
MAYGEN - an open-source chemical
structure generator for constitutional
isomers based on the orderly generation
principle

Mehmet Aziz Yirik*; University Friedrich-Schiller, Lessing Strasse 8, 07743, Jena, Germany;
yirik.mehmetaziz@uni-jena.de; ORCID: 0000-0001-7520-7215
Maria Sorokina; University Friedrich-Schiller, Lessing Strasse 8, 07743, Jena, Germany;
maria.sorokina@uni-jena.de; ORCID: 0000-0001-9359-7149
Christoph Steinbeck*; University Friedrich-Schiller, Lessing Strasse 8, 07743, Jena, Germany;
christoph.steinbeck@uni-jena.de; ORCID: 0000-0001-6966-0814

Corresponding authors emails: christoph.steinbeck@uni-jena.de, mehmetazizyirik@gmail.com

1

mailto:yirik.mehmetaziz@uni-jena.de
mailto:maria.sorokina@uni-jena.de
mailto:christoph.steinbeck@uni-jena.de
mailto:mehmetazizyirik@gmail.com

Abstract
The generation of constitutional isomer chemical spaces has been a subject of cheminformatics
since the early 1960s, with applications in structure elucidation and elsewhere. In order to
perform such a generation efficiently, exhaustively and isomorphism-free, the structure
generator needs to ensure the building of canonical graphs already during the generation step
and not by subsequent filtering.
Here we present MAYGEN, an open-source, pure-Java development of a constitutional isomer
molecular generator. The principles of MAYGEN’s architecture and algorithm are outlined and
the software is benchmarked against the state-of-the-art, but closed-source solution MOLGEN,
as well as against the best open-source solution OMG. MAYGEN outperforms OMG by an order
of magnitude and gets close to and occasionally outperforms MOLGEN in performance.

Keywords: constitutional isomer generation, algorithmic group theory, algorithmic graph theory,
chemical graph generation, open-source software, CDK

2

1. Introduction
The efficient generation of constitutional isomers of a given molecular formula has been a core
area of cheminformatics research for decades [1]. Such molecular generation methods can be
used as hypothesis generators in areas such as computer-assisted structure elucidation, but
also to answer broader questions such as the exact size of a chemical space. Structure
generators that produce constitutional isomers take a molecular formula as input, e.g., C10H16O,
and enumerate or output all possible chemical structures that can be built with the given set of
atoms in the molecular formula. The history of chemical graph generators reaches back to the
1960s and has recently been reviewed in detail [1].

Despite the long history of research on the theoretical and practical generation of chemical
graphs, the number of publicly available algorithms and software for this purpose is still limited.
For several decades, the closed-source, commercial structure generator MOLGEN, developed
at the University of Bayreuth, marks the state of the art in terms of speed and completeness.
Recognising the need for an open-source structure generator, Peironcely et al. [2] developed
the Open Molecule Generator (OMG). OMG, however, is orders of magnitude slower than
MOLGEN. The 452,458 isomers of C10H16O, for instance, are generated in only 5 seconds by
MOLGEN, whereas OMG takes 22 minutes on the same machine (a 2020 Macbook Pro, 2,3
GHz 8-Core Intel Core i9). For more benchmarks, please see the results section of the present
manuscript.

In this work, we present the development of an open-source structure generator MAYGEN, a
pure-Java constitutional isomer generator based on the principle of orderly generation described
by Grund et al [3]. We benchmark our method against the fastest available open-source solution
OMG [2] as well as against the closed-source, de facto gold standard MOLGEN. MAYGEN
outperforms OMG by an order of magnitude and above but is still outperformed by MOLGEN. In
an old Arabic saying, "may" refers to a drop of water, and we hope that MAYGEN will be a good
contribution to the field and trigger a surge in the development of improved and faster versions
eventually rivalling the best closed-source solutions and thereby serving the scientific
community. The complete MAYGEN code, as well as precompiled binaries, are available at
https://github.com/MehmetAzizYirik/MAYGEN.

2. Methods
MAYGEN generates constitutional isomers of a given molecular formula with an orderly graph
generation algorithm from the field of algorithmic group theory. The principles are described in
detail in [3]. We summarize them in the following. A graph with p nodes, has its{1, 2, 3, …, 𝑝}
symmetry group . This symmetry group includes all the permutations of these nodes.𝑆

𝑝

However, for the case of coloured graphs, the nodes need to be partitioned (Equation 1), in
other words, nodes are grouped based on their colours, degrees and edges.

3

https://www.zotero.org/google-docs/?8Mf50q
https://www.zotero.org/google-docs/?2C7NvW
https://www.zotero.org/google-docs/?nwbZZ1
https://www.zotero.org/google-docs/?rZ7YWM
https://www.zotero.org/google-docs/?x0KZD6
https://github.com/MehmetAzizYirik/MAYGEN
https://www.zotero.org/google-docs/?alFtFb

(1)λ : = (λ
1
, λ

2
, ...) 𝑤𝑖𝑡ℎ

𝑖
∑ λ

𝑖
= 𝑛

𝑖

A molecule can be represented as a coloured graph. For 4 isomers of C8O2H16 (Figure 1), all
atoms are coloured by their element types.

