaction Mechanism Generator

(RMG) for heterogeneous catalysis, now included in RMG version 3.0, is built upon

well-established, open-source software that can provide detailed reaction mechanisms

from user-supplied initial conditions without making a priori assumptions. RMG is

now able to estimate adsorbate thermochemistry and construct detailed microkinetic
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models on a range of hypothetical metal surfaces using linear scaling relationships.

These relationships are a simple, computationally efficient way to estimate adsorption

energies by scaling the energy of a calculated surface species on one metal to any other

metal. By conducting simulations with sensitivity analyses, users can not only deter-

mine the rate limiting step on each surface by plotting a “volcano surface” for the

degree of rate control of each reaction as a function of elemental binding energies, but

also screen novel catalysts for desirable properties. We investigated the catalytic partial

oxidation of methane to demonstrate the utility of this new tool and determined that

an inlet gas C/O ratio of 0.8 on a catalyst with carbon and oxygen binding energies of

-6.75 eV and -5.0 eV, respectively, yields the highest amount of synthesis gas. Sensitiv-

ity analyses show that while the dissociative adsorption of O2 has the highest degree of

rate control, the interactions between individual reactions and reactor conditions are

complex, which result in a dynamic rate-limiting step across differing metals.
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Introduction

The modern world is dependent on heterogeneous catalysis, which is essential to important

industrial processes in synthesizing high-demand chemicals and materials. There are many

catalytic systems of interest which need to be described in great detail, such as upgrading

heavy crude oils1 and converting small molecules like carbon monoxide (CO), carbon dioxide

(CO2), and methane (CH4) into larger and more valuable compounds such as ethylene or

hydrocarbon fuels.2 Acquiring intimate knowledge of both adsorbed and gas-phase species for

one industrially relevant process on a single catalyst is both time consuming and challenging,
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motivating the need for a quick and accurate high-throughput prediction and screening

method for novel catalysts and reaction conditions.

To develop a molecular level understanding, microkinetic models are constructed con-

sidering all possible elementary reactions and intermediate species in the system without

a priori assumptions of a rate-limiting step or dominant pathway. As these microkinetic

models are quite large, complex, and difficult to create by hand, automated model gen-

eration is the focus of many researchers; GRACE3 and KING4 are the oldest and use a

matrix-based representation of species. Some software packages were designed for specific

chemistries, such as EXGAS5 and COMGEN6 for combustion, PRIM-O7 and REACTION8

for heavy molecules, and RING9 initially for biomass conversion. Others, like RMG,10,11

Genesys,12 and KinBot13 are applicable to a variety of different reactions. KinBot uses on-

the-fly Density Functional Theory (DFT) calculations to discover novel reaction pathways

and determine accurate thermo-kinetic parameters, but doing so is much slower than apply-

ing rules and estimates. Many of these mechanism generation tools are reviewed in ref. 14;

very few of them can model heterogeneous catalysis and surface reactions.

Reaction Mechanism Generator (RMG)10,11 is an open-source software that has been

widely used to generate detailed kinetic models for combustion.15–19 It has recently been

extended to heterogeneous catalysis.20 The current work adds linear scaling relationships to

the software.

RMG uses a graph-based approach to represent gas-phase and surface species, with atoms

as nodes and bonds as edges. Thermodynamic properties are either obtained from a built-in

database or are estimated using group additivity, machine learning, or statistical thermody-

namics. Chemical reactions are sorted into predefined families containing reaction templates

and recipes to convert chemical graphs from reactants to products. Reaction rates are

obtained from a kinetics database or estimated using the Bell-Evans-Polanyi (BEP) prin-

ciple,21–26 Equation (1). This states that the difference in activation energy between two

similar reactions of the same family is proportional to the difference in the enthalpies of
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reaction,

Ea = E0
a + α∆H 0 ≤ α ≤ 1 (1)

where E0
a is determined from the activation energy of a reference reaction, α describes

whether the transition state more closely resembles the reactants (closer to 0) or the prod-

ucts (closer to 1), and ∆H is the enthalpy of reaction. The parameters E0
a and α, and

pre-exponential factors A, are estimated using hierarchical decision trees for each reaction

family, stored in the RMG database.

The reaction network is expanded using an iterative, flux-based approach in a core-edge

model, where critical species and reactions are initially stored in the core and all possible

new species that can be formed are stored in the edge. In its simplest form, species are

moved from the edge into the core when the rate of formation, Ri, for species i exceeds a

user-defined fraction, ε, of the characteristic flux of the core, Rchar, seen in Equation (2).

Rchar =

√∑
j∈core

R2
j (2)

The process repeats until the simulations reach a user defined termination point, such as

a species’ conversion, with no new species being moved into the core:

Ri < ε ·Rchar ∀i ∈ edge (3)

To build detailed models of heterogeneously catalyzed processes, surface energetics are

needed to determine both thermodynamic and kinetic properties. The adsorption energy, the

key property that describes the strength of the interaction between molecules and a surface,

can be calculated with reasonable accuracy using density functional theory (DFT).27 Even

though a full understanding of some systems, such as ammonia synthesis, CO oxidation,

and propane dehydrogenation, has been obtained through DFT calculations on a single

metal,28–30 investigating such systems on a range of metal and alloy catalysts is still much too
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computationally expensive. For these systems, a simple, high-throughput way of estimating

binding energies is needed to screen catalysts for desirable properties.

