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Abstract

Uncovering the secrets of the biological
Faradaic reactions, essential to the understand-
ing of complex metalloenzymes, requires an in-
formation recovery process that is robust, rapid
and replicable. This paper is a description of
the workflow we have developed over the course
of inferring chemical reaction parameters for a
simple protein system, a bacterial cytochrome
domain from Cellvibrio japonicus. This was
a challenging task, as the signal-to-noise ratio
in such protein-film voltammetry experiments
is significantly lowered relative to the voltam-
metric data generated by simple chemicals.
We have overcome these challenges by using
a multiple-technique approach, which compen-
sates for the difficulties inherent to analysis of
the individual voltammetry experiments. We
have shown that the parameters inferred are ro-
bust across multiple experiments performed for
different preperations of the protein. This is an
important proof-of-concept result for analysis
of more complex metalloenzymes, which incor-
porate catalytic processes and multiple internal
electron-transfer sites.

Introduction

Of the myriad chemistries that are required for
the existence of life, some of the most truly fun-
damental such as splitting water, fixing nitro-
gen and transporting oxygen are underpinned
by redox reactions. To understand these pro-
cesses, which are achieved at standard temper-
atures and pressures using common metals and
are consequently of significant biotechnological
interest,1,2 we turn to protein-film voltamme-
try. In voltammetry, we use a time-varying
potential to drive redox reactions, such that
the recorded experimental current directly re-
ports on the electron-transfer reactions that
take place. In voltammetric analysis we at-
tempt to reconstruct the underpinning reaction
model that generated the experimentally mea-
sured current response. For a metalloprotein,
the chemical reaction properties observed are
controlled by the 3D-structure, which is de-
fined by the protein sequence. Therefore the
ultimate aim of our voltammetric approach is
to understand how a protein relates sequence to
its biological chemistry. In terms of the specific
biological insights voltammetric analysis can
offer, it allows quantification of the thermody-
namics (the driving force) and the kinetics (the
speed) of a reaction. By observing how those
values change with different conditions, such as
temperature, pH and the presence of inhibitors
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or substrates, we can build up a full mechanis-
tic picture of biological redox reactions.

The choice of potential input has a very strong
impact on the information we can recover from
the resulting experimental current. The three
voltammetry techniques used in this study are:
purely sinudoidal voltammetry (PSV), as in-
troduced in a previous piece of work,3 Ramped
Fourier Transform Alternating Current Voltam-
metry (r-FTACV) as introduced by Bond and
colleagues,4 and Direct Current Voltammetry
(otherwise known as Cyclic Voltammetry), or
DCV, which has wide usage across the elec-
trochemistry community. The three techniques
are distinguished by their potential input. DCV
uses a linear ramp, which can increase from a
starting potential (Estart) up to the switch-
ing potential Ereverse, and back down to Estart
or vice versa. The r-FTACV method uses a
large-amplitude sinusoid overlaid on top of the
DCV linear ramp, and PSV only uses the large-
amplitude sinusoid. The large-amplitude sinu-
soid present in the potential inputs of r-FTACV
and PSV results in a non-linear current re-
sponse if an electroactive species is present in
the system. This non-linearity can be observed
in the Fourier transform of the current, where
harmonic current responses (referred to here-
after as “harmonics”) are observed at integer
multiples of the frequency of the input sinu-
soid. Because the background current does
not have the same degree of non-linearity (as
evidenced by observing the Fourier transform
of current from an unmodified electrode), we
can consequently obtain a filtered signal that
is hypothetically free of background. This is
achieved by discarding the lower harmonics,
resulting in a drastic improvement in signal-
to-noise.4,5 DCV does not elicit this non-linear
response, and this makes separating the signal
from the background highly challenging.6 The
technique is still valuable to include firstly be-
cause of the widespread usage of DCV amongst
the electrochemistry community, and secondly
because DCV analysis for the single-electron
case is relatively quick and simple, and can
therefore provide a useful point of comparison
for the results inferred from the other two tech-

niques. Other techniques, particularly Square
Wave Voltammetry (SWV) and Electrochem-
ical Impedance Spectroscopy (EIS) have been
used to interrogate biological systems, and in
future work we hope to expand the framework
we propose here to include these techniques.

Typically, the parameters that govern the be-
haviour of an electrochemical system, listed in
table 1, cannot be measured directly. Instead,
a we use a mathematical model (detailed in
the supplementary information) that predicts
an observed experimental measurement, usu-
ally the current, given defined values for the
parameters. This act of simulating the cur-
rent for a particular vector of parameters, θ,
is referred to as solving the forwards problem.
For experimental data that fulfils the assump-
tions of our model, we assume that there will
be a set of parameters that are representative
of the actual chemistry; finding that param-
eter set is referred to as solving the inverse
problem, or “parameter inference”. There are
multiple routes to solving the inverse problem
in electrochemistry, reviewed ably elsewhere,7,8

and in this work we use two approaches —
minimisation, using the CMAES algorithm,
which returns a best-fit parameter vector, and
sampling, using a Markov-chain Monte Carlo
approach, which yields a posterior parameter
distribution, which can be analysed to deter-
mine the degree of correlation between the
inferred parameter distributions. If the aim of
understanding protein bio-electrochemistry by
tracking changes in inferred parameters is to be
realised, then parameter inference needs to be
rapid, accurate and reproducible. The frame-
work that we describe in this paper fulfils these
three criteria. We have previously published
on the topic of using an integrated experimen-
tal approach (using PSV and r-FTACV) when
inferring parameters for ferrocene, a simple
chemical system with excellent signal-to-noise
ratios.3 The next step, which this work de-
scribes, is to expand the framework such that
it is appropriate for parameter inference on a
biological system. There is an inherent dif-
ference between the signal-to-noise of protein
vs. small-molecule voltammetry; biological sys-
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tems produce smaller signals, and larger and
more complex background currents. There is a
great deal of literature (including some detailed
review papers9,10) related to attempts to infer
parameters from PFV data, all of which in some
sense require fitting a model to some observa-
tions. The analyses can be separated by the
presence or absence of catalytic activity. For
systems with no catalytic activity (i.e. purely
Faradaic), there is more of a variety of voltam-
metric techniques and concomitant methods to
extract features. For DCV, the features in-
clude oxidative/reductive peak-separation (as
shown in a trumpet plot),11–14 peak-width6,15

