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Abstract

In this paper we present a comparison of two mathematical techniques for simulating the

behaviour of a surface-confined single-electron redox process when interrogated with a large

amplitude sine-wave. The two simulation methods are an analytical approximation proposed

by Bell and co-authors, and a numerical solution that we have previously used to analyse

such single-electron processes. We show that the techniques are in good agreement, allowing

for the limitations imposed by the construction of the analytical model. We also compare two

different parameter inference approaches proposed for the respective simulation techniques.

1



Introduction

In a recent paper,1 we showed the advantages of using a large amplitude sinusoidal poten-

tial input, a technique we termed Purely Sinusoidal Voltammetry (PSV), to interrogate the

redox-reactions of surface-confined molecules. The principal advantage of this technique is

the ability it gives to numerically simulate a complete experiment faster than other simi-

lar voltammetric techniques, while offering a reasonable degree of sensitivity to important

electrochemical reaction parameters. The act of simulation requires solving a system of dif-

ferential equations to obtain the total current as a function of Faradaic, background current

and experimental input parameters; the forward problem. In our previous work, we have

used numerical methods when solving the forward problem, in part because the same simu-

lation approach can be used for multiple potential input waveforms for a given mechanism.

There is a large pool of literature that uses numerical approaches in the solving of the for-

ward and inverse problems, reviewed by Gavaghan2 and Bieniasz.3 A unified mathematical

approach is rarely possible for analytical solutions to the forward problem, which often re-

quire an array of complex mathematics and a variety of constraints to achieve an expression

for either the total current or some feature derived thereof, such as in the work of Bazant.4,5

However, there are certainly advantages to using a tractable analytical solution, such as not

having to account for numerical error, and reductions in the computational burden. Prior

to our work showing that it was possible to infer parameters from experimental PSV data

using the numerical approach,1 Bell et al. published an analytical approximation (referred

to for convenience as “the analytical method”) for the total current arising from a surface

confined PSV experiment (which they termed “large-amplitude sinusoidal voltammetry”).6

In this paper, we have reproduced some of the work of Bell et al., demonstrating that the

solution obtained by the numerical and analytical approaches is equivalent. This validates

the accuracy of our numerical approach, as two independent mathematical methods for mod-

elling the same system yielding the same solution is a sufficient criterion for confidence in

both. In addition, Bell and co-authors suggested several approaches for inferring chemical
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reaction parameter values based on features of the current arising from a large-amplitude si-

nusoidal voltammetry experiment. We evaluate the performance of one of these approaches,

and investigate the accuracy of the recovery in the presence of increasing values of noise. We

compare the inference results to our own parameter inference method, using Markov-chain

Monte Carlo methods to infer parameter distributions from the total current. Our results

indicate that, although this parameter inference approach based on analysis of distinct cur-

rent features (as opposed to the total current) is grounded in very solid mathematics, it is

highly sensitive to noise. We discuss plans to expand this analysis to other heuristic analyses

in voltammetry.

Derivation of simulation models

Both the analytical method proposed by Bell,6 and our numerical approach start from the

same point, and model the current arising from a surface-confined species undergoing a

single-electron redox reaction, described by the following chemical equation

Ox
kred−−⇀↽−−
kox

Red+ e– .

The current as a function of time ĩ(t̃) is dependent on the rate of change of the surface

concentration of the oxidised species θ̃ox

ĩ(t̃) = FA
dθ̃ox

dt̃
, (1)

where the rate of change of θ̃ox is calculated from mass-action kinetics

dθ̃ox

dt̃
= k̃ox(t̃)θ̃red − k̃red(t̃)θ̃ox. (2)

We use the Butler-Volmer equations to represent k̃ox and k̃red, using the rate constant
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k̃0, and the symmetry factor α

k̃ox(t̃) = k̃0 exp
(
(1− α)(Ẽ(t̃)− Ẽ0′)

)
, (3)

and

k̃red(t̃) = k̃0 exp
(
− α(Ẽ(t̃)− Ẽ0′)

)
, (4)

where Ẽ(t̃) is defined as

Ẽ(t̃) = Ẽin + ∆Ẽ sin(ω̃t̃), (5)

where Ẽin is the average input voltage, or Estart+Ereverse

2
as long as the signal is periodic.

Equation 2 can be non-dimensionalised in multiple different ways, depending on what pa-

rameter(s) is/are chosen to non-dimensionalise the time constant. Both the numerical and

analytical methods share the following approach

Ẽ0 =
RT

F
E0, Ẽ(t̃) =

RT

F
E(t), θ̃ = θθ̃tot,

for the analytical case, time is non-dimensionalised using the rate constant k0 such that

t̃ =
t

k̃0
, ĩ(t̃) = FAk̃0θ̃toti(t), ω =

ω̃

k̃0
,

and for the numerical case, we non-dimensionlise time using the period of an oscillation of

the potential input, v

t̃ =
t

v
, ĩ(t̃) = FAvθ̃toti(t), ω =

ω̃

v
,

At this point, the method for obtaining the current for the two methods diverge — we

detail the approaches for the analytical method in the supplementary information, and our

numerical methodology can be found in previous papers.1 The key result from the derivation

for the analytical case is that the error in the expression is dependent on the inverse of the
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dimensionless input frequency ω−1.