Fortunately, linear scaling relationships provide a simple and computationally efficient

way to estimate adsorption energies. Descriptor-based analysis using tools such as CatMAP31

allows parameters in microkinetic models to be related to one or two descriptors of a surface,

such as atomic binding energies. Abild-Pedersen et al. 32 have shown the adsorption ener-

gies of hydrogen-containing molecules of carbon, oxygen, sulfur, and nitrogen on transition

metal surfaces scale linearly with the adsorption energy of the surface-bonded atom. The

adsorption energy of a species AHx with central atom A (e.g. C, O, S, or N) is shown as:

∆EAHx
ads = γ(x)∆EA

ads + ξ (4)

where

γ(x) = (xmax − x)/xmax (5)

is the slope of the linear relationship between AHx and A, and xmax is the maximum number

of hydrogen atoms that can bond to the central adatom, A (e.g. xmax = 4 for C and xmax = 2

for O), and ξ is the intercept, fit to adsorption energy data. Equation (4) can be presented

in the following way to determine the adsorption energy on metal M2 from a reference metal

M1:

∆EAHx
M2 = ∆EAHx

M1 + γ(x)(∆EA
M2 −∆EA

M1), (6)

where the adsorption energy, ∆EAHx
M1 , of a species, AHx, on a reference metal, M1, is used

to estimate the adsorption energy, ∆EAHx
M2 , of the same species on another metal, M2, from

the adsorption energies, ∆EA, of atom A on each metal. These relations hold true for

not only fully hydrogenated atoms, but also for larger hydrocarbons, alcohols, aldehydes,

carboxylic acids, amines, and others on nitride, sulfide, oxide, transition metal, and select
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alloy surfaces.27,33–47

Typically, models assume the metric of choice (e.g. TOF) is governed by a single reaction

for all binding energies and that the structure of the mechanism is static. The implementation

of linear scaling in RMG allows for this presumption to be challenged, as each kinetic model is

generated independently for each metal surface. This tool will be paramount in the expedient,

high-throughput screening of catalysts for any surface-catalyzed chemical system.

In this article, the catalytic partial oxidation of CH4 is investigated using these new fea-

tures in RMG. Catalytic partial oxidation (CPOX) is the catalyzed reaction of hydrocarbons

with O2 to produce a hydrogen-rich synthesis gas consisting of H2 and CO. This reaction is

important in industry because H2 is used for fossil fuel processing and ammonia production,

and CO is used for the bulk manufacturing of aldehydes.48 Catalytic partial oxidation to

produce syngas is also useful in fuel cell applications.49 Because of its abundance in natural

gas, CH4 is a popular feed-stock.

Linear scaling relationships are used to generate a reaction mechanism on Rh(111), scaling

from recently calculated thermodynamic properties for adsorbates on Pt(111).50 Cantera,51

an open-source tool for simulating chemical kinetics, thermodynamics, and transport pro-

cesses, is used to evaluate the mechanism by simulating previously published experimental

conditions from Horn et al. in reference 52. This process is repeated for 81 surfaces with

different binding energies, and a brute-force sensitivity analysis is carried out to map the

degree of rate control of each reaction on each metal.

Methods

Thermodynamic parameter estimates

The RMG adsorbate database currently consists of thermodynamic properties of 69 H/C/O/N-

containing species computed using DFT for adsorbates on Pt(111).50 See reference 50 for

details of these calculations. The adsorption thermochemistry of these species (relative to
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their gas-phase counterparts) are sorted into decision trees (see Supporting Information)

enabling RMG to estimate adsorption thermochemistry for any species.50 The DFT calcula-

tions were performed using the BEEF-vdW functional53 in the Vienna Ab initio Simulation

Package (VASP).54,55 Each adsorbate considered multiple binding sites and the lowest en-

ergy structure was selected. The electronic structure properties were converted into partition

functions using standard statistical methods56 where the potential energy surface of the ad-

sorbates was separated into 1D harmonic oscillator potentials for each of the vibrational

modes or adsorbate degrees of freedom (except for weakly bound adsorbates, for which the

two lowest vibrational modes were replaced with a 2D gas model), and macroscopic ther-

modynamic properties, e.g. the enthalpy of formation, entropy, and temperature dependent

heat capacity, were derived. These are provided in a NASA polynomial form and added into

the RMG database.

During mechanism generation, proposed adsorbates will descend down the decision tree

to search for a match in the database. If no exact match is found, the closest structure

is used in conjunction with the properties of the adsorbate’s gas-phase counterpart. More

specifically, a precompiled adsorption correction of the closest structure (or a branch average

depending on the new adsorbate’s location in the tree) is used to estimate the thermodynamic

properties of the new adsorbate by adding the properties to the gas-phase thermochemistry.