and background-subtracted total current.13,16

For SWV, various current features, such as
peak positions and normalised heights,17 along
with analysis of the Fourier transform of the
current18 have been analysed. For r-FTACV,
harmonic amplitudes12,19 and the total har-
monics5,12,20 have both been used. For the
case where catalytic processes are present,
the overwhelmingly predominant technique is
DCV, with some theoretical analyses exploring
SWV,21 and the principal mode of analysis is
the total current,22 sometimes interpreted as
a “waveshape”.2,23 A large amount of effort
and debate is expended on model development,
as there are challenges related to distinguish-
ing between different catalytic mechanisms,24

along with challenges related to dispersion25

and substrate transport.26,27 In addition, the
nature of the catalytic reactions means that
boosting signal vs background by clever modu-
lation of the input potential is not possible to
the same extent as for Faradaic reactions, and
naturally there is less innovation in this space.
In addition, although the majority of the above
efforts assume that the Faradaic reactions are
well-described by Bulter-Volmer kinetics (as we
do in this study), there are some efforts that in-
corporate Marcus theory instead.14 The variety
of models, techniques and feature extraction
processes referenced are indicative of the wide
range of proteins that can be analysed using
electrochemistry, as well as indicating some-
thing of an endless struggle to separate enough
signal from background to be able to make valid
inferences.

Our approach is a direct continuation of the
work analysing biological Faradaic processes
referenced above; what distinguishes it is the
focus on the analysis of as much of the exper-
imental current as feasible given the realities
of background current, and the usage of mul-
tiple experiments to confirm inferred values.
To showcase the utility of our approach, we
have selected a simple protein from Cellvibrio
japonicus, referred to as CjX183. CjX183 is a
small domain of Cbp2D, a probable activating
partner for the lytic polysaccharide monooxy-
genase protein active in C. japonicus .28 LPMOs
generally are known to improve the rate of cel-
lulose digestion in a range of organisms, and
are consequently of interest for biotechnolog-
ical applications as they can facilitate biofuel
production from biomass.29 The LPMO catal-
ysed reaction requires reductive activation, and
it has recently been shown that CjX183, which
is a type-c cytochrome domain can carry out
this LPMO activation. CjX183 was shown
to undergo a single-electron reversible Fe3+/2+

Faradaic reaction when adsorbed on a carbon
electrode, giving comparatively excellent sig-
nals in the process.30

The framework that we lay out in this pa-
per is an attempt to leverage the advantages
and mitigate the disadvantages of each voltam-
metry technique to provide a highly accurate
protein redox analysis toolkit. On the left-
most plot in figure 1, we rank PSV and ramped
experimental harmonics (obtained by inverse
Fourier transforming the harmonic peaks dis-
cussed above), and the total current of a DCV
experiment by their “interpretability” and their
Faradaic information. We have shown the har-
monics of the total current for the PSV and r-
FTACV cases as this is the form of the current
that we actually analyse. The three plots on
the right of the figure show actual experimental
potential-time inputs (top row) and the result-
ing current (bottom row). In terms of Faradaic
information, DCV is ranked last, because of the
challenges associated with background subtrac-
tion. The highest ranked is r-FTACV, because
it is highly sensitive to changes in Faradaic

3



Figure 1: Left: The three experiments analysed in this paper, direct current voltammetry (DCV)
as a current vs. potential plot, purely sinusoidal voltammetry (PSV) current harmonics 4-7 vs.
potential, and ramped-Fourier Transform Alternating Current Voltammetry (r-FTACV) current
harmonics 4-7 vs. time. The experiments are ranked according to how interpretable they are, and
the amount of Faradaic information they provide. Orange arrows indicate simulation of current us-
ing a vector of chemical parameters θ, and black arrows indicate that the results of these simulations
are used to assess the goodness-of-fit. The other plots, from left to right, show the potential input
(top row) and the current output (bottom row) for DCV, PSV and r-FTACV for real experimental
data

parameters, an effect we explored in previous
work3 and the capacitive and Faradaic current
contributions can be clearly separated by fil-
tering. PSV sits between these two, and the
reasons for this are laid out below. PSV is
ranked last in terms of interpretability, because
as we have shown,3 the effect of the various
reaction parameters on the appearance of the
harmonics is less intuitive. Again, r-FTACV
is ranked highest, as the effect of the distinct
Faradaic parameters of interest can be deter-
mined through visual inspection.31 DCV in this
case is ranked between r-FTACV and PSV.