Figure 1. Four Isomers of C8O2H16. Atoms are coloured by their type.

The atoms of C8O2H16 can be partitioned in three groups as following:
λ = {1, 2 | 3, 4, 5, 6, 7, 8, 9, 10 | 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26}

. For the case of this node partition, the symmetry group of 26 nodes, , cannot be used since𝑆
26

the nodes are coloured. In this case, a special type of symmetry group is applied, consisting of
Young subgroups, that are the symmetry groups built based on the initial node partition
(Equation 2 and 3).

𝑛 =
𝑖

⋃ 𝑛
𝑖
λ 𝑤ℎ𝑒𝑟𝑒 𝑛

𝑖
λ: =

𝑗=1

𝑖−1

∑ λ
𝑗

+ 1, ...,
𝑗=1

𝑖

∑ λ𝑗
⎰
⎱

⎱
⎰ (2)

𝑆
λ
: = π ∈ 𝑆

𝑛
 | ∀𝑖: π(𝑛

𝑖
λ) = 𝑛

𝑖
λ{ } ≤ 𝑆

𝑛
 (3)

This symmetry group is the direct product of Young subgroups permuting each atom type𝑆
λ

within its partition. In the case of C8O2H16, the symmetry group of isλ

. The permutations of𝑆
{1, 2}

* 𝑆
{3, 4, 5, 6, 7, 8, 9, 10}

* 𝑆
{11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26}

4

these symmetry groups only permute each element type within their groups, such as oxygens,
carbons and hydrogens. The Young subgroups are then used for the construction of molecules’
automorphism groups (Equation 4). These atom partitions and symmetry groups are the core
part of the MAYGEN canonical test.

𝐴𝑢𝑡(𝐴) : = π ∈ 𝑆
𝑛
 | 𝐴π = 𝐴{ } ≤ 𝑆

𝑝
 (4)

MAYGEN’s construction of candidate structures consists of three distinct recursive tasks. First,
the hydrogens are distributed to the heavy (i.e. non-hydrogen) atoms of the molecular formula.
Then, the structures are generated in a block-wise manner, and finally, the canonical test avoids
the generation of duplicate structures in an efficient and dynamic manner.

2.1. Molecular formula check and hydrogen distribution

2.1.1. Graph Existence Check
Before calling the generator functions, there is a preliminary test for input molecular formulae.
From graph theory, a degree list d can represent a graph with p nodes if the sum of all node
degrees is equal or greater than (Equation 5) [3].2 * (𝑝 − 1)

(5)𝑑 = (𝑑
1
, 𝑑

2
, ..., 𝑑

𝑝
)

𝑖=1

𝑝

∑ 𝑑
𝑖
 ≥ 2 * (𝑝 − 1)

A graph with p nodes should consist of at least edges. Since an edge is connected with(𝑝 − 1)
two nodes in a graph, the sum of its node degrees should be equal to or greater than

.2 * (𝑝 − 1)

2.1.2. Hydrogen Distribution
For a given molecular formula, MAYGEN processes the hydrogens first and distributes them to
all the other atoms in all possible ways since a hydrogen atom has a valence of 1 and can
always have only one neighbour. The hydrogen distribution function takes two inputs, the atom
partition and the number of hydrogens. The hydrogens are distributed in ascending order within
each partition in order to avoid duplicates.

After the hydrogen distribution, the initial degrees and the initial partition are updated for each
hydrogen distribution. For example, the non-hydrogen atoms from the molecular formula C6H6

have the initial respective degrees as and the initial partition . There are 7[4, 4, 4, 4, 4, 4] {6}
possible hydrogen distributions (Figure 2) to these carbon atoms. After the hydrogen distribution
step, the new lists of node degrees and partitions are used for the structure generation process.
With the pre-hydrogen distribution, MAYGEN deals with a matrix instead of a6 𝑥 6 12 𝑥 12
matrix. The matrix size also has an impact on the canonical test since this test depends directly

5

https://www.zotero.org/google-docs/?KrlE0J

on the rows’ permutations. The hydrogen distribution code is available in the
hydrogenDistributor Java class.

Figure 2. Illustration of the hydrogen distribution of C6H6 (in yellow) and its effect on the
assigned atom valency (in blue) and on the atom partition (in red).

2.2. Construction of Candidate Structures

Once the molecular formula satisfies the graph existence criteria, the hydrogen distribution is
performed to build a list of degrees. MAYGEN then starts the actual construction of candidate
structures for each degree.
The structures are built in a block-wise manner. The algorithm is based on the node degrees
that correspond to the atom valences. The initial partition of the atoms, based on their element
symbols, defines the blocks of the matrix (Figure 3).