The gas-phase counterpart properties are acquired either from an exact match in the gas-

phase database or estimated via Benson group additivity by RMG.10,57

Figure 1 shows a process flow diagram of the entire process. Adsorption energies for

species on different metals are estimated with linear scaling relationships, Equation (6),

using the thermodynamic estimates on Pt(111) as the reference point. Extrapolation from

the Pt(111) point is based on a species’ bond order to the surface, as mentioned in the

introduction and as seen in Equation (5). The changes in binding energies are then used to

calculate the surface species’ thermodynamic properties, seen below in Equations (7, 8, 9).
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Figure 1: RMG process flowchart for estimating thermodynamic properties.58

∆fH(298) = ∆fHgas + ∆adsH + ∆∆Ebinding (7)

S(298) = Sgas + ∆adsS (8)

Cp(T ) = Cpgas + ∆adsCp (9)

RMG is currently unable to track multiple distinct adsorption sites; each adsorbate is

assumed to always occupy its preferred site, and the scaling correction ∆∆Ebinding is assumed

to scale from the preferred site on the reference metal, Pt(111), to the preferred site on

another metal.

Microkinetic model generation and simulations

The kinetic model from Quiceno et al. 59 was included as a library of reactions for RMG

to draw from as needed. RMG models were created to be valid at temperatures ranging

from 400 K to 2000 K, a pressure of 1 bar, inlet gas stoichiometries with atomic C/O ratios

(the ratio of carbon to oxygen atoms in the feed) from 0.6 to 2.6, a surface site density

of 2.72 × 10−9 mol/cm2,60 a catalyst area per volume of 1.6 × 104 m−1,60 with RMG’s
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simulation solver tolerances of atol = 10−18, rtol = 10−12, and ε = 10−1. 81 models were

created independently for surfaces with 9 carbon adsorption energies ranging from −2.0 eV

to −7.5 eV and 9 oxygen adsorption energies ranging from −1.5 eV to −6.5 eV. Model

generation was halted after the characteristic flux of the system was less than 1% of the

maximum characteristic flux reached throughout the model generation, indicating the system

had finished reacting.

After building the mechanisms in RMG, models were simulated using Cantera, replicating

experiments published by Horn et al. in reference 52, employing a series of 7,000 continuous

stirred tank reactors (CSTRs) to act as a plug flow reactor (PFR) (inner diameter = 16.5

mm, length = 70 mm) with porosity = 0.8160 and the same surface site density and catalyst

area per volume used for RMG model generation at atmospheric pressure. The inlet gas

flow was held at a constant rate of 4.7 slpm (0.208 mol/min) for 15 different C/O feed gas

atomic ratios from C/O = 0.6 to 2.6, where:

C/O =
FCH4

2(FO2
)

(10)

FCH4
is the molar flow rate of CH4 and FO2

is the molar flow rate of O2. The Ar/O2

ratio was held constant at 79/21. The inlet gas temperature was set to 700 K, the same

temperature at the start of the catalyst as seen in experiments published by Horn et al..

The catalyst portion of the PFR was located 10 mm from the inlet and spanned 10 mm,

seen in Figure 2.

Catalyst

10 mm 10 mm 50 mm

Ar
CH4
O2

Figure 2: Diagram of the PFR simulated in Cantera and seen in Horn et al..52

All surface reactions were ‘turned off’ for the first 10 mm of the PFR by setting the

multipliers to zero, as there are no surface reactions if there is no catalyst. Surface reactions
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were turned on by setting multipliers back to 1.0 for 10 mm to 20 mm and back to zero for

the remainder of the reactor. Gas-phase reactions remained ‘on’ for the entirety of the PFR.

From each simulation, the: moles of CH4 converted, Equation (11), moles of O2 converted,

CO and H2 (synthesis gas) yield and selectivity, CO2 and H2O (full oxidation) yield and

selectivity, and temperature at the end of the PFR were obtained. The sum of the selectivities

of H2 Equation (12), and CO Equation (13) was used to describe synthesis gas selectivity

Equation (14), seen below:

CCH4
= FCH4,in

− FCH4,out
(11)

SH2
=
FH2,out

− FH2,in

2(CCH4
)

=
FH2,out

2(CCH4
)

(12)

SCO =
FCO,out − FCO,in

CCH4

=
FCO,out

CCH4

(13)

Ssyngas = SH2
+ SCO ≤ 2.0 (14)

Ysyngas = Ssyngas

(
CCH4

FCH4,in

)
(15)

where Fj is the molar flow rate of a species, j, at the beginning or the end of the PFR.