The obvious question after reading the above
is, if r-FTACV is superior for all criteria, why
use a technique other than r-FTACV? The
answer is that r-FTACV is very expensive to
simulate, being an order of magnitude slower
than a 30-oscillation PSV or a DCV experi-

Figure 2: Flowchart showing the framework
used to verify inferred bioelectrochemical reac-
tion parameters
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ment. As solving the inverse problem takes
a significant number of simulations (tens to
hundreds of thousands), this seriously hampers
any parameter inference effort. The effect is
compounded for difficult problems, when there
is uncertainty about the correct hyperparame-
ters, such as how to bound parameter space, as
this requires iterative parameter inference at-
tempts for fine-tuning. Although we have used
r-FTACV with some success for biological pa-
rameter inference,20,32 the timescales involved
were not sustainable. Consequently, we have
developed an inference process around PSV, to
take advantage of the speed boost relative to
r-FTACV. In previous work,3 we found that
when inferring parameters from PSV current-
time data for a simple chemical system (fer-
rocene), there was one optimal parameter set
which, when used to simulate a ramped experi-
ment, also provided a good fit to r-FTACV data
collected for the same electrode film. However,
for the cytochrome data analysed in this paper,
the signal-to-noise ratio is significantly worse,
and we are forced to use filtering approaches to
lessen the impact of background current, which
was not necessary for the analysis of ferrocene.
The challenge, as will be discussed below, is
that this filtering discards a large quantity of
Faradaic information. As a result, when fitting
to filtered PSV data, we have found that we
obtain multiple parameter vectors that gener-
ate a “good fit”. This is exacerbated by the
other weakness of PSV; because the filtered
PSV current is largely uninterpretable, we can-
not a priori select one parameter vector over
another. To address this problem, we can use
r-FTACV and DCV to verify which parame-
ter vector is likely to represent the underlying
chemical reality. The philosophy behind this
verification approach is that, if all voltammet-
ric experiments are conducted on the same
electrode film, then the parameters inferred
from one experiment should also describe data
from another. We have represented this process
graphically in figure 2. We infer parameters by
fitting to the PSV harmonics, and then check
their plausibility by predicting the current in a
different form (such as the predicted DCV and
r-FTACV currents, or the total PSV current),

where we have experimental data for that form
collected for the same film. As this data was
collected from the same electrode film, a good
fit in one experiment should predict a good fit
in another. If this is not the case, then we de-
termine which parameters might be responsible
for a good fit for one set of experimental ob-
servations but not another, and then constrain
parameter space to avoid this region. Examples
of this process are laid out below; it requires
knowledge about the chemically probable pa-
rameter ranges, as described in the Supple-
mentary Information, in tables S1 and 2. In
addition, this process requires experience with
how the various parameters combine to give
a particular waveshape, the better to under-
stand how the effects of the various parameters
combine to give a “good” or a “bad” fit. The
cycle was repeated until we achieved the results
shown in the rest of the paper. This process
is a core justification for using PSV; if fitting
to PSV data is ten times faster than fitting
to r-FTACV data, we can go through multiple
cycles of this process in the time required to
undertake one r-FTACV inference attempt. As
a consequence, this drives a more nuanced view
about how the various parameters affect one
another to provide a good fit, ultimately re-
sulting in an approach that combines all three
techniques to provide a robust approach to the
overall parameter fitting process.

Results and Discussion

Examples of the the experimental current aris-
ing from DCV, PSV and r-FTACV voltam-
metric experiments interrogating surface-linked
Cj183X are shown in figure 1. As can be
seen, the signal in the DCV and r-FTACV ex-
periments is significantly stronger than in the
PSV experiment, where, to the eye, the sig-
nal (the two “bumps” at ∼ ± 0.18V) is al-
most totally overwhelmed by background cur-
rent. Consequently, we take advantage of the
highly non-linear response of the Faradaic cur-
rent, and filter the PSV current in the Fourier
domain, artificially zeroing-out the region of the
Fourier transform corresponding to harmonics

5



Table 1: Symbol Glossary

Symbol Description
E0 The reversible potential — the potential at which the concentration of reduced and

oxidised species is equal
E0µ The mean of a normal distribution of reversible potentials31

E0σ The standard deviation (s.d.) of a normal distribution of reversible potentials31

k0 The rate at which the redox reaction occurs
Ru The portion of solution resistance that is not compensated for by the potentiostat,

hence the “uncompensated resistance”
Cdl The magnitude of the background current arising from linear double-layer capaci-

tance effects
CdlEX Terms used to model non-linear capacitance effects, where X is the order number,

described in the mathematical model section of the supplementary information
Γ The concentration of electroactive species on the surface of the electrode
ω The frequency of the input sinusoid (for PSV and r-FTACV)
η The phase of the Faradaic current

Cdlη The phase of the capacitive current

0-3, which were judged to have the largest ca-
pacitive contribution, from observation of PSV
data from a blank electrode, as shown in the
supplementary information in figure S1. This
filtered Fourier transform is the form of the cur-
rent that we use in solving the inverse prob-
lem, as opposed to the total current, which was
what was used in.3 These harmonics are shown
in figures 1, 3, 4 and 5, and represent our pri-
mary mode of analysis. The harmonics of the
r-FTACV current are shown in figures 1, 3, 6
and 8.

