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Abstract

We present a convolutional neural network (CNN) framework for classifying different types of

plastic materials that are commonly found in mixed plastic waste (MPW) streams. The CNN

framework uses experimental ATR-FTIR (attenuated total reflection-Fourier transform infrared

spectroscopy) spectra to classify ten different plastic types. An important aspect of this type of

spectral data is that it can be collected in real-time; as such, this approach provides an avenue for

enabling the high-throughput characterization of MPW. The proposed CNN architecture (which

we call PlasticNet) uses a Gramian angular representation of the spectra. We show that this 2-

dimensional  (2D)  matrix  representation  highlights  correlations  between  different  frequencies

(wavenumber) and leads to significant improvements in classification accuracy, compared to the

direct use of spectra (a 1D vector representation).  We also demonstrate that PlasticNet can reach

an  overall  classification  accuracy  of  over  87% and  can  classify  certain  plastics  with  100%

accuracy.  Our framework also uses saliency maps to  analyze  spectral  features  that  are  most

informative. 
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1. Introduction

Plastics  are  essential  materials  that  are  used  in  a  wide  range  of  applications  such  as  food

packaging, construction, transportation, health care, and electronics. Since 1856 (when the first

plastic  celluloid  was invented),  the plastics  industry has grown rapidly  not  only in  terms of

volume, but also in terms of the variety of materials produced. This rapid expansion has resulted

in a massive environmental footprint; to give some perspective, in 2015, nearly 381 million tons

of mixed plastic waste (MPW) were produced, this is more than the total weight of humans on

earth (316 million tons). Notably, only 20% of all plastics produced were recycled (Ritchie and

Roser,  2018);  this  recycling  rate  is  notably  low  compared  to  that  of  other  materials  (e.g.,

aluminum has a recycling rate of nearly 100%). Most MPW end up in landfills and incinerators;

landfills  are unsustainable,  especially  when land availability  is  constrained  (Abdel-Shafy and

Mansour, 2018). MPW incineration reduces the need for landfills, but this process can release

hazardous substances into the atmosphere (Hopewell et al., 2009). 

MPW recycling is essential for mitigating the environmental impact of plastics, but this practice

faces  many  obstacles  (Schlesinger,  2013).  Most  of  the  recycled  plastic  is  reprocessed  into

downgraded products (of a lower value); for instance, plastics used for food packaging are often

converted into cheaper building materials such as plastic lumber (Awoyera and Adesina, 2020).

In other words, recycled plastic products are less valuable and thus there are limited incentives to

produce  them.  Another  key  factor  that  hinders  plastic  recycling  is  our  limited  ability  to

effectively  characterize  and sort  MPW streams (which can be quite  complex)  (Milios  et  al.,

2018).  Traditionally,  plastic  components  in  MPW can  only  be  partially  identified  based  on

techniques  such as  coding,  density  differences,  and froth-flotation  (Gundupalli  et  al.,  2017).

2



These  technologies  are  easy  to  implement  but  are  low-throughput  and  have  several  other

limitations  (Zhu et al., 2019); for example, density separation in water can effectively separate

polypropylene  (PP)  and  polyethylene  (PE)  from  polyvinyl  chloride  (PVC),  polyethylene-

terephthalate (PET), and polystyrene (PS); however, PVC cannot be removed from PET in this

manner because their density ranges overlap  (Hopewell et al., 2009). Automated sorting with

high-throughput, high-accuracy, and low-labor is necessary for effective MPW management.