6

Figure 3. Block-wise representation of a matrix. Here, the matrix is split into parts based on the
initial node partition with t entries. Image adapted from [3].λ

With p being the number of atoms in the molecular formula without the hydrogens, an empty
matrix A is built. This matrix is filled in descending order starting with the maximal𝑝 𝑥 𝑝

capacities (e.g. 3 for a carbon atom), decrementing its valence (e.g. 4 for the same carbon
atom), and this is performed for each atom. Due to the diagonal symmetry of such matrices,
only the upper triangular part needs to be filled. A canonical test, as described below, is
performed once a block is filled. In a matrix, a block is defined as a number of rows and their
transposes (i.e. columns). For example, a block between two indices 1 and 4 means the first 4
rows and the first 4 columns of the matrix. It needs to be noted that the canonical texts are
performed without waiting for the whole matrix to be filled, which increases MAYGEN’s
efficiency. This is the early boundary condition of the blockwise generation and avoids the
construction of duplicate molecular structures. When the whole matrix is filled, it is written into
the output SDF file, if such an option is selected at the beginning of the process. The algorithm
then modifies the same input matrix A until there are no more possible changes. This is called
the “build-and-forget method” [3]. The overall algorithm structure is explained in Algorithm 1 [3].

7

https://www.zotero.org/google-docs/?AVKKfg
https://www.zotero.org/google-docs/?GqaKto
https://www.zotero.org/google-docs/?Dp2hnD

Keeping the example of C6O2H6, the initial valence vector is
, where the valences of each carbon atom are listed first,𝑣 = [4, 4, 4, 4, 4, 4, 2, 2, 1, 1, 1, 1, 1, 1]

then the valences of each oxygen atom, and lastly the valences of all 6 hydrogen atoms. To
optimize the process, the hydrogens are avoided in the further construction of the matrices, i.e

8

the hydrogen distribution step. Thus, the initial partition is and the correspondingλ = {6, 2}
matrix is a matrix (built on 6 carbons and 2 oxygens).8 𝑥 8

2.2. Canonical Test
The canonical test is the crucial part of the MAYGEN algorithm. In blockwise orderly structure
generation, the early canonical testing avoids the construction of many duplicates. Overall, the
purpose of the canonical test is the detection of the maximal matrix with respect to the given
initial node partition.

(6)𝐴 ≥ 𝐴π ∀ π ∈ 𝑆
λ

In the naive version of the canonical, test matrix is permuted for all the permutations of𝐴 𝑆
π

and its maximality is checked (Equation 6). In the permuted matrices, , their rows and entries𝐴π
are permuted. The original matrix is compared with all the permuted matrices. Two matrices𝐴
are compared row by row in a lexicographical order (Equation 7).

𝐴 > 𝐴' : ⇔ (𝑎
1,1

,..., 𝑎
1,𝑝

, 𝑎
2,1

,..., 𝑎
2,𝑝

,..., 𝑎
𝑝,1

,..., 𝑎
𝑝,𝑝

) > (𝑎
1,1
' ,..., 𝑎

1,𝑝
' , 𝑎

2,1
' ,..., 𝑎

2,𝑝
' ,..., 𝑎

𝑝,1
' ,..., 𝑎

𝑝,𝑝
')

(7)

In the blockwise orderly generation, only the rows within the blocks are compared.

2.2.1. Cycle Transpositions
In the canonical test, the size of the symmetry group affects the run time of the algorithm. The
initial partition is updated for each row during the test. Starting with the initial partition, with each
row, the partitions are refined. The refinement process (Equation 8) is explained below:

(8)

For C3O2H4, the initial partition without hydrogens is . Thus the partition list for all the rows{3, 2}
are:

9

λ 0 = {3, 2}

λ 1 = {1, 2, 2}

λ 2 = {1, 1, 1, 2}

λ 3 = {1, 1, 1, 2}

λ 4 = {1, 1, 1, 1, 1}

These partition lists are used for the construction of the symmetry groups. By comparing the
indices of two consecutive partitions, the cycle transpositions of symmetry groups are

calculated. For partitions and , the number of cycles is the ith entry in the formerλ (𝑖−1) λ (𝑖)

partition (Equation 9).λ
𝑖
(𝑖−1)

(9)𝑆
λ (𝑖−1) =

𝑗=𝑖

λ
𝑖
(𝑖−1)

⋃ (𝑖, 𝑗)𝑆
λ (𝑖), 𝑖 = 1,... , 𝑝 − 1.

For example, the initial partition is and the refined partition for the first row is .{3, 2} {1, 2, 2}
Here the number of cycle transpositions is 3 since the first entry of the former partition is 3. The
cycle transpositions are and . These cycles are calculated row by row for all(1, 1), (1, 2) (1, 3)
the partitions. The symmetry group of the molecule is calculated by the multiplication of all these
cycles. The list of the partitions and their cycles are listed below:

λ 0 = {3, 2} λ 1 = {1, 2, 2} 𝐶𝑦𝑐𝑙𝑒𝑠: (1, 1), (1, 2), (1, 3)

λ 1 = {1, 2, 2} λ 2 = {1, 1, 1, 2} 𝐶𝑦𝑐𝑙𝑒𝑠: (2, 2), (2, 3)

λ 2 = {1, 1, 1, 2} λ 3 = {1, 1, 1, 2} 𝐶𝑦𝑐𝑙𝑒𝑠: (3, 3)

λ 3 = {1, 1, 1, 2} λ 4 = {1, 1, 1, 1, 1} 𝐶𝑦𝑐𝑙𝑒𝑠: (4, 4), (4, 5)