Synthesis gas yield, Equation (15), was calculated by multiplying the synthesis gas selectivity,

Ssyngas, by CH4 conversion. Full oxidation selectivities and yields were calculated in the

same way, replacing H2 with H2O and CO with CO2. Distance to 50% CH4 conversion was

simulated in a PFR that was a maximum of 510 mm length.
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Reaction sensitivity analysis

In order to determine which reaction would affect the rate of CH4 oxidation the most, and

therefore be the rate limiting step of the overall reaction, “brute force” sensitivity analyses

were performed on each metal surface, increasing the rate of each surface reaction by 1%,

one at a time. Sensitivity was measured by comparing the perturbed result of interest to the

original result of interest (e.g. conversions, yields, and selectivities, maximum rate of CH4

conversion, and distance to 50% CH4 conversion), seen in Equation (16):

σj =

(
Xperturbed −Xoriginal

Xoriginal

)(
kj,original

kj,perturbed − kj,original

)
(16)

where X is the result of interest (e.g. CO yield), σj is the sensitivity with respect to the

reaction that was perturbed, and j is a surface reaction index. The perturbation of the rate

constant, kj, in this case is 0.01 or 1%.

A positive σ indicates increasing the rate of reaction increases the result of interest and

a negative sensitivity indicates increasing the rate decreases the result. If CH4 conversion

through the reactor was less than 1×10−8 mol m−1, all CH4 and O2 conversions, yields, and

selectivities through the PFR were rounded down to 1 × 10−15 mol m−1 (approximately 0,

to avoid zero division errors), as the overall reaction was negligible. If a reaction was not

found in a microkinetic model (because RMG decided it was not important enough to be

included) its sensitivity was set to 0.

Due to convergence issues leading to inaccurate sensitivity results, each Cantera simula-

tion was repeated with relative error tolerances, rtol = 10−10, 10−11, and 10−12, and absolute

error tolerances, atol = 10−16 . . . 10−24, for a total of 27 simulations. Simulations which failed,

or which gave sensitivity values that were outliers (more than two times the interquartile

range from the quartiles) were excluded, and the remaining values were averaged.
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Results and discussion

Model validation

Figure 3 shows the RMG generated model on Rh(111) using binding energies of C =−6.568 eV

and O = −4.601 eV, which consists of 38 gas reactions and 40 surface reactions, found in

Table 1. All metal binding energies were taken from Abild-Pedersen et al..32 Although CO

can adsorb in many configurations,61–63 RMG does not yet have coverage dependence or site

specificity and must represent each species using a chemical graph to represent the Lewis

structure. Because Pt(111) is used as the reference surface, where CO adsorbs to the top

site via the carbon atom, we represent CO with a double bond from the metal to carbon50

and, because of the high simulation temperatures, the van der Waals adsorption was manu-

ally removed from the mechanism. The complete mechanism is provided in the Supporting

Information and reference 58. Figure 4 shows the comparison of simulation results with

experimental on rhodium.

The first step of the mechanism is the dissociative adsorption of O2 onto the surface. Like

other works,59,64 we do not include molecular adsorption of O2 prior to dissociation. At such

high temperatures, only atomic oxygen will exist on the surface.65,66 This occurs extremely

quickly and fills most surface vacancies, leading to high oxygen surface coverages at the start

of the catalyst, seen in the Supporting Information. CH4 adsorbs much slower in comparison,

mostly through dissociative adsorption, and immediately undergoes hydrogen dissociation

until fully dehydrogenated. From there, C(s) can combine with oxygen and either desorb

partially oxidized, or combine with additional oxygen and desorb fully oxidized. The influx

of hydrogens on the surface from CH4 adsorption can either associatively desorb as H2,

a partial oxidation product, or combine with surface-bound oxygens to create H2O, a full

oxidation product.

Full and partial oxidation zones at C/O = 1.0 are easily identifiable between 11 mm to

11.5 mm along the PFR, seen in the Supporting Information. Full oxidation occurs first,
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Table 1: Surface reaction mechanism of CH4 oxidation on Rh(111).

Reaction Pre-exponential fac-
tor

Temperature
exponent, n

Activation energy
(kcal mol−1)