Comparing the analytical and numerical models of PSV

Table 1: Simulation parameters used to generate analytical and numerical simulations as
compared in figure 2. Parameters marked with an asterisk were not modelled in the analytical
approximation, and set to zero for the numerical solution. The values of the parameters were
largely taken from Bell et al.6

Parameter Symbol (Unit) Value

Start potential Ẽstart (V) -0.25

Reverse potential Ẽreverse (V) 0.25

Midpoint potential Ẽ0 (V) 0.1

Rate constant k̃0(s
−1) Variable

Uncompensated resistance R̃u (Ω) 0*

Linear double-layer capacitance C̃dl (F) 0*

Surface coverage θ̃tot (mol cm−2) 1.0E-11
Symmetry factor α 0.55

Potential frequency ω̃ (Hz) Variable

Potential amplitude ∆Ẽ (V) 0.25
Area A (cm2) 0.03

In order to check the validity of the numerical approach, we compare the predicted

dimensional current generated using the numerical and analytical solutions, using the simu-

lation parameters in table 1. We show the impact of increasing frequency on the analytical

and numerical currents in figure 1. We see that higher input frequencies lead to increasing

agreement between the numerical and analytical solutions, as predicted by the error term

discussed in the derivation section. The fact that there is good agreement between the an-

alytical and numerical approaches implies we can have confidence in our numerical approach.

The comparison in figure 1 is undertaken more comprehensively in figure 2, where the rela-

tive error was calculated using the expression in equation 6, where RMSE is the root mean

square error, and ia and in are the analytical and numerical currents respectively. The error
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Figure 2: Percentage error of the analytical and numerical currents as function of the kinetic
parameter k0 and the input frequency. The kinetic value k̃0 in units of s−1 is shown in the
legend, with the rest of the simulation parameters reported in table 1.

is expressed as a percentage in figure 2.

Relative difference =
RMSE(ia, in)

īn
(6)

As expected, the accuracy of the analytical expression is dependent on the size of the input

frequency, because of the assumption that took us from equation S8 to equation S9 in the

SI. Additionally, because of the choice of non-dimensionalisation, we can predict the order

of magnitude of the error. Because the analytical approximation error is proportional to

the inverse of the frequency O(ω−1), this can be represented as O(X%), where X is the

ratio k̃0

ω̃
. As noted by Bell and coauthors,6 for the error to be O(1%), ω̃ must be 100 times

the magnitude of k̃0. However, we observe that in figure 2, 1% error is only observed with
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an input frequency that is four magnitudes larger than the kinetic parameter. This may

be because of our choice of error measure (as the true value of the current is not known),

and it should be noted that a similar result is observed when calculating the current using a

numerical simulation of equation S2 in the SI. From these comparisons it is apparent that the

frequency needs to be very large to obtain an analytical current simulation that agrees with

the numerical simulations, in some cases larger than is experimentally realisable. While there

are some advantages to solving the forwards problem this way, in particular computational

speed, the issue remains that the choice of frequency affects the amount of information

contained within the experimental current for a given system. If we use the analytical

approach, then we are obligated to use a frequency that minimises the approximation error.

In addition, the analytical approximation does not account for the impact of non-linear

double layer capacitance and uncompensated resistance (Ru), both of which we have found

to be key parameters when attempting to fit to experimental PSV data. As our numerical

model incorporates both of these parameters, they were set to zero when generating the

numerical solution, as inclusion of these effects would unnecessarily complicate the analysis

presented here.

Inferring parameters from synthetic noisy data

Bell et al. also reported a way to use the analytical approximation discussed above to

infer two key parameters, the reversal potential E0 and the kinetic parameter k0. This

requires undertaking two PSV experiments on the same system with different potential

input amplitudes. The inference approach requires taking the absolute magnitudes of the

harmonics of the current for each experiment, which is combined along with several other

parameters including the potential amplitude ∆E, the symmetry factor α and the average

input potential Ein to provide an expression for the reversible potential E0. The value of E0

can then be used to calculate the value the kinetic parameter.6 This method work perfectly
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in the noiseless regime, but as we show in figure 3, the harmonic amplitude ratio is sensitive

to the addition of noise. Current data was simulated using the analytical method described

above, using the parameters in table 2 for 300 potential oscillations, and normal, independent

and identically distributed (I.I.D.) random variables were added at each time point, with a

mean of zero and a standard deviation which was a percentage of the maximum value of the

current. We attempted to infer the Ẽ0 parameter using the ratio of the harmonic amplitudes

from two “noisy” simulations obtained using two different ∆E values, as described in.6 This

process was repeated 1000 times for each noise value, and we plot the calculated Ẽ0 values

as a histogram on the left-hand plot in figure 3. To compare this to the numerical approach,

we simulated current using the numerical method, using the same parameters and also for

300 oscillations, and added noise using the same approach described above. We then ran an

adaptive Metropolis-Hastings algorithm to infer parameter distributions from this data, the

results of which are shown on the right in figure 3.