2.2.2. Calculation of Automorphisms
In the canonical test, for a candidate matrix, its automorphisms are calculated row by row. For
the ith row of a matrix, the cycle transpositions are calculated based on the partitionsς

(𝑖,𝑗)

and . These cycle transpositions are used in the automorphisms search. All theseλ (𝑖−1) λ (𝑖)

cycles are multiplied in DFS manner with all the former automorphisms of the graph. Thisτ
updated list of permutations are used in the canonical test of the matrix. For a graph with p
nodes, its list of automorphisms until the ith row is:

10

𝐹 (𝑖) = {τ ∈ 𝐹 (𝑖−1) | τ * ς
(𝑖,𝑗)

 } 𝑖 < 𝑗 <λ
𝑖
(𝑖−1)

(10)

After the multiplication with all its cycles (Equation 10), this updated list of automorphisms is
used in the maximality check. If an automorphism is detected, that permutation is added to the

automorphisms list, . Thus, the automorphisms list is updated for each row until the row is in𝐹 𝑖

maximal form with respect to its partitions.

2.2.3. Maximality Check
For the maximality test of the ith row of a matrix, the row is compared with each permutation
action in the automorphisms list. For each permutation, the original matrix A is permuted. Then,
the ith rows of the original matrix and the permuted one are compared. These two rows are
compared based on the ith atom partition. For an initial matrix A, as shown in Figure 4a, with its

partition } and the refined partition , there are 5 cycle transpositions.λ (0) = {5 λ (0) ' = {1, 4}
One of these cycles is . To perform the maximality test, its first and second rows are(1, 2)
compared (Figure 4a).

11

Figure 4. a) A matrix A is permuted with a cycle transposition. The first and the second rows are
identical after the permutation action. b) A matrix B is permuted with a cycle transposition. The
first and the second rows are not identical. c) The canonical permutation of matrix B is given.

In this example, the permutation is an automorphism of the first row since it maps the row(1, 2)
to itself in the adjacency matrix. Then this permutation is added to the automorphisms list.
However, in the case where a mapping with a cycle does not map the row to itself, a canonical
permutation is needed. Same as matrix A, for an initial matrix B (Figure 4b) with its initial

partition }, the refined partition , there are 5 cycle transpositions. One ofλ (0) = {5 λ (0) ' = {1, 4}
them is . To perform the maximality test, its first and second rows are compared (Figure(1, 2)
4b).

Different from example A, in matrix B, its first and second row are not identical after the cycle
transpositions. Therefore, a canonical permutation is needed. The canonical permutations are
searched within the Young subgroups built with respect to the refined partition. In this example,

the refined partition is . Thus, the symmetry group is . For theλ (0) ' = {1, 4} 𝑆
{1}

* 𝑆
{2,3,4,5}

canonical permutation search, only the permutations of the sets and are required.{1} {2, 3, 4, 5}
For the rows of matrix B, the canonical permutation is then , as depicted in Figure 4c.(3, 5)
Thus, is the automorphism of the first row and added to the automorphisms list for(1, 2)(3, 5)
further testings.

In general, there are three criteria for updating the automorphisms list and for the maximality
check:

In the canonical test, if the row is canonical after testing all the permutations, the partition λ (𝑖+1)

is built based on the ith row’s entries. After filling the entries of the ith row, i.e., adding bonds to

the ith atom, the atom neighbourhoods are changed. Therefore the partition is definedλ (𝑖+1)

12

based on the partition and the ith row entries. For matrix A and its refined partitionλ (𝑖)

, its partition first is updated with respect to the first row entries (Figure 5).λ (0) ' = {1, 4}

Figure 5. Updating partition after the canonical test with respect to the row entries.

The canonical test continues until the rows are in maximal form in lexicographic order. The
automorphisms and partition lists are updated row by row.

2.2.4. Learning From Canonical Test
In case a molecule cannot pass the canonical test, there is still something to learn from the test.
In the row by row comparison of the canonical test, when a row does not pass the test, the entry
making it non-canonical is detected. As explained in Algorithm 1, if a block is not canonical,
MAYGEN updates the matrix starting with its last entry in the block. However, with the help of
the non-canonical matrix, the algorithm starts modifying the matrix from the entry making the

matrix non-canonical. For a matrix C with its partition } and the refined partitionλ (0) = {5

, there are 5 cycle transpositions. One of these cycles is . To perform theλ (0) ' = {1, 4} (1, 3)
maximality test, its first and third rows are compared as shown in Figure 6.

Figure 6. For a non-canonical matrix, detecting the entry indices makes it non-canonical.

The permutation makes the third row bigger than the firstπ = (2, 4)(3, 5) ∈ 𝑆
{1}

* 𝑆
{2,3,4,5}

row. Here the first entry making the row non-canonical is in the matrix. Then the matrix𝐶[3, 4]
construction continues with the indices . With the “learning from the canonical test”, all the[3, 4]
other non-canonical matrices are skipped.