Kinetic bounds

In figure 3 we demonstrate how the PSV/r-
FTACV comparisons work in practice. A pa-
rameter vector generated by fitting to the 4th
harmonic and above of the PSV current was
used to generate both PSV and r-FTACV har-
monics, which are plotted alongside the corre-
sponding data harmonics in the left and right-
hand columns respectively. As described above,
and shown in figure 2, an important part of ob-
taining a robust fit is constraining the parame-
ter space in which the minimisation algorithm
searches. We constrain parameter space firstly
to prevent physically impossible parameter val-
ues, and secondly to exclude the areas of space
that resulted in good fits to only the filtered

portion of one experiment, and failed to gener-
ate a good-fit to current data from other tech-
niques. The first parameter to be constrained
for the latter reason was the kinetic parameter.
This is because the kinetic parameter has a very
clear impact on the appearance of r-FTACV
harmonics, as discussed in previous work by
our group31 (and Alisters paper). Although the
simulation harmonics plotted in figure 3 are a
reasonably good fit to the data for the PSV
case, the fit when translated to the r-FTACV
harmonics is extremely poor, driven by a low
inferred kinetic parameter. For r-FTACV, the
higher the kinetic parameter, the closer in ap-
pearance the harmonics are to the “classical”1

appearance, as shown in our previous work.5 As
the kinetic parameter decreases, the resolution
of the individual harmonic lobes decreases, such
that they start to merge with each other. By
repeated r-FTACV/PSV comparisons of this
type, we determined that the true kinetic pa-
rameter was at a minimum 50s−1, and the lower
bound for the optimisation algorithm was set
accordingly. We also determined that the low

1A classical appearance is the one usually presented
when introducing r-FTACV;4 the harmonics are sym-
metrical and each lobe is clearly identifiable. This form
is observed when the kinetic rate constants are highly
reversible, when the capacitance and uncompensated re-
sistance values are low.
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Figure 3: An example of how a relatively good
agreement between PSV experimental (blue)
and simulated (orange) harmonics 4-7 does not
translate well to an r-FTACV harmonic com-
parison, driven by a low inferred k0 value.

k0 fits all returned phase and Cdl phase values
that were significantly different from the exper-
imentally set value. Consequently, the phase
and Cdl phase bounds were set to ±20% of the
experimentally defined value of 3π

2

Capacitance bounds

The above bounding reduced the incidence of
PSV parameter vectors that very obviously did
not match the r-FTACV data. The next is-
sue was as discussed above; although in previ-
ous work, we could infer a clear best solution
vector that described both PSV and r-FTACV
data, we have not been able to find such a solu-
tion for this dataset. Consequently, determin-
ing the difference between the “high Cdl” and

“low Cdl” fits on the basis of the PSV and r-
FTACV harmonics alone, as shown in figure 4
was not possible. The two fits were primar-
ily distinguished by large (∼2 orders of mag-
nitude) difference in the inferred value of the
linear double-layer capacitance value. This is-
sue was resolved by plotting the predicted total
PSV current - the high Cdl parameter vector
generates a total current 2-3x the magnitude of
the experimental current, which is unrealistic.
By the same token, it is not unrealistic that
the total predicted current will be of a lower
inferred magnitude than the total experimental
current for the low Cdl case. We do not expect
the parameter inference approach to perfectly
recover the true capacitance values, as by filter-
ing the current we remove the majority of the
capacitive contribution. However, for the high
Cdl case, the solver is artificially inflating the
capacitance to achieve a better fit in the higher
harmonics. This led to the realisation that, un-
fortunately, for a PSV experiment, high levels
of capacitance can exert an effect on the higher
harmonics (by suppressing their magnitude), a
phenomenon that we believe is driven by spec-
tral bleed from a very large first harmonic. Con-
sequently it is important to guard against this
effect by placing strict upper bounds (in this
case, 1e-5F) on the value of the capacitance
parameter. We did attempt to infer the true
capacitance values for use in a “two-step” fit-
ting approach as in previous work.32 However,
we found that we could only obtain good fits
to the filtered Fourier domain of the PSV cur-
rent when fitting both Faradaic and capacitive
parameters simultaneously. This illustrates the
essential need for a multi-experiment method-
ology to allow the development of a robust ap-
proach to parameter inference.

Inferring parameters from multi-
ple films

Using the bounds described above, we at-
tempted to infer parameters for three sets of
PSV cytochrome data, using three different
electrode films, in order to gauge the reprodu-
cability of the fitting approach. The resulting
best fits are shown in figure 5, with the inferred
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Figure 4: Comparison of two plausible parameter vectors generated by fitting to PSV harmonics
4 and above. In the leftmost plot, we see the very good agreement between simulated and exper-
imental PSV harmonics 4-7 for both parameter vectors. Neither vector is clearly better than the
other when compared against r-FTACV experimental harmonics in the central plot. The high Cdl
parameter was discounted on the evidence of the rightmost plot, as the predicted total current was
significantly larger than the observed experimental current.

parameters shown in table 2. The bottom row
of the figure are harmonics 4-10 for the experi-
mental and simulated cases, plotted against the
potential. The top row represents the region
of the Fourier transform corresponding to har-
monic 4 and above, inverse transformed back
into current. In order to improve clarity, each
of the 29 periods corresponding to a complete
potential oscillation have been overlaid on top
of each other, for the filtered PSV experiment
and simulation. In addition, in order to show
the amount of current we are discarding from
our analysis, we have overlaid the total current
on a different axis, in red. The total current
has an amplitude approximately 8x larger than
that of the filtered current. However, we can
observe why filtering is necessary; the Faradaic
signal in the total current, occurring at approx-

imately the maximum and minimum of the the
red traces in figure 5, is almost totally obscured
by the signal arising from capacitance, which
makes up the rest of the plot.