Recent innovations in recycling technology include increasingly reliable detection instruments

and  improved  materials  identification  algorithms;  these  have  improved  the  accuracy  and

productivity of automated sorting. Methods such as spectroscopy, hyperspectral imaging (HSI),

ultrasonic techniques, X-ray diffraction (XRD), thermal imaging or infrared imaging, combined

with machine learning (ML) algorithms, have been successful in accurately identifying plastics

that are commonly found in MPW (da Silva and Wiebeck, 2020; Karlsson et al., 2016; Siddiqui

et al., 2008; Signoret et al., 2020, 2019; Wu et al., 2015). Michele et al. analyzed four different

spectroscopic  methods  with  various  machine  learning  (ML)  algorithms,  such  as  k-nearest

neighbors (KNN), linear discriminant analysis (LDA), and support vector machines (SVM), to

identify  marine  plastic  debris  and  consumer  plastic  (Michel  et  al.,  2020).  Among  the  four

spectroscopic methods,  the attenuated total  reflection-Fourier transform infrared spectroscopy

(ATR-FTIR) technique performed best, with an accuracy of 89-98%. Da Silva et al. developed a

method to identify nine different types of plastics, including polyamide (PA) and polycarbonate

(PC), based on μFTIR hyperspectral imaging and ML (Da Silva et al., 2020). Roh et al. used

laser-induced  breakdown  spectroscopy  with  an  algorithm-based  radial  basis  function  neural

network to identify black plastics, including PP, PS, and acrylonitrile-butadiene-styrene (ABS),
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and achieved an accuracy of over 95%  (Roh et al.,  2018). Wu et al.  proposed an automated

sorting system using near-infrared spectroscopy to identify waste from electronic and electrical

equipment  (WEEE)  (Allen  et  al.,  1999).  Gundupalli  et  al.  used  a  thermal  imaging  camera

integrated with a robotic manipulator to classify recyclable materials in MSW and achieved a

90%  accuracy  (Gundupalli  et  al.,  2017).  While  these  results  are  highly  encouraging,  these

methods are slow and low-throughput  and are not tailored  to real-time sorting (they rely on

manual sample collection). 

ATR-FTIR  can  analyze  plastic  components  found  in  MPW in  real-time;  as  such,  one  can

envision the development of fast, online ML techniques that can analyze ATR-FTIR spectra to

characterize  MPW  streams.  Recently,  ML  methods  such  as  convolutional  neural  networks

(CNNs) have been used to analyze spectral data  (Ng et al., 2019). A key advantage of CNNs

over  other  ML methods  is  their  ability  to  automatically  extract  and organize  discriminative

features directly from raw data (without the need to pre-compute hand-crafted features). The

training of powerful CNN models can be facilitated by the availability of advanced computing

hardware (e.g.,  GPUs) and of vast  data  streams found in online systems. The integration  of

online ATR-FTIR and CNNs thus provides a potential avenue to sort plastic waste with high

accuracy and throughput in real-time.

In this work, we propose a computational framework to characterize plastic components of MPW

by analyzing  ATR-FTIR spectra  using  CNNs.  Experimental  data  was obtained  by preparing

small sheets of plastics of different shapes and used ATR-FTIR to scan sheets for 10 different

types;  this  data  collection  approach  mimics  how  rigid  waste  plastics  are  found  in  online
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processing of MPW streams. The proposed framework uses CNNs to analyze the spectra and

sort/classify plastic components.  The spectra  collected can be represented as 1D vectors and

analyzed by using 1D CNNs (Chen et al., 2019). The 1D CNN extracts features of a spectrum by

convolving it with different filters. A limitation of this approach, however, is that it might fail to

capture correlations  across frequencies  (wavenumbers  which may compromise  the prediction

accuracy).  To deal with this issue, we present a new data representation that captures signal

correlation information; specifically, we represent a spectrum as Gramian angular fields (GAFs).

GAFs are matrices (2D data objects) that can be analyzed using 2D CNNs  (Wang and Oates,

2015) and  these  data  objects  can  better  capture  spectral  correlations.  A  problem  with  this

approach,  however,  is  that  the  training  of  2D  CNNs  is  significantly  more  computationally

expensive  than  that  of  1D CNNs.  To  ameliorate  this  issue,  we  use  a  Piecewise  Aggregate

Approximation (PAA) approach to reduce the dimension of the input GAF matrices (Keogh and

Pazzani,  2000).  This  framework  also  uses  saliency  analysis  (Sundararajan  et  al.,  2017) to

understand  the  most  important  features  of  spectra  that  can  help  identify  different  plastic

components. We demonstrate that this CNN framework (which we call PlasticNet) can reach an

overall classification accuracy of over 87% and can classify certain plastics with 100% accuracy.