2.3. Connectivity Test
The connectivity test of a graph is performed based on the neighbourhoods of all its nodes. The
connectivity test starts with enumerating the nodes and setting this as the initial graph
enumeration. The enumeration list is updated while checking the neighbour lists node by node.
After detecting neighbours of a node, the labellings of the tested node and its neighbours from

13

the graph enumeration list are stored. The minimum value of this set is given as the smallest
index of the neighbourhood. This smallest index value is used for updating the list of graph
enumeration. The test is terminated once all the nodes have the same label or all the nodes are
re-labelled. For example, the connectivity test is performed for an isomer of C6H6 represented by
the adjacency matrix A (Figure 7a) with its initial node enumeration (labels) ,{1, 2, 3, 4, 5, 6}

Figure 7: a) The adjacency matrix of an isomer of C6H6. b) A isomer of C 6H6.

Table 1: The connectivity test for an isomer of C6H6 represented by matrix A (Figure 7a).

Node Index Neighbors Former Label Minimum Label Enumeration

1 {1,2,3} {1,2,3} 1 {1,1,1,4,5,6}

2 {2,5} {1,5} 1 {1,1,1,4,1,6}

3 {3,4,6} {1,4,6} 1 {1,1,1,1,1,1}

The matrix A (Figure 7a) is connected since the smallest node label for each tested node is1
and its last node enumeration list includes only 1s. Thus there is only one component whose
smallest index is 1 (Figure 7b). For a disconnected chemical graph represented by the
adjacency matrix B (Figure 8a) with its initial node enumeration (labels) .{1, 2, 3, 4, 5, 6}

14

Figure 8. a) The adjacency matrix of an isomer of C6H6. b) A disconnected molecule with
formula C6H6.

Table 2: The connectivity test for an isomer of C6H6 represented by matrix B (Figure 8a).

Node Index Neighbors Former Label Minimum Label Enumeration

1 {1,2,5} {1,2,5} 1 {1,1,3,4,1,6}

2 {2,5} {1} 1 {1,1,3,4,1,6}

3 {3,4,6} {3,4,6} 3 {1,1,3,4,1,6}

4 {4,6} {3} 3 {1,1,3,3,1,3}

5 {5} {1} 1 {1,1,3,3,1,3}

6 {6} {3} 3 {1,1,3,3,1,3}

The matrix B represents a disconnected isomer of C6H6. This molecule has two components
(Figure 8b) with the indices and . The first component is theς

1
= {1, 2, 5} ς

2
= {3, 4, 6} ς

1

first component with respect to its atom labelling. Here, components are compared with respect
to their maximum index.

2.2.4. Learning From Connectivity Test

Similar to Section 2.2.4, there is still something to learn from the connectivity test if a molecule is
not connected. In MAYGEN, the connectivity test is performed when a canonical matrix is

15

complete. If a molecule is not connected, it is not stored in the output file and its first component
needs to be detected. For example, the matrix B with Table 2, its first component is

. The maximum index of the first component identifies where the graph getsς
1

= {1, 2, 5}

disconnected.

In Algorithm 1, when a matrix is complete and stored in the output file, the generation process
continues with the backward function. Here, the last index of the matrix is used as the input.
However, with the “learning from connectivity test”, the algorithm continues with the last entry of
the first component. For example, in matrix B, the first component is and theς

1
= {1, 2, 5}

maximum index is 5. Thus, the graph gets disconnected after the last entry of the fifth row,
entry of the matrix B. All the other modifications on the matrix between its last entry [6,6]𝐵[5, 6]

and [5,6] build only disconnected graphs. That is why the matrix modification process continues
with the last entry of the first component. The learning from the connectivity test reduces the
construction of disconnected graphs.

4. Results
MAYGEN is written purely in Java and hosted on GitHub (see section Availability). The full
source code, as well as precompiled binaries, are available for download.
The code can be executed as follows:

> java -jar MAYGEN.jar

usage: java -jar MAYGEN.jar -f <arg> [-v] [-d <arg>]

Generates
molecular structures for a given molecular formula. The input is a
molecular formula string. For example 'C2OH4'.Besides this formula,
the directory is needed to be specified for the outputfile.

-f,--formula <arg> formula (required)
-v,--verbose print message
-t,--tsvoutput output formula, number of structures and

execution time in CSV format
-o,--filename <arg> store output in given file

In order to generate constitutional isomers, the user passes a molecular formula with the -f
option:

> java -jar MAYGEN.jar -f C10H16
MAYGEN is generating isomers of C10H16...
The number of structures is: 24938

16

Time: 1.590 seconds

Alternatively, users who either want to contribute to the development or use the latest source
code can clone the GitHub repository and build the MAYGEN binary using the Maven build
environment.

For the purpose of this publication, MAYGEN was tested with randomly selected molecular
formulae. The run times of MAYGEN and OMG are compared in Table 3, Table 4 and Table 5.
Different from MOLGEN 5.0 [4], OMG generates structures for additional valences of sulfur (S),
phosphorus (P) and nitrogen (N) and therefore more molecules than MOLGEN or MAYGEN [2].
MOLGEN 5.0 uses the default lowest valences for N(3), S(2), and P(3); unless a user defines
the higher valences. For all the results given in these tables, MAYGEN generated the same
number of structures as MOLGEN 3.5. The numbers reported in the tables are given for Molgen
5.0 since this could be run in batch mode on our Linux servers. Molgen 5.0 has an aromaticity
filter that filters out resonance structures of substituted aromatic molecules. This filter is
activated by default and therefore Molgen 5.0 generates fewer structures than Molgen 3.5 and
MAYGEN. Since bromine (Br) atom type is not defined in OMG it does not generate structures
with molecular formulae including Br.