In terms of the parameter values themselves,
as reported in table 2, it is essential to note that
in all cases the reported α value is the value of
the upper bound, as is the value for the capac-
itance for PSV experiments 2 and 3. For α, it
was our experience that the solver converged
to the value of the upper bound regardless of
what it was set to. This is not unexpected
— as detailed in our previous work, when the
kinetic regime is reversible or quasi-reversible,
the effect of the symmetry factor is low. We set
the upper bound at 0.6 for reasons of chemical
plausibility, but it is common practice to set
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Figure 5: Simulated and experimental data for three separate electrode films. The simulation
parameters for the three experiments (PSV 1, 2 and 3, from left to right) can be found in table 2.
The top row is a representation of PSV harmonic 4 and above, where the frequency domain, filtered
such that harmonics 0-4 were set equal to 0, was inverse Fourier transformed, and then each of the
current regions corresponding to a single potential oscillation was overlaid. This process was done
for both the experimental and simulated timeseries. The total, unfiltered experimental current, is
plotted on the same x-axis but a different y-axis, as it is of much greater magnitude. In the bottom
row, PSV harmonics 4-10 were individually Fourier transformed and plotted against potential.
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Table 2: Best fit parameters for harmonics 4 and above of PSV experiments 1, 2 and 3. The
resulting simulated PSV current is shown in figure 5. The same values were used to generate
r-FTACV simulations shown in the top row of figure 6, and the values in brackets were used to
generate the r-FTACV simulations in the bottom row of the figure

Parameter Symbol PSV 1 PSV 2 PSV 3

Midpoint potential mean E0µ (V) -7.167e-2
(-6.187e-2)

-6.784e-2
(-6.322e-2)

-6.538e-2
(-6.118e-2)

Midpoint potential standard deviation E0σ (V) 0.045
(0.033)

0.053
(0.036)

0.051
(0.035)

Rate constant k0(s
−1) 173.809 176.481 172.894

Uncompensated resistance Ru (Ω) 148.688 316.812 81.525
Linear double-layer capacitance Cdl (F) 9.794e-6 1.000e-5 9.999e-6

1st order Cdl CdlE1 0.014 0.079 0.095
2nd order Cdl CdlE2 0.04 0.021 0.045
3rd order Cdl CdlE3 -5.607e-4 -4.381e-4 -3.772e-4

Surface coverage Γ (mol cm−2) 1.35e-11
(1.68e-11)

2.05e-11
(1.83e-11)

1.79e-11
(1.45e-11)

Potential frequency ω (Hz) 9.015
(8.96)

9.015
(8.75)

9.015
(8.83)

Cdl phase Cdl phase (rads) 4.729 4.696 4.712
Phase Phase (rads) 4.572 4.599 4.628

Symmetry factor α 0.6 0.6 0.6

the value of α to 0.5 under these conditions.
When we attempted this, the inferred kinetic
values were totally reversible (i.e. hit the upper
kinetic boundary regardless of its value), which
yielded worse fits when comparing the ramped
harmonics (as we do for the parameters in ta-
ble 2 in figure 6). In terms of the capacitance
upper bound, for experiments 2 and 3 we found
the solver converged to unrealistic capacitance
values, such as plotted in figure 4. These effects
are driven in part by parameter compensation;
to compensate for not being able to increase or
decrease a parameter beyond a certain limit,
the solver will scale other, correlated parame-
ters to achieve a similar effect. An illustration
of which model parameters are correlated (ex-
cluding Cdl and α) is shown in figure 10. For
α and Cdl, the compensated parameter we are
most interested in was the kinetic value. In
the case of α, a decrease of the upper α bound
resulted in an increase in the kinetic param-
eter of 40s−1 on average, before moving into
totally reversible kinetic territory at an α value
of 0.533. For the capacitance, increasing the

upper bound to 1e-4F, (an unrealistic value)
caused highly divergent changes in the inferred
kinetic value, with worse observed fits to both
the PSV and ramped harmonics. What these
results demonstrate is that, while we can fit well
to the data, the exact values that we report are
dependent on how parameter space is bounded.
Consequently, it is important to describe and
justify how this bounding is achieved, and to
show exactly how we adjust parameters when
attempting to compare results between experi-
ments. The fact that we can fit three different
experiments with parameters that are in the
same regime implies that we are not merely in
a local minima, and that the values we report
are a reflection of the underlying chemistry.
We note that for some parameters the value
returned is the upper bound, which means that
the choice of upper bound has affected the
other reported parameter values, because of
parameter compensation effects detailed above.
We have determined a region of parameter
space which gives consistently good fits to the
PSV data, and the values we report are a sin-
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gle point within that parameter space. The
precise values are dependent on our choice of
certain bounds and could therefore be consid-
ered slightly arbitrary. However, we can make
the claim that within this highly constrained
region of parameter space lies the values that
truly describe the underlying chemistry.

As mentioned above, we use r-FTACV data
to act as a “check” on the values inferred by
the PSV inference process. The result of this
comparison for PSV experiments 1-3 is shown
in figure 6. The top row uses the PSV simula-
tion parameters written in table 2, except for
the input frequency and phase. For the bottom
row, we performed a limited optimisation on
parameters thought likely to change as a result
of so-called “film-loss” effects, in particular, the
E0µ, E0σ and Γ parameters. The altered values
are written in brackets in table 2. We do this to
show that only a relatively small modification
in the PSV parameters is required to provide
an excellent fit to the ramped harmonics —
further evidence that the PSV fit is representa-
tive of the chemical activity on the electrode.
However, it should be noted that further inves-
tigation of the film-loss effect implied that the
E0σ value predicted by the PSV parameters is
too large (i.e. we do not observe a broadening
of the harmonics to the extent shown in the
top row of 6). This is partially driven by the
imposition of capacitance bounds — increased
E0σ is known to be “compensatory” for an ar-
tificially lowered Cdl value. It should be noted
that this takes us away from the philosophy
of verification, because we are making alter-
ations to the inferred parameters in order to
make the translation between two experiments
more convincing. However, we believe that this
is an unavoidable consequence of the efforts
required to remove the contribution of capac-
itance. The process of using PSV to obtain
the approximate parameter regime, and then a
single limited optimisation r-FTACV approach
is still significantly faster than undertaking a
de novo r-FTACV inference approach.