The conjunction of ATR-FTIR and CNN creates a powerful, low-cost, and rapid method for

analyzing the composition  of plastic  waste and enables future recycling and reproduction of

high-quality plastics.

2. Experimental Data Collection and Preparation

The dataset studied included ATR-FTIR spectra for 10 different, commercially-available plastic

materials (see  Figure 1). These include thermoplastic polymers, natural, and synthetic rubber
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that  are  common  in  the  MPW.  Specifically,  these  were  ABS,  acrylic  (AC),  PE,  PET,

polybutadiene (BR), polycarbonate (PC), polyisoprene (PI), PS, PP, and PVC. The spectra were

collected using a Thermo Scientific, Nicolet-iS5 FTIR spectrometer equipped with an attenuated

total reflectance (ATR) accessory (ZnSe crystal, iD5), taken with 64 scans with 4 cm-1 resolution

between 2000 to 4000 cm-1. Spectral data was collected using Omnic v9.8 software, and then

extracted using TQ analyst EZ software (Thermo Nicolet) and compiled for analysis. 

The plastics purchased consist of different shapes; round-shaped beads were cut into less than 1

mm thickness and converted into flattened thin sheets (10 mm ×10 mm). For each plastic sample,

50 spectra were measured as the training set for the ML algorithms, and 20 spectra were used as

the testing set. To obscure the spectra, the sample was not kept in close contact with the crystal

and each spectrum was taken with only one scan.  The background was repeated after every

measurement with 64 scans.  For each plastic, 70 online measurements of were obtained. Each

spectrum had 4150 data points, where each point represents the intensity at a given wavenumber

(cm-1). Each spectrum is encoded in a vector in R4150. For the 10 types of plastics, a total of 700

IR spectra were obtained. For the analysis, all spectra were normalized to be in the range [0, 1]:

x̂=
x−min ⁡(X )

max (X )−min ⁡(X)
,

where  x∈ R4150 is  the  original  vector  (a  raw  spectrum),  x̂∈ R4150 is  the  normalized  vector

(normalized spectrum), and  X∈R700×4150 is a matrix obtained by stacking all raw spectra. By

stacking all the normalized vectors, we obtain the normalized spectra matrix X̂∈R700×4150, which

is randomly partitioned into a training set and a test set. The training set is the dataset used in the

learning  process  to  fit  the  parameters  of  the  ML models.  The  test  set  is  a  dataset  that  is

independent of the training set and is used to examine the performance (accuracy) of the ML
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model.  A total of 30% of the elements of the training set were randomly selected and used as the

validation set for tuning the ML architecture and preventing overfitting (Ng and Ng, 1997). For

validation, we use a five-fold cross-validation approach; here, the original dataset is randomly

split into five subsets of equal size. Among the five subsets, a subset was retained as the test set,

and the remaining four subsets were used as training data.  The cross-validation process was

repeated five times, with each of the five subsets used exactly once as test data. A schematic of

the five-fold cross-validation process is shown in Figure 2. The training, validation, and test set

consist of 392, 168, and 140 spectra, respectively. A stratification was implemented to ensure

that each fold represents all strata of the data. That is, in each fold, each plastic type accounts for

10% of the data in the training and test sets. The final reported accuracy is the average of all

accuracies of the five folds. The model is robust and generalizable if the test sets of each fold

have similar accuracy.

The types of plastic (labels) that need to be predicted by the ML models are one-hot encoded. 

Specifically, each label can be represented by a vector of size 10 (only one entry in the vector is 

1 and all other entries are 0). This vector representation is necessary to calculate the loss of 

categorical cross-entropy in our ML models.