Quiceno et al. reactions
R1 2Rh(s) + O2(s) � 2O(s) e1.89×1021 -0.5 0.0
R2 2Rh(s) + H2 � 2H(s) a4.60×10−2 0.0 0.0
R3 H(s) + O(s) � Rh(s) + OH(s) c1.28×1021 0.0 2.677
R4 2Rh(s) + CH4 � H(s) + CH3(s) a9.00×10−4 0.0 17.208
R5 Rh(s) + CH4 + O(s) � CH3(s) + OH(s) e5.00×1018 0.7 10.038
R6 H(s) + CH2(s) � Rh(s) + CH3(s) c3.09×1022 0.0 0.0
R7 H(s) + CH(s) � Rh(s) + CH2(s) c3.09×1022 0.0 0.0
R8 Rh(s) + CH(s) � H(s) + C(s) c3.09×1022 0.0 0.0
R9 H2 + C(s) � CH2(s) a4.00×10−2 0.0 7.098
R10 Rh(s) + CO � CO(s) a8.40×10−1 0.0 0.0
R11 O(s) + C(s) � Rh(s) + CO(s) c3.70×1019 0.0 0.0
R12 Rh(s) + CH4 + OH(s) � CH3(s) + H2O(s) a1.00 0.0 2.39
R13 Rh(s) + H2O � H2O(s) a7.50×10−1 0.0 0.0
R14 O(s) + H2O(s) � 2OH(s) c1.00×1020 0.0 10.301
R15 H(s) + OH(s) � Rh(s) + H2O(s) c2.04×1021 0.0 15.827
R16 Rh(s) + CO2 � CO2(s) a5.00×10−3 0.0 0.0
R17 O(s) + CO(s) � Rh(s) + CO2(s) c3.70×1021 0.0 28.107
R18 H(s) + CO2(s) � OH(s) + CO(s) c1.00×1019 0.0 2.008
Van der Waals Adsorption reactions
R19 Rh(s) + CH4 � CH4(s) d1.00×10−1 0.0 0.0
R20 Rh(s) + H2 � H2(s) d1.00×10−1 0.0 0.0
Adsorption reactions
R21 Rh(s) + H � H(s) d1.00×10−1 0.0 0.0
R22 Rh(s) + OH � OH(s) d1.00×10−1 0.0 0.0
R23 Rh(s) + CH3 � CH3(s) d1.00×10−1 0.0 0.0
R24 Rh(s) + HCO � CHO(s) d1.00×10−1 0.0 0.0
Dissociative adsorption reactions
R25 2Rh(s) + H2O � H(s) + OH(s) e2.00×10−2 0.0 14.901
R26 2Rh(s) + C2H6 � 2CH3(s) e1.00×10−2 0.0 10.0
R27 2Rh(s) + CH3OH � CH3(s) + OH(s) e1.00×10−2 0.0 10.0
R28 2Rh(s) + CH2O � H(s) + CHO(s) e2.00×10−2 0.0 10.0
R29 2Rh(s) + CH3CHO � CH3(s) + CHO(s) e1.00×10−2 0.0 10.0
R30 2Rh(s) + CH3CH � CH(s) + CH3(s) e1.00×10−2 0.0 10.0
Abstraction reactions
R31 OH(s) + CH2(s) � O(s) + CH3(s) c1.39×1021 0.101 4.541
R32 OH(s) + CH(s) � O(s) + CH2(s) c4.40×1022 0.101 10.19
R33 2CH2(s) � CH3(s) + CH(s) c1.00×1022 0.0 9.56
R34 OH(s) + C(s) � O(s) + CH(s) c2.43×1021 -0.312 28.418
R35 CH3(s) + C(s) � CH2(s) + CH(s) c1.50×1022 0.0 9.56
R36 C(s) + CH2(s) � 2CH(s) c1.00×1022 0.0 9.56
R37 O(s) + CHO(s) � OH(s) + CO(s) c5.00×1021 0.0 9.56
R38 CH2(s) + CHO(s) � CH3(s) + CO(s) c5.00×1021 0.0 9.56
R39 CH(s) + CHO(s) � CO(s) + CH2(s) c5.00×1021 0.0 9.56
R40 C(s) + CHO(s) � CO(s) + CH(s) c5.00×1021 0.0 9.56
Dissociation reactions
R41 Rh(s) + CHO(s) � H(s) + CO(s) c3.71×1021 0.0 0.0
a Sticking coefficient (dimensionless); bpre-exponential factor for unimolecular reactions (s−1); c pre-exponential factor for
bimolecular surface reactions (cm2 mol−1 s−1); d pre-exponential factor for bimolecular surface and gas reactions (cm3

mol−1 s−1); epre-exponential factor for trimolecular reactions (cm5 mol−2 s−1)

when oxygen is at its highest surface coverage, and as oxygen desorbs, partial oxidation

becomes the dominant pathway. Horn et al. identifies the oxidation zone spanning from

the catalyst entrance (at 10 mm) to 11 mm, and a steam reforming zone from 11 mm to

19.5 mm. This work finds not only that the oxidation zone occurs in half the distance as
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Figure 4: Species and temperature pro-
files on Rh(111) for inlet gas stoichiometry
C/O = 1.0 with Ar as a filler gas at 1 bar
from experiments by Horn et al. (dashed
lines) and simulations from this work (solid
lines). Gases are in contact with the cata-
lyst between the dotted lines.58

experiments, but also a delay in the overall reaction at the start of the catalyst.

There is good agreement for species profiles between the Horn et al. C/O = 1.0 experi-

ments and model simulations, as shown in Figure 4, with H2 generation roughly 1.75 times

more than CO generation. The production of water peaks around the same position as ex-

periments, but there is less H2O conversion to additional synthesis gas products, as seen in

the steam reforming zone that is mentioned in ref. 52. The RMG model had difficulties with

predicting the amount of steam reformation, in this case underestimating the amount of H2

produced, but was able to accurately predict the maximum amount of H2O.