Table 2: Simulation parameters used to generate analytical and numerical simulations from
which the Ẽ0 distributions in 3 were inferred. Parameters marked with an asterisk were not
modelled in the analytical approximation, and set to zero for the numerical solution. Two
input potential amplitudes are used for the analytical inference method. For the numerical
method only the lower values was used. The values of the parameters were chosen to closely
mimic the inference examples given in the paper by Bell et. al

Parameter Symbol (Unit) Value

Start potential Ẽstart (V) -0.077/0.128

Reverse potential Ẽreverse (V) 0.077/-0.128

Midpoint potential Ẽ0 (V) 0.0257

Rate constant k̃0(s
−1) 1

Uncompensated resistance R̃u (Ω) 0*

Linear double-layer capacitance C̃dl (F) 0*

Surface coverage θ̃tot (mol cm−2) 1.0E-11
Symmetry factor α 0.55

Potential frequency ω̃ (Hz) 50

Potential amplitude ∆Ẽ (V) 0.077/0.128
Area A (cm2) 0.03

We see from this figure that the error in the inferred Ẽ0 value increases with increasing
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Table 3: Means and standard deviations (in brackets) of the histograms of inferred Ẽ0 values
shown in figure 3 for analytical and numerical inference approaches.

Noise % Analytical inferred Ẽ0 (V) Numerical inferred Ẽ0 (V)

5.0% 0.0375 (0.0208) 0.0255 (0.000109)
4.0% 0.0351 (0.0158) 0.0258 (8.388E-05)
3.0% 0.0331 (0.0132) 0.0257 (6.572E-05)
2.0% 0.0306 (0.00955) 0.0258 (4.322E-05)
1.0% 0.0285 (0.00653) 0.0257 (2.246e-05)

Figure 3: Left: Histogram of Ẽ0 values obtained from synthetic noisy PSV data, generated
using the analytical method described above. I.I.D. normal noise was added at every time-
point, with 0 mean and an standard deviation that was a percentage of the maximum value
of the analytical current, indicated in the legend. The process of adding noise and calcu-
lating the Ẽ0value was repeated 1000 times for each percentage, and the average inferred
Ẽ0value was plotted. Right: Histogram of inferred Ẽ0 values generated by pooling the last
1000 samples from three MCMC chains run for 10000 iterations. In both cases the true
simulation Ẽ0 value is indicated by a black line.
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noise for both cases. In table 3 we see that the numerical approach yields estimates of the

Ẽ0 that are closer to the true value and with a standard deviation that is approximately 2

orders of magnitude lower. It should be noted that for the analytical inference method, any

errors in the inferred Ẽ0 value will be propagated to the estimate of the k̃0 value as well.

In terms of inferring data about actual experimental systems, we have observed that the

level of noise in data obtained from a surface-confined ferrocene coated electrode is typically

around 0.5% of maximum current — which means that the analytical inference approach

could potentially be used to corroborate the results of our numerical inference process in low

noise systems. However, in our experience, the un-modelled effects of Ru and Cdl both have

significant effects on harmonic amplitude, which will skew the results of this process.6

Conclusions

In this paper we have demonstrated very good agreement in the limit of high frequency

between our previously presented numerical solution of a surface-linked, single-electron redox

process interrogated using PSV, and the analytical model of the same system presented by

Bell et al. We have shown that there is a good agreement between two mathematical models

for the same experiment, confirming the legitimacy of the numerical approach. We have also

determined that, while the analytical approach is very accurate in the regime under which

it was derived (high input frequency and low noise), its use as a predictive tool appears

to decrease as we move towards real-world conditions, such as the presence of noise and

limitations of equipment. We believe that the method comparison detailed here, of taking

heuristic methods derived under favourable assumptions, and observing the robustness of

the predictions to increasing noise when the true answers are known, is a valuable way of

benchmarking the utility of these methods. This may be useful for theoretical scientists who

hope to see more widespread adoption of their ideas amongst experimentalists, as it allows

for a demonstration of how the technique performs under likely experimental conditions
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where the presence of noise makes the inference problem more challenging.
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