3. Computational Framework

The  proposed  framework  includes  a  CNN  architecture,  that  we  called  PlasticNet;  this

architecture can process spectra as vectors (1D data objects); as such, PlasticNet can operate as a

1D CNN. The framework also includes a Gamian angular transformation method that transforms

the spectra vectors into GAF matrices (2D objects); as such, PlasticNet can also operate as a 2D
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CNN. The framework also includes saliency analysis  techniques,  which are useful tools that

allow us to understand features that the CNN might be searching for in the spectra in classifying

plastic types. 

3.1. 1D CNN

IR spectra vectors can be analyzed directly with a 1D CNN; 1D CNNs are widely in applications

such as  electrocardiography  (Kiranyaz  et  al.,  2016),  near-infrared  spectroscopy  (Chen et  al.,

2019), and optimal control (Jiang and Zavala, 2021). The architecture of the proposed 1D CNN

is shown in Figure 3. 1D CNNs extract and summarize features from spectra using convolution

and pooling operations. In our architecture, each convolution filter is a vector of size three. The

output of a convolution operation is a single scalar value that marks the presence (high value) or

absence  (low  value)  of  the  pattern  the  filter  is  trying  to  identify  or  highlight.  A  single

convolution  operation  maps a  given vector  to  another  vector  of  the same dimension after  a

nonlinear transformation (i.e., rectified linear unit). In the architecture used, a set of these filters

is  referred as a convolutional  layer.  Convolutional  operations greatly  increase the amount of

information that needs to be proposed; therefore, it is necessary to summarize such information.

In  our  architecture,  we  use  a  max-pooling  layer  to  reduce  dimensionality.  A  max-pooling

operation takes a subset of a given vector, in this case a part of size two, and reduces it to a

single value by extracting only the maximum value. This greatly reduces the dimensionality of

the vectors created by the convolutional layer and distills the important information extracted by

the convolutional filters. 
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An IR  vector  of  size  4150  is  fed  into  the  1D  CNN,  which  we  call  PlasticNet  (1D).  This

architecture  contains  four  convolutional  layers,  two  max-pooling  layers,  and  three  fully-

connected layers. This simple architecture achieves high accuracy and facilitates fast training.

The convolutional layer has 64 filters of size 3 and the max-pooling layer has filters of size 2.

Each of the fully-connected layers has 64 nodes and the activation functions between layers are

rectified linear units (ReLUs). Between each of two fully-connected layers is a dropout layer

with a dropout ratio of 0.2 to prevent overfitting. The output layer uses a SoftMax activation

function to perform classification. The output for plastic classification is a vector of dimension

10, corresponding to the probability of the IR spectra being from a specific type of plastic. The

loss function coupled with the SoftMax activation function is the categorical cross-entropy. In

the  proposed  CNN architecture,  convolutional  layers  and max-pooling  layers  are  performed

recursively.  The idea behind this  recursion is to extract information at both local  and global

scales while condensing it so that simple classification can be performed, and the corresponding

plastic types can be predicted. A recent review on fundamentals of CNNs can be found in Jiang

and Zavala, 2021.

3.2. Gramian Angular Fields

Although the vector representation of IR spectra already carries rich information, the correlation

between different frequencies is not explicitly encoded in the vector representation and this is

difficult to extract using convolution operations. Recently, Gramian Angular fields (GAF) have

been used to encode time-series objects into matrices that capture correlation structures and that

are processed using 2D CNNs; this data transformation approach has been shown to improve

classification accuracy (Wang and Oates, 2015). Our hypothesis was that a similar principle can
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be applied to IR spectra to improve prediction accuracy. A GAF represents vectors in a polar

coordinate system and converts these angles into symmetric matrices using various operations.