Most previously mentioned inconsistencies between simulations and experiments can be

attributed to the simulation’s temperature profile, the most glaring discrepancy, as this sys-

tem is strongly affected by temperature. Temperature discrepancies can be explained due to
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the simplicity of the simulated PFR compared to the experimental system because the PFR

model was unable to take into account diffusion or convection, causing the observed narrow

spike in temperature. There is not only heat conduction through the foam, but also heat

conduction through the quartz wall; while the reactor is well insulated, the quartz is thick

enough to heat up and redistribute some thermal energy. Horn et al. see the temperature

begin to rise much before the catalyst (before the reaction starts), which also proves that

there is heat transfer the current reactor model is unable to account for.

At such high temperatures, there will most certainly be mass transport limitations.67,68

Including mass transport limitations in the model will possibly lead to more gradual rates of

disappearance in the oxidation zone, more closely resembling experimental profiles. Another

probable cause of error is due to using adsorbate thermodynamics calculated at low coverages.

As high surface coverages were observed, species’ adsorption energies will decrease as coverage

increases, slowing the rates of adsorption. Additionally, many69–75 advocate for time-shifting,

where simulation profiles are shifted along the time axis to match experimental results. A

time shift would help account for the model’s lag in the onset of oxidation.
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Figure 5: Temperature and conversion (left), selectivities of H2, CO, H2O, and CO2 (right)
on Rh(111) at reactor exit at feed C/O = 0.6 - 2.6 and 4.7 slpm. Dotted lines represent
experimental data reproduced from Horn et al. and simulations from this work (solid lines).58

Across the 15 different inlet C/O ratios, shown in Figure 5, both O2 and CH4 exit

15



conversion have very good agreement with Horn et al.. CH4 exit conversion decreases as C/O

ratio increases because O2 is consumed before the CH4 finishes reacting, as there was always

100% O2 conversion. Both CO and CO2 exit selectivities had good agreement across all C/O

ratios, with the highest CO exit selectivity being at C/O = 1.0 and 1.1 in experiments and

at C/O = 0.9 in simulations, and lowest CO2 exit selectivities at C/O = 1.0 and 1.1 in Horn

et al. and C/O = 0.8 in this model. Steam reforming selectivity predictions continued to

deviate from experimental results, showing some qualitative agreement at low C/O ratios.

The model was unable to predict which ratio would have a maximum H2 exit selectivity

(C/O = 0.8 in experiments, C/O = 2.0 in simulations), but did show a slight drop in H2 exit

selectivity after the peak as C/O ratio increases. The trend of overestimating temperature

carried over across all C/O ratios, while correctly predicting the qualitative trend.

Regardless of small differences between simulations and experiments, the model auto-

matically generated by RMG using linear scaling corrections, scaled from Pt(111), shows

impressive predictive power. This model was generated in under twenty minutes on a single

CPU without requiring a single DFT calculation on Rh(111) and was able to effortlessly

include both surface and gas-phase chemistry.

Remarkably, this tool was able to generate a mechanism for Rh that shows reasonable

quantitative agreement to a complex experiment, which warrants its use to screen and com-

pare different metal surfaces.

Metal catalyst screening

There was little activity on metals with weaker carbon adsorption energies and stronger

O2 adsorption energies (see Supporting Information), so a smaller grid spanning carbon

adsorption energies from −5.5 eV to −7.5 eV and oxygen adsorption energies from −3.25 eV

to −5.25 eV was investigated. This smaller grid allows for a more refined mesh that still

encompasses metals of interest, such as Pt and Rh, while trimming away the nonreactive

metals.
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Figure 6: CH4 conversion (left), full oxidation yield (center), and synthesis gas yield (right)
for an inlet gas stoichiometry C/O = 0.6. Note color scales are different.58
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Figure 7: CH4 conversion (left), full oxidation yield (center), and synthesis gas yield (right)
for an inlet gas stoichiometry C/O = 1.0. Note color scales are different.58
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Figure 8: CH4 conversion (left), full oxidation yield (center), and synthesis gas yield (right)
for an inlet gas stoichiometry C/O = 2.6. Note color scales are different.58
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The volcano surfaces in Figures 6, 7, and 8 show the best metal for synthesis gas yield is

a metal with a carbon adsorption energy of ∆EC = − 6.75 eV and an oxygen adsorption

energy of ∆EO = − 5.0 eV, which is closest to ruthenium. However, the optimal metal is

located close to a steep volcano edge, where slight variations in carbon adsorption energies

will cause a rapid decrease in activity. Partial oxidation products are favored as oxygen

binds more strongly to the surface, as the adsorption energy of O(s) increases (becomes

more negative), making it more difficult for oxygen to leave the surface. There is a plateau,

or region with similar activity, at sightly weaker oxygen binding energies. CH4 conversion

follows a similar trend, but with a second high conversion peak occurring on a metal with

C adsorption energies in between Pd and Pt, around −6.5 eV, and around an O adsorption

energy of −3.5 eV at a C/O ratio = 0.8 to 1.3 (Figure 7). This second ‘peak’ in conversion

is due to the combination of both full and partial oxidation reactions and coincides with an

inflection point between metals favoring full oxidation and partial oxidation. Synthesis gas

yields decrease as full oxidation yield increases, showing full and partial oxidation pathways

are directly in competition with each other.