The problem of DCV

Analysing a single experiment

In the preceding sections, we have extensively
discussed the interplay of PSV and r-FTACV.
We now discuss how DCV data, obtained from
the same electrode, can be used to validate the
results above. DCV data was collected along-
side PSV experiments 1 and 3. For PSV experi-
ment 1, the DCV data was only collected at one
scan rate, and although the level of signal was
extremely good for this type of experiment (as
can be observed in the leftmost plot of figure 7),
we found that DCV data was not particularly
helpful when attempting to solve some of the is-
sues with the inference process described above.
The difficulties were multifaceted; the first is-
sue was that our polynomial capacitance ap-
proximation could not accurately describe the
capacitance current that occurred directly after
the switching potential (from 0.25V to 0.15V in
the DCV current in figure 7), partly because of
the discontinuity in the potential input that oc-
curs at the switching potential. The only way
to achieve the “curved” appearance was with
extremely high resistances (>1e5Ω), as in work
by Feldberg,33 which were incompatible with
our PSV and r-FTACV fits, as well as with the
observed Faradaic signal. The standard tool
to get around this is using “background sub-
traction”, as specified in previous work.6 We
do not merely subtract purely capacitive cur-
rent generated from an unmodified electrode, as
the presence of a protein on the electrode also
causes a change in the observed background
current. The background subtraction method-
ology is shown by the plot on the left hand
side of figure 7. The assumed background cur-
rent (the third-order polynomials in red) is sub-
tracted from the total current to get the back-
ground subtracted current in orange. In the
middle plot, we show the same background-
subtracted current, and purely Faradaic cur-
rent simulations. The DCV current parame-
ters, listed in 3, were obtained by fitting in the
time-domain to the background-subtracted cur-
rent, and the r-FTACV parameters are as de-
tailed in table 2 for r-FTACV 1. What is appar-
ent is that there is no correspondence between
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Figure 6: r-FTACV experiments conducted on the same electrode films as the corresponding PSV
experiments shown in figure 5, plotted with simulations. In the top row, the simulations are
generated using the PSV parameters in table 2. The lower row uses the same parameters apart
from where there are values in brackets, which are used instead. For all three experiments, the
input frequency for r-FTACV was slightly different for the one used in the PSV experiments. In
the simulation, these were set to 8.96, 8.75 and 8.83 Hz for r-FTACV experiments 1, 2 and 3
respectively. The values for phase and Cdl phase were set to 0
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Figure 7: The leftmost plot is an example of the background subtraction procedure which attempts
to isolate purely Faradaic current from a DCV experiment. We interpolate across the region of the
total DCV current (purple) using a third-order polynomial (red), and subtract this polynomial from
the total current to yield the background-subtracted current (orange). In the central plot, we show
the same background-subtracted current with two purely Faradaic current simulations. The DCV
simulation (blue) was generated using parameters obtained by fitting to the background current,
and are recorded in table 3. The r-FTACV simulation uses parameters listed in table 2, using the
values in brackets where appropriate. In the leftmost plot, the parameters in table 3 fitted to the
DCV experiment are used to generate r-FTACV harmonics 4-7, and plotted against r-FTACV data
harmonics, alongside the harmonics from the r-FTACV simulation in green.

being a good fit to DCV and a good fit to r-
FTACV. The poor fit of the DCV parameters
to the r-FTACV experimental data is explained
by the fact that the inference process predicts a
very small kinetic parameter when fitting to the
DCV data. The reason for this is because, even
though the scan rate is relatively slow, the peak
position of the oxidative and reductive peaks is
not the same in the background-subtracted cur-
rent. At the scan rate of this experiment, the
peak overlap (i.e. the point of complete kinetic
reversibility at this scan rate) occurs at 5 s−1,
a value we know to be too low, because even a
kinetic value of 20 s−1, as observed in figure 3,

produces r-FTACV harmonics that do not have
a shape that corresponds to the experimen-
tal data. The non-overlapping oxidative and
reductive observed peaks in the background-
subtracted DCV current is presumably because
the subtraction process does not truly remove
all the background current, and we are observ-
ing contamination from capacitive current. We
do not believe this driven by a problem with
the subtraction methodology, as we determined
that we could recover the true peak positions
using the background-subtraction approach on
synthetic data generated by adding simulated
Faradaic current to experimental blank data, as
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shown in the Supplementary Information in fig-
ure S2. What this tells us is that the observed
DCV current is not a simple addition of capac-
itive and Faradiac current terms (they are con-
volved, as mentioned in the introduction), and
that consequently subtraction is not sufficient
to separate the two contributions. Further-
more, any attempt to correct for this observed
effect will surely be entirely arbitrary, and we
could not have confidence in the inferred values.
The poor translation of r-FTACV parameters
to the DCV current is presumably driven by dif-
ferences in surface coverage between the DCV
and r-FTACV experiments (as the former was
performed before the latter). Our conclusion
from this comparison exercise is that our mod-
elling methodology is not well-suited to obtain-
ing information from a single DCV experiment,
firstly because our capacitance model struggles
to account for the non-idealities observed in
actual DCV data, and secondly because the
background-subtraction approach does not re-
duce the problem of capacitance to the same
extent as filtering in the Fourier domain does.
This conclusion appears to be supported by the
literature, where all studies reviewed that at-
tempted to infer kinetic parameters from DCV
data used multiple DCV experiments in the
form of a trumpet plot,11–15 which we discuss
below.