There are two types of GAFs: Gramian Angular Summation fields (GASF) and Gramian Angular

Difference fields (GADF). Each element of GASF and GADF is the cosine of the sum and the

sine of the difference of the angles, respectively. The first step in constructing the GAF matrix is

to normalize the spectral data to a value between 0 and 1. After normalization, the second step is

to  represent  the  normalized  vector  x̂ in  a  polar  coordinate  system  by  using  the  following

transformations:

ϕ i=arccos ( x̂ ) ,i=1,…, 4150r i=
i

4150
, i=1,…,4150,

where i is the index of the vector entry, ϕ∈R4150 is the angle vector, and r∈R4150 is the radius

vector. Finally, the GASF and GADF matrices are obtained as: 

GASF=cos (ϕi+ϕ j )= x̂T x̂−√I− x̂2T √ I− x̂2

GADF=sin (ϕ i−ϕ j )=√I− x̂2T x̂− x̂T √ I− x̂2

where I=[1,…,1] is a unit row vector of size 4150. 

The resulting GASF ,GADF∈ R4150×4150  matrices are dense and large, but can be reduced using

the Piecewise Aggregation Approximation (PAA) technique (Keogh and Pazzani, 2000). In this

study, we also compared the effect of the magnitude of matrix reduction on the results. That is,

we compared matrices with the shape of 50×50, 100×100, 150×150, 200×200, and 250×250. The

conversion of spectra to GASF and GADF matrices is illustrated in Figure 4. Here, the matrices

are represented as grayscale images. 
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3.3. 2D CNN

2D CNNs are typically used to classify images, which are multi-channel matrices (tensors). 2D

CNNs  are  commonly  used,  for  instance,  to  classify  RGB images  (each  channel  is  a  color

channel).  In our approach, we use a two-channel, data representation that embeds the GASF and

GADF matrices as channels. Depending on the scale of reduction, the size of the input varies

from  50×50×2 to  250×250×2. The 2D convolution operation extracts  meaningful  patterns

from GASF and GADF matrices. In our architecture, each 2D convolution filter is a matrix of

shape 3×3. The output of a 2D convolution operation also indicates the presence or absence of

the pattern that the filter is searching for. A 2D max-pooling operation to reduce the dimension

of the convolved matrices was also used. A 2D max-pooling operation takes a subregion of  2×2

and reduces it to a single value by taking the maximum value. 

The two-channel GASF/GADF object is fed into a 2D CNN, which we refer to as PlasticNet

(2D). PlasticNet (2D) contains four 2D convolutional layers, two 2D max-pooling layers, and

three fully connected layers (Figure 3). The 2D convolutional layer has 64 filters of size 3×3

and the 2D max-pooling layer has filters of size 2×2. The settings for the fully-connected layers,

activation functions between layers, dropout ratio, final layer activation function, and the loss

function are the same as those used in PlasticNet (1D).

3.4. Saliency Analysis 

Saliency  maps  are  a  powerful  tool  used  for  highlighting  features  in  the  input  data  that  are

considered relevant to the predictions of the CNN model. In our case, these techniques try to

highlight aspects in a given input data object that the CNN is searching for. Among all saliency
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map methods, an integrated gradient (IG) was used that has the most theoretical completeness

(Adebayo et al., 2018; Sundararajan et al., 2017). For the PlasticNet (2D) case, let V ∈R200×200×2

be the input and θ be the parameter vector, the CNN can be written as a large and complicated

equation  F (V ;θ ) :R200× 200× 2↦R10,  where the output  is  the classification probability.  The loss

function is then L (F (V ;θ ) ) :R10↦R. The saliency map S∈R200×200×2 calculated by the IG as: 

S=|((V −V́ ) ⋅∫
0

1 ∂L(F (V́ +β (V−V́ ) ;θ ))
∂V

dβ )|

where V́ ∈R200×200 ×2 is a baseline input that represents the absence of a feature in the input  V .

Typically,  V́  only  contains  zero  values.  Saliency  maps  on  the  GASF/GADF  will  not  only

illustrate  the  signals  that  are  significant  at  a  given  frequency  (cm-1)  but  will  also  highlight

important relationships between the signals. Saliency maps can help us understand why CNNs

can accurately classify plastic types.