Table 3: The number of structures and the run times are listed for MOLGEN 5.0, MAYGEN and
OMG (molecules do not contain N, P or S). A more diverse set of molecular formulae is
benchmarked in Table 5. Molgen 5.0 has an aromaticity filter that filters out resonance
structures of substituted aromatic molecules. This filter is activated by default and therefore
Molgen 5.0 generates fewer structures than Molgen 3.5 and MAYGEN.

Formula # Molecules MOLGEN
Run Time (s)

Molecules MAYGEN
Run Time (s)

OMG
Run Time (s)

C3Cl2H4 7 0.006 7 0.070 0.219

C3O3H4 152 0.026 152 0.110 0.389

C6H6 217 0.049 217 0.159 0.454

Cl2C5H4 217 0.028 217 0.116 0.659

C5H9ClO 334 0.009 334 0.147 0.745

C6OF2H12 536 0.032 536 0.210 6.219

C7H10 575 0.078 575 0.148 0.877

17

https://www.zotero.org/google-docs/?XOH9zG
https://www.zotero.org/google-docs/?kkZfjK

C6O2H12 1,313 0.082 1,313 0.294 3.503

C6OH6 2,237 0.092 2,237 0.292 2.706

C6H7F2I 3,523 0.053 3,523 0.293 12.233

C8H10 4,678 0.250 4,679 0.354 6.533

C5F2O2H2 7,094 0.125 7,094 0.359 52.146

C7OH10 7,166 0.192 7,166 0.422 9.209

C4ClHF2O3 7,346 0.076 7,346 0.542 159.133

C4O5H6 8,070 0.110 8,070 0.634 27.074

C5ClHF2O2 12,400 0.146 12,400 0.484 309.788

C9H12 19,980 0.783 19,983 1 36.798

C6H10O2Br2 24,201 0.197 24,201 1 N/A

C10H16 24,938 1 24,938 1 86.477

C6H6ClOI 30,728 0.226 30,728 0.834 70.666

C7O2H10 54,641 0.411 54,641 2 98.448

C8OH10 69,659 0.811 69,669 2 119.510

18

Figure 9: Timing of structure generation runs with MOLGEN 5.0, MAYGEN and OMG for
molecular formulae containing carbon, hydrogen, oxygen and halogens, but not containing
nitrogen, phosphorus or sulfur. The latter were omitted to keep fair conditions because OMG
generates additional structures with higher oxidation states for those omitted elements.

Table 4: The number of structures and the run times are listed for MOLGEN 5.0, MAYGEN and
OMG (molecules do not contain N, P or S). A more diverse set of molecular formulae is
benchmarked in Table 5. Molgen 5.0 has an aromaticity filter that filters out resonance
structures of substituted aromatic molecules. This filter is activated by default and therefore
Molgen 5.0 generates fewer structures than Molgen 3.5 and MAYGEN.

Formula # Structures MOLGEN
(s)

Structures MAYGEN (s) # Structures OMG
(s)

C9 811 0.333 832 0.739 832 225

C9H6 56,106 5 56,437 1 56,437 166

C9H8 57,615 2 57,771 2 57,771 122

C9H8O 1,011,969 13 1,013,745 13 1,013,745 2,790

C9H8O2 9,979,619 80 9,990,575 117 9,990,575 38,260

C10 4,197 1 4,330 4 4,330 2,481

19

C10H6 436,444 44 439,373 7 439,373 2,066

C10H8 486,354 33 488,125 8 488,125 1,598

C10H6O 8,633,799 242 8,671,508 103 8,671,508 53,640

C10H6O2 93,695,925 1,572 93,964,875 1,204 N/A >24 h

C11 24,542 7 25,227 58 25,227 27,854

C11H8 4,423,944 355 4,442,438 64 4,442,438 19,048

C11H10 3,606,031 238 3,614,427 53 3,614,427 12,910

C11H10O 79,695,287 1,363 79,818,477 1,057 N/A >24 h

C11H10O2 954,738,367 8,913 955,729,849 13,191 N/A >24 h

C12 167,791 53 171,886 1,994 N/A >24 h

C12H14 11,443,070 796 11,451,841 210 11451841 45930,809

C12H16 4,263,152 223 4,264,429 93 4,264,429 18,317

C12H16O 99,529,810 1,243 99,549,462 1,874 N/A >24 h

C12H16O2 1,263,998,275 8,148 1,264,165,511 23,294 N/A >24 h

20

Figure 10. Times for structure generation runs with MOLGEN 5.0, MAYGEN and OMG for
molecular formulae containing only carbon, hydrogen, oxygen. For this common elemental
composition, MAYGEN achieves approximately the same performance as Molgen.