Multiple DCV experiments

Given the challenges associated with analysing
a single DCV experiment, we turned to us-
ing multiple DCV experiments at different scan
rates to generate a so-called “trumpet plot”, as
pioneered by Laviron.34 The idea behind this
approach is that the scan rate at which the
peak potentials diverge is characteristic of the
kinetics of the system being interrogated. We
found that this approach was less affected by
the issues of capacitive current than the single-
experiment approach. In figure 8 we show the
trumpet plot data and various fits. Multiple
DCV experiments were conducted at different
scan rates using the same protein sample as
that generated data for PSV and r-FTACV ex-
periment 3, although using a different electrode

Figure 8: The lower figure shows trumpet plots,
plotting the base 10 logarithm of the scan rate
against oxidative (filled circles) and reductive
(hollow circles) peak positions. Three trumpet
simulations are also shown, as reported in table
3. The PSV kinetic simulation differed from the
CMAES simulation only by the value of the ki-
netic parameter, which is written in brackets in
table 3 in the appropriate column. The top plot
shows harmonic 7 from r-FTACV experiment
3, alongside two simulations. The “PSV kinet-
ics” simulation (red) uses parameters from the
PSV 3 column of table 2, whereas the “MCMC”
simualtion (green) uses the same parameters ex-
cept for the kinetic value, which is as written in
the appropriate column in table 3

14



Table 3: Table of inferred DCV parameters. The single DCV column was used to generate the
purely Faradaic simulation plotted in the central graph of figure 7 in blue. The parameters for the
‘trumpet” column were obtained by fitting to the data in figure 8, where we can only fit E0 and
k0, along with a “separation” parameter that we do not report here, but that is described in the
main body of the paper. 2

Parameter Symbol Single DCV Trumpet

Midpoint potential mean E0µ (V) -5.100E-2
-5.928E-2

Midpoint potential s.d. E0σ (V) 1.000E-5
Rate constant k0(s

−1) 0.587 109.411
Uncompensated resistance Ru (Ω) 3.401E-7

*Surface coverage Γ (mol cm−2) 3.108E-11
Symmetry factor α 0.452

film. We also show harmonic 6 from the appro-
priate r-FTACV experiment, along with the re-
sults of simulations generated using parameters
in table 3. To generate the trumpet plots, the
current was background-subtracted, as shown
in 7, and the position within the potential win-
dow of the largest signal of the reductive and
oxidative peaks was extracted (from here on-
wards referred to as “peak position”). A rolling
window was used to smooth the background-
subtracted experimental data to lessen the im-
pact of experimental noise on the inferred peak
position, although this was not successful in all
cases, as some outliers away from the general
trend can be observed in the trumpet plot of the
data in figure 8. To fit this data, we simulated
purely Faradaic DCV current at the appropri-
ate scan rate, optimising the value of three pa-
rameters. The first was E0 without dispersion,
in contrast to all previous fitting approaches.
This is because the presence of thermodynamic
dispersion does not affect the value of the peak
position (when taken at the peak maximum).31

We also fitted k0, which controls at what scan
rate the peak positions diverge, and a separa-
tion parameter. Theory predicts that the ox-
idative and reductive peak positions must meet
at sufficiently slow scan rates, but we did not
observe this, presumably because of the same
issues observed in analysis of the single DCV
experiment discussed above. This artefact was
observed in some,11,15 but not all,13,14 of the
trumpet plot studies cited previously. A con-
stant separation value in volts was added to

all oxidative potential positions and subtracted
from all reductive potential positions — con-
sequently, we assume that the capacitive arte-
facts that are unaffected by BG-subtraction are
constant, independent of scan rate. We also
show the results of two simulations; the first
is the mean of the inferred parameter distri-
butions returned by an MCMC process (with
the inferred distributions plotted in figure 9, la-
belled “DCV”). As the reported kinetic value
of ∼109s−1 was fairly different from the value
inferred from the PSV experiment 3 data (that
of ∼172s−1), we also checked what the trum-
pet plot appearance with this kinetic value was,
which is the second simulation, labelled “PSV
kinetics”. It should be noted that some discrep-
ancy is not totally surprising, as the trumpet-
plot data was collected from a different elec-
trode film from PSV experiment 3, although
both films were generated from the same pro-
tein extract. The values of these parameters
are recorded in table 3. In terms of the actual
experimental data, the gradient of the oxida-
tive and reductive peak potentials is different,
and there is significant deviation from the the
predicted largely straight line for the oxidative
peak position between the log(scan rate) values
of 1-3. Although there is a difference between
the kinetic values inferred using DCV and PSV
(∼60s−1), this difference does not significantly
change the observed fits. In figure 8, we show a
trumpet plot obtained using a kinetic value of
173s−1 (labelled “PSV kinetics”) and a ramped
simulation generated using the kinetic value in-
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ferred from DCV; in both cases, the increase or
decrease of ∼60s−1 did not significantly affect
the goodness of fit to the experimental current.
The kinetic values inferred from the various ex-
periments are very much in the same regime, in
contrast to, for example figure 3, where a large
difference in the kinetic value used to gener-
ate two simulations results in a totally different
harmonic appearance. Our conclusion from this
analysis was that the trumpet-plot method is
significantly more useful than analysis of a sin-
gle DCV experiment, and can provide valida-
tion of the kinetics of PSV-inferred parameter
vectors, along with information for how best to
bound the kinetic parameter space.