4. Results and Discussion

Classification  results  for  PlasticNet  (1D)  and  (2D)  are  presented  in  Figure  5,  along  with

comparisons  of  different  input  sizes.  The  results  reveal  that  PlasticNet  (2D)  has  a  higher

accuracy when the input size is larger than 100×100, compared to PlasticNet (1D) on raw IR

spectra  (77.7%).  Specifically,  PlasticNet  (2D)  with  an  input  size  of  200×200  increases  the

accuracy of the PlasticNet (1D) by 12.4%; this confirms that correlation information in spectra is

important for classification. The classification accuracy of PlasticNet (2D) improves as the input

matrix size increases until reaching a size of 200×200. This suggests that larger input matrices
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may contain richer information, which is important for classification. The accuracy of the input

size of 250×250 has a slightly lower accuracy (86.9%) than the one of 200×200 (87.3%). This

indicates  that  the  input  matrix  with  a  size  of  200×200  contains  sufficient  information  and

continuing to increase the matrix size can lead to overfitting. Table 1 provides a comparison of

the overall accuracy obtained with all CNN architectures explored.

Table 1. Overall classification accuracies found with different CNN architectures. 

1D 2D (50×50) 2D (100×100) 2D (150×150) 2D (200×200) 2D (250×250)
77.77 % 78.14 % 84.29 % 85.57 % 87.29% 86.86%

We obtain further insight into classification accuracies obtained for different plastic types by

using confusion matrices. Each row of the confusion matrix represents instances of the predicted

class and each column represents instances of the true class. The entries along the diagonal lines

are where the instances are correctly classified. The confusion matrix for PlasticNet (2D) with an

input size of 200×200 (Figure 6) indicates that plastic types are correctly predicted 87.3% of the

time. The confusion matrix also indicates that PC has the lowest classification accuracy among

the 10 plastics, with 9% of PC classified as Acrylic and 6% as PB, respectively. It was also

found that PE, PET, and PI have classification accuracies that were close to 100%.  These results

indicate that certain plastics can be more easily classified than others (their spectra have more

unique features). This information can be useful in identifying strategies to target specific types

of plastics (e.g., by tuning IR equipment). 
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To validate the effectiveness of the proposed CNN models, we compared the average accuracies

over 5-fold cross-validation of 1D CNN and 2D CNNs with four commonly used ML classifiers,

including Radial Basis Function (RBF) based Support Vector Machine (RBF-SVM)  (Vapnik,

1998), Random Forest (RF), k-Nearest Neighbors (kNN) (DICKERSON et al., 1992), Gaussian

Process Classifier (GPC) (KI Williams, 2006). SVM is a learning method that was designed to

find optimal decision boundaries between classes. The use of the RBF function in SVM allows

for mapping patterns nonlinearly into a high-dimensional feature space (Schölkopf et al., 1997),

and it introduces a kernel parameter (γ) in addition to penalty parameter (i.e., C) in linear SVM.

In our experiments, These are two parameters (γ and  C) were selected from a wide range of

values,  i.e.,  γ∈ {10−2 ,10−1 ,100 ,101 ,102 } and  C∈ {10−2 ,10−1 ,100,101 ,102,103
},  using  grid

search approach  (Staelin,  2003) that  performed on the training data.  RF is  an ensemble ML

method that utilizes predictions from many randomized decision trees and it is found to be well

suited to high-dimensional data modeling. There are two parameters in RF that need to be tuned

to optimized the model performance, they are the number of trees to be grown in the run (ntree)

and the number of features used in each split (mtry). We set ntree = 500 and mtry is set to the

square root of the number of features as recommended by many studies (Immitzer et al., 2012;

Sidike et al., 2019). KNN is another popular ML algorithm, which involves the measurement of

k-nearest neighbors of a test sample and it is the class label that is decided on a majority vote.

The number of neighbors in KNN is fixed to 5 in the experiments. GCP can be modeled based on

a GP prior and the latent function. The default parameters used in GCP, as specified in the Scikit-

learn (Pedregosa et al., 2011) ML library. Table 2 provides a comparison of the overall accuracy

of these ML algorithms. It can be observed that RBF-SVM yields the best accuracy, while kNN

and GPC demonstrate