Table 5: The number of structures and the run times are listed for MOLGEN, MAYGEN and
OMG with a diverse set of molecular formulae. MAYGEN always generates the same number of
structures as MOLGEN. Molgen 5.0 has an aromaticity filter that filters out resonance structures
of substituted aromatic molecules. This filter is activated by default and therefore Molgen 5.0
generates fewer structures than Molgen 3.5 and MAYGEN. OMG generates more structures in
some cases due to different valences of S, P and N, which is why the per molecule run time is
also given in milliseconds (ms).

Formula #
Molecule
s

MOLGE
N
Run
Time (s)

Per
molecul
e (ms)

#
Molecul
es

MAYGE
N
Run
Time (s)

Per
molecule
(ms)

#
Molecul
es

OMG
Run
Time (s)

Per
molecule
(ms)

C2NO2H5 84 0.007 0.083 84 0.085 1 97 0.359 4

P3O3NCl2 665 0.021 0.031 665 0.170 0.256 3,862 379 98

F2P3BrN
O2H

1,958 0.024 0.012 1,958 0.233 0.118 N/A N/A N/A

21

C5H6BrN 2,325 0.041 0.017 2,325 0.232 0.099 N/A N/A N/A

C5H5SI5 2,619 0.081 0.030 2,619 0.654 0.249 21,648 464 21

C3O3NH5 2,644 0.064 0.024 2,644 0.254 0.096 3,733 6 2

C5H9ClO
S

3,763 0.059 0.015 3,763 0.252 0.066 15,721 149 9

C3NO2SH
7

3,838 0.064 0.016 3,838 0.291 0.075 15,978 100 6

C4H8Cl3O
2P

9,313 0.102 0.010 9,313 1 0.107 15,776 814 52

C5H2F2S
O

13,446 0.153 0.011 13,446 0.568 0.042 67,720 645 10

C5H10BrF
2OP

15,009 0.090 0.005 15,009 2 0.133 N/A N/A N/A

C7H11ClS 15,093 0.220 0.014 15,093 0.957 0.063 73,183 1,455 20

C4NO3H7 18,469 0.212 0.011 18,469 0.767 0.041 26,530 94 4

C4H5O2F2

P
41,067 0.237 0.005 41,067 2 0.048 59,035 317 5

C4H5O2Br
2N

41,067 0.225 0.005 41,067 2 0.048 N/A N/A N/A

C3N3O2H7 45,626 0.291 0.006 45,626 1 0.021 124,808 1,378 11

C5N3H9 46,125 0.469 0.010 46,125 1 0.021 134,278 2,635 20

C3O6PH5 51,323 0.388 0.007 51,323 2 0.038 83,977 564 7

C4H10NO
SP

52,151 0.280 0.005 52,151 2 0.038 303,760 51,917 171

C5H5POB
r2

62,886 0.405 0.006 62,886 1 0.015 N/A N/A N/A

C4H8OI2N
P

65,980 0.343 0.005 65,980 2 0.030 127,328 10,277 81

C4H5NO2

S
73,045 0.460 0.006 73,045 2 0.027 486,829 6,353 13

C4H6N2O2 75,211 0.532 0.007 75,211 2 0.026 174,687 2,518 14

C5H4N2O 86,900 0.813 0.009 87,055 1 0.011 280,491 3,891 14

C4HN3O2 94,247 0.824 0.008 94,422 2 0.021 1,175,05 73,605 63

22

6

C5H5ClN
OF

111,921 0.520 0.004 111,921 2 0.017 186,322 2,778 15

C4H2N2O3 131,260 0.853 0.006 131,318 3 0.022 568,038 17,063 30

C6H2N2O 238,916 3 0.012 240,339 3 0.012 1,231,65
7

46,971 38

C6H4N2O 736272 6 0.008 738,283 8 0.010 2,951,63
3

49,887 17

C5HN3O2 846180 8 0.009 848,498 10 0.011 N/A N/A >24 h

C5H2N2O3 1196267 8 0.006 1,197,63
4

14 0.011 N/A N/A >24 h

C7H11NO2 1495599 6 0.004 1,495,59
9

20 0.013 N/A N/A >24 h

C4H3N3O3 2407836 11 0.004 2,408,63
5

28 0.011 N/A N/A >24 h

C5H8N2O3 3223855 11 0.003 3,223,85
5

40 0.012 N/A N/A >24 h

C7H9NO2 3236782 14 0.004 3,237,13
2

38 0.011 N/A N/A >24 h

C5H6N2O3 4513529 17 0.003 4,513,86
7

54 0.011 N/A N/A >24 h

C5H5N3O2 9386119 40 0.004 9,390,61
8

94 0.010 N/A N/A >24 h

C7H6N2O 1048696
9

66 0.006 10,504,3
07

100 0.009 N/A N/A >24 h

23

Figure 11. Times for structure generation runs with MOLGEN 5.0, MAYGEN and OMG for
molecular formulae containing all allowed elements (carbon, hydrogen, oxygen, nitrogen,
phosphorus, sulfur and halogens. In previous figures, N, S and P were omitted to keep fair
conditions because OMG generates additional structures with higher oxidation states for those
omitted elements. The total run times (s) are plotted. For a fairer comparison, Figure 12 shows
the per-molecule run times.