Comparing Figures 6, 7, and 8 shows that changes in feed stoichiometry do not signif-

icantly affect which metal is best (the ‘peak’ location of the volcano is about the same).

Generally, low C/O ratios have higher CH4 conversion and synthesis gas yields. At higher

C/O ratios the selectivity between partial and full oxidation depends more strongly on the

metal (Supporting Information Figures S6 and S7). The highest synthesis gas yield was

observed at C/O = 0.8 on a metal with ∆EC = −6.75 eV and ∆EO = −5.0 eV. This C/O

ratio coincides closely with the highest synthesis gas exit selectivities on Rh(111). Sensitivity

analyses will show why there are significant drops in yields and conversions that lead to a

volcano plot as well as why there is a preference switch between full and partial oxidation

as metal properties change.
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Reaction sensitivity analyses

Reaction sensitivities on Rh(111) at an inlet gas stoichiometry C/O = 1.0 for CH4 conversion

and synthesis gas yields are seen in the Supporting Information. The most sensitive reaction

was R5, the adsorption of CH4 with an oxygen double bonded to the surface, seen in Table 1.
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Figure 9: Sensitivity of CH4 conversion (left), of full oxidation yield (center), and of synthesis
gas yield (right) with respect to R1, the dissociative adsorption of O2, for an inlet gas
stoichiometry C/O = 2.4.58

Averaging over all inlet gas stoichiometries and metals, the most sensitive reaction was

the (reversible) dissociative adsorption of O2, R1 from Table 1. Figure 9 shows this reaction

is mostly sensitive on metals that see low or no CH4 conversion (i.e. on metals with strong

oxygen binding energies) suggesting it is one of the main reactions responsible for both

the shape and location of the volcano. Speeding up the rate of dissociative adsorption

(and associative desorption) slows the entire system (negative sensitivity) on metals with

weak carbon and strong oxygen binding energies (bottom right corner), as oxygen will fill

empty surface sites before any other species can adsorb, thus blocking the entire reaction

from occurring, seen in the Supporting Information. A positive sensitivity indicates O2

adsorption is the rate limiting step on metals with both strong carbon and oxygen binding

energies (bottom left corner). At such strong carbon binding energies, increasing the rate

helps adsorb more oxygen to the surface. The rate of dissociative O2 adsorption is not

sensitive on metals that have high CH4 conversion, and is extremely sensitive when CH4

conversion decreases (around the ‘cliffs’ of the volcano plot). CH4 conversion, full oxidation

yield, and partial oxidation yield were all over 30% more sensitive to reaction R1 than to
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the next most sensitive reaction.
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Figure 10: Sensitivity of CH4 conversion (left), of full oxidation yield (center), and of syn-
thesis gas yield (right) with respect to R6, CH2 gaining a H from the surface, for an inlet
gas stoichiometry C/O = 2.6.58
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Figure 11: Sensitivity of CH4 conversion (left), of full oxidation yield (center), and of syn-
thesis gas yield (right) with respect to R5, the adsorption of CH4 with a surface oxygen, for
an inlet gas stoichiometry C/O = 2.4.58

R6, hydrogen association to CH2 as seen in Figure 10, and R5, the dissociative adsorption

of CH4 with a surface oxygen seen in Figure 11, are the next most sensitive reactions and

show similar sensitivity. While R6 is slightly more sensitive than R5, both limit methane

conversion on metals with weaker carbon binding energies (to the right on the plots).

R5 is one of the first steps in the overall mechanism, and the primary way that CH4

adsorbs to the surface. Seen in the Supporting Information, R5 increases the selectivity of

synthesis gas products and decreases full oxidation products on almost every metal, including

metals that have both high and low CH4 conversions. Full oxidation yield at the ‘peak’ of

the volcano plot has a negative sensitivity, indicating this reaction is responsible for the

‘peak’ where partial oxidation occurs. R5 also plays a key role in the shape and location
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of the volcano, blocking methane conversion on metals with both strong carbon and oxygen

binding energies. The other ways for CH4 to adsorb to the surface, R4 and R12, were over

60% less important in determining CH4 conversion, full oxidation yield, and partial oxidation

yield than R5.

The slight “noise” in Figures 10 and 11 due to numerical imprecision does not change

the overall trends, nor the conclusion that there is not a single rate-limiting step. These

sensitivity analyses show the rate limiting step changes as both feed ratios and metal change,

therefore demonstrating the need for complete microkinetic models.

Caveats and future work

Even though this work moves in a positive direction in the development of low-cost, high-

throughput catalyst screening methods, there are some issues that remain with RMG. The

first is the model generation, as reaction networks are only expanded if a species or reaction

has a high flux relative to the core species. While a reaction or species may have a low initial

flux, it may be a precursor to a high flux reaction that should be included in the model. The

best way to avoid model truncation errors is to consider all species and reactions regardless

of flux, but this significantly increases computational cost and time as well as requires an

additional step for model reduction.