Confidence and uncertainty

All results and consequent discussion up to this
point have been obtained using the CMAES
algorithm, and consequently the parameter val-
ues discussed above are inferred point values.
However, we can also use MCMC methods to
obtain a description of the amount of confi-
dence we have in our model. This is shown
in figure 9. For each MCMC simulation, 3
Markov chains were run independently, start-
ing from the parameters reported in table 2,
run for 10000 iterations and then combined,
again fitting to the 4th harmonic and above
from the PSV experiment. The DCV param-
eters were as inferred from the trumpet plot,
and as such we only report the inferred E0

(on the same graph as the PSV E0µ values, as
the parameters are comparable), and k0 values.
Because of issues associated with the MCMC
algorithm and bounding, the Cdl and α val-
ues were not included in the inference process,
and instead set at the value detailed in table
2. The traces for each MCMC process used to
calculate the plotted histograms can be found
in the supplementary information, in figures
S3-6 The inferred PSV parameter distributions
shown are very narrow, implying a high degree
of confidence in the parameters listed in table 3,
in contrast to the much broader inferred DCV
parameter distributions.

It is interesting that this approach cannot cap-

ture the magnitude of the parameter compensa-
tion phenomenon we discussed with regards to
the inferred point values above. As discussed,
the parameters reported were drawn from a
subsection of parameter space that generated
uniformly good fits. As we did not include the
Cdl and α parameters in the inference process,
we are effectively exploring a sub-section of
parameter space where these values are fixed,
which accounts for the very high level of con-
fidence observed. If in future work we can re-
solve these issues, we predict we will see some-
what broader inferred parameter distributions.
Therefore these results should be treated with
some caution, and mainly show the difference
between the width of the distributions for the
PSV and DCV cases. Another utility of the
MCMC approach is shown in figure 10, where
we plot all MCMC inferred parameter distri-
butions for the inference process linked to PSV
experiment 2, allowing us to see correlations
between parameters. As shown in the figure,
there is a high degree of pairwise correlation,
with some particularly strong examples of pa-
rameter correlation being between k0 and η,
and Γ and E0σ.

Conclusions

In this paper we have shown that it is possi-
ble to obtain a highly detailed picture of the
electrochemistry of the single-electron redox re-
action of Cjx183, to the extent that the pa-
rameters we have obtained are consistent across
multiple experiments using different prepara-
tions of the same enzyme. We have shown how
the multi-experiment approach, coupled with
Bayesian inference, allows for increased confi-
dence that the parameters we report are in a
regime that is a good reflection of the under-
lying chemistry. For future work, we intend to
extend our repertoire of techniques to include
square wave voltammetry and electrochemical
impedance spectroscopy, and to move towards
systems that have more complex chemistries,
including multiple electron-transfer reactions
and catalytic processes. For researchers looking
to use this methodology, we propose the follow-
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Figure 9: Inferred parameter histograms generated by pooling three independent MCMC chains,
using harmonics 4 and above of the respective PSV experiments in the likelihood function, and using
the parameters in table 2 as the starting point. Cdl and α were not included in this parameter
inference approach for technical reasons mentioned in the text. The DCV histograms were as
inferred from running an MCMC process on the trumpet data in figure 8, and as such we can only
infer the parameters E0 and k0

ing “recipe” for robustly inferring parameters.

1. Collect experimental data. For each elec-
trode functionalised with protein, we rec-
ommend collecting PSV, r-FTACV and
DCV data (the latter at different scan
rates), in that order. This is because there
will naturally be some film-loss as a re-
sult of consecutive experiments, and con-
sequently we order the experiments in or-
der of how important having good signals
is.

2. Obtain estimates for E0 and k0 bounds
by fitting trumpet plot data, which is rela-
tively easy to fit. This information should
then be used to judge parameters inferred
from analysis of PSV and r-FTACV data.
You can also use MCMC at this juncture

to explore the confidence in the inferred
values.

3. Define boundaries. Initial boundaries
should be encompass a reasonably large
area of parameter space, but as a rule of
thumb should not cover more than two
orders of magnitude. If this coverage is
necessary, consider log-transformations.

4. Determine if it is feasible to fit PSV data
in the time domain, without using dis-
persion. If inferred Faradaic parameters
are highly divergent between different fit-
ting runs, then you need to fit in the
Fourier domain. If this is the case, inspect
the harmonics of the blank PSV data to
see what portions of the Fourier domain
needs to be zeroed-out
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Figure 10: 2D histograms generated from the MCMC process for PSV experiment 2

5. Fit the form of the PSV data chosen
above, using a simulation without dis-
persion. Using the parameters result-
ing from this inference process, gener-
ate a ramped simulation and compare
to the r-FTACV data harmonics to as-
sess the translatablity of the parameters.
It should be reasonably clear if you are
neglecting thermodynamic dispersion, as
the simulated harmonics will be narrower,
and will not decrease in magnitude with
harmonic number to the extent observed
in the experimental data. If thermody-
namic dispersion is present, you should
go back to fitting the PSV data accord-
ingly. If the kinetics of the system are
irreversible/quasi-reversible then it may
be worth considering kinetic dispersion as
well, as discussed in previous work,31 but
we have not encountered this scenario to
date.

6. Keep on comparing your PSV fits to the
r-FTACV harmonics. Some other points

to note:

• If fitting to the Fourier domain,
keep checking that the predicted to-
tal current simulation is not signifi-
cantly greater in magnitude than the
experimental current data, an issue
we came against in figure 4.

• If a parameter is consistently hit-
ting a defined boundary, then con-
sider raising or lowering this bound
as appropriate, unless this is outside
of the realms of chemical plausibility.
Beware of parameter compensation
effects!

• A good rule of thumb is that you will
see a set of “good-fit parameters” at
least once in ten fitting runs with a
random initialisation.

7. Choosing which parameters to report is
something of a personal choice — our ra-
tionale was that the inferred parameters
for the three experiments should be in the
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same regime while providing a good fit to
each.
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