Figure 12. Times for structure generation runs with MOLGEN 5.0, MAYGEN and OMG for
molecular formulae containing all allowed elements (carbon, hydrogen, oxygen, nitrogen,
phosphorus, sulfur and halogens. Since OMG generates additional structures with higher

24

oxidation states for N, S and P the run times (ms) for the construction of per molecule are
plotted.

For most structures containing all allowed elements, MOLGEN was slightly faster than MAYGEN
and much faster than OMG (Figure 9-12); for carbohydrates and those containing additional
oxygen, MAYGEN’s execution speed was comparable to that of MOLGEN. OMG was not able
to generate some of the tested molecular formulae within a day. For these formulae, “24>h” is
added to the tables. Since the bromine (Br) atom type is not defined in OMG; “N/A'' is added to
the result tables. These results are visualized with spaces in the plots (Figure 9-12).

Limitations
MAYGEN is currently restricted to generate molecules with the lowest valence states of
nitrogen, phosphorus and sulfur, and all testing and benchmarking was done under this
boundary condition. This is no principle restriction - the algorithm will work with any given
valence state - but the workflow logic of MAYGEN needs to be adapted to compute structures
for higher valences of these elements.

5. Future Work
Being implemented in pure Java and with its code completely open, MAYGEN can be easily
extended with additional functionalities and algorithmic improvements. The code availability
through GitHub invites the scientific community to contribute to the further developments of
MAYGEN. Obvious future work includes performance enhancements. Moreover, we aim to
integrate MAYGEN into the Chemistry Development Kit (CDK) [5] in the near future which will
enable an easy integration of the molecular structure generator in other software
programmatically.
Furthermore, it is desirable that MAYGEN can use substructures in its input as building blocks,
in order to include them as badlists or goodlists into the generation and therefore reduce the
number of candidate structures to generate. This will enable its use in systems for
computer-assisted structure elucidation (CASE) whose aim is to elucidate chemical structures
from NMR and mass spectral data.

6. Conclusion
In this manuscript we presented MAYGEN, an open-source constitutional isomer generator
completely written in Java. MAYGEN generates constitutional isomer spaces exhaustively and
avoids isomorphic structures during the generation using the principles of orderly canonical
graph generation.
We presented extensive testing of MAYGEN against two alternative solutions:
MAYGEN outperforms the current best single-thread structure generator OMG by one order of
magnitude and is only marginally slower than the fastest in the current state-of-the-art software

25

https://www.zotero.org/google-docs/?54PTDT

MOLGEN. We expect MORGEN to be a starting point for further developments in the area of
chemical structure generation by the open source, open science community.

Availability and Requirements
● Project name: MAYGEN
● Project home page: https://github.com/MehmetAzizYirik/MAYGEN
● Operating system(s): Platform independent
● Programming language: Java
● License: MIT

Competing Interests
All authors declare no competing interests.

Funding
MAY and CS acknowledge funding by the Carl-Zeiss-Foundation.
MS was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation), Project-ID 239748522, SFB 1127 ChemBioSys.

Acknowledgements
We wish to acknowledge the helpful discussion with Dr. Ronald Grund about the principles of
orderly generation and the help from Valentyn Kolesnikov for the performance tuning.

Author contributions
MAY developed MAYGEN and performed the evaluation and testing. MS contributed with
advice, code-review and made the figures. CS conceived the project and guided the
development. All authors wrote, read and approved the manuscript.

Reference

1. Yirik MA, Steinbeck C. Chemical graph generators. PLOS Comput Biol. 2021;17:e1008504.
doi:10.1371/journal.pcbi.1008504.
2. Peironcely JE, Rojas-Chertó M, Fichera D, Reijmers T, Coulier L, Faulon JL, et al. OMG:
Open molecule generator. J Cheminformatics. 2012;4:1–13.
3. Grund R, Müller R. Konstruktion molekularer Graphen mit gegebenen Hybridisierungen und
überlappungsfreien Fragmenten. Lehrstuhl II für Mathematik; 1995.

26

https://github.com/MehmetAzizYirik/MAYGEN
https://www.zotero.org/google-docs/?qFea35
https://www.zotero.org/google-docs/?qFea35
https://www.zotero.org/google-docs/?qFea35
https://www.zotero.org/google-docs/?qFea35
https://www.zotero.org/google-docs/?qFea35
https://www.zotero.org/google-docs/?qFea35

4. Gugisch R, Kerber A, Kohnert A, Laue R, Meringer M, Rücker C, et al. MOLGEN 5.0, a
Molecular Structure Generator in Advances in Mathematical Chemistry. Adv Math Chem Basak
SC Restrepo G Villaveces JL Eds.
5. Willighagen EL, Mayfield JW, Alvarsson J, Berg A, Carlsson L, Jeliazkova N, et al. The
Chemistry Development Kit (CDK) v2.0: atom typing, depiction, molecular formulas, and
substructure searching. J Cheminformatics. 2017;9:1–19.

27

https://www.zotero.org/google-docs/?qFea35
https://www.zotero.org/google-docs/?qFea35
https://www.zotero.org/google-docs/?qFea35
https://www.zotero.org/google-docs/?qFea35
https://www.zotero.org/google-docs/?qFea35
https://www.zotero.org/google-docs/?qFea35