The second issue is that RMG does not take into account the effect nearby neighbors have

on adsorbate binding energies, which will become more significant in high coverage and high

pressure situations. Adding in these coverage dependence corrections will aid in expanding

the software’s usefulness to industrially relevant conditions, and is planned for future work.

Additionally, RMG does not currently take into account surface geometries or cata-

lyst scaffolds and assumes all surface sites are equivalent, consistent with a Langmuir-

Hinshelwood model. In reality, surfaces have multiple types of adsorption sites and each

species will have a preferred, lowest energy adsorption site. The introduction of specific

surface site types will allow for rate rules specified for the lowest energy site to be used.
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While linear scaling is undoubtedly valid for many adsorbates and metals, most models

that implement the use of linear scaling are for low adsorbate coverage conditions. These

relationships are based on the d-band model,32 which can predict well for pure metals, but

are only valid for a small subset of alloy materials. Xu et al. show that while linear scaling

fails for CHx on AgNi alloys, it is valid for AuNi alloys,77 meaning changes in adsorption

geometries, or adsorbing to specific sites, will affect if linear scaling will be effective. On

certain Pt alloys, OOH and OH scale with O2 but not with O,78 most likely due to repulsive

interactions of an adsorbate with a nearly full electron shell greatly affecting the adsorption

energy.79 In addition to the unreliability of scaling relations, Lee et al. show scaling relations

for CHx combined with BEP relations fails for RhNi alloys while BEP relations with DFT

is reliable, revealing problems when combining linear scaling with BEP relations.

With these caveats, the models generated automatically by RMG should be regarded not

as a final product, but as a useful starting point for further analysis. A good next step would

be performing high level theory DFT calculations on metals in the region identified in the

simulations giving highest synthesis gas yield.

Conclusions

Linear scaling relationships32 have been successfully implemented into RMG to generate

unique microkinetic models for any metal surface, scaling from estimates of adsorption on

Pt(111), which are based on DFT calculations.50 RMG models for the catalytic partial

oxidation of CH4 were generated for metal catalysts with carbon adsorption energies ranging

from −2.0 eV to −7.5 eV and oxygen adsorption energies from −1.5 eV to −6.5 eV, valid for

C/O inlet gas ratios between 0.6 and 2.6 and temperatures from 400 K to 2000 K. Cantera

was used to run PFR simulations at 15 C/O inlet ratios, replicated from Horn et al., with

brute force sensitivity analyses. CH4 conversion decreased as C/O inlet gas ratios increased,

showing the effect of running out of O2. Synthesis gas exit selectivities were greatest for C/O
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ratios of 0.8 to 1.0, indicating that choking the flow of oxygen does not necessarily ensure

partial oxidation selectivity, and there is a ‘sweet spot’ that fares the best. Despite reactor

limitations in Cantera, the model for Rh(111) has good agreement with experimental results,

and, more importantly, shows that RMG with linear scaling has predictive power.

PFR simulations were replicated on the same range of novel metals, and showed that

full and partial oxidation were in competition with each other at every C/O ratio. The best

metal for syngas yield remained roughly the same regardless of C/O ratio. We recommend

further study of this region using either higher quality DFT calculations or experiments.

There was a clear switch from full oxidation (preferred on metals with weaker O binding

energies) to partial oxidation (preferred on metals with stronger O binding energies) on

metals with an O adsorption energy between −3.5 eV and −3.75 eV and a more gradual

switch from full oxidation (preferred on metals with stronger C binding energies) to partial

oxidation (preferred on metals with weak C binding energies) on metals with a C adsorption

energy around −6.5 eV. Selectivities for both partial and full oxidation were closer in value

at lower C/O ratios and had a larger spread at higher C/O ratios. The ability to estimate

both conversion and selectivity as functions of catalyst binding energies, feed composition,

reaction conditions, and reactor geometry (eg. residence time), could make predictive tools

of this nature very helpful.

Sensitivity analyses showed which reactions are the most sensitive for CH4 conversion,

synthesis gas selectivity and yield, and full oxidation selectivity and yield. The adsorption

of O2 to the surface, R1, is the most sensitive reaction overall, and has both negative and

positive sensitivities as metal surface changes. Other reactions control certain regions of

the volcano plot, which help to shed light on what causes the volcano plot shape and what

controls the location of its peaks and cliffs. R5 is responsible for being negatively sensitive

to full oxidation selectivity on metals with high CH4 conversion (metals of interest).

The sensitivity maps demonstrate the need for microkinetic models formed without a

priori assumptions, because the rate limiting step is affected by catalyst properties. Building
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such models by hand is inefficient, so an open-source tool to do this automatically, for any

reaction of interest, is indispensable. RMG can be used to screen novel metal catalysts at

a fraction of the cost of experiments and can help elucidate and control complex chemical

phenomena that had previously been a mystery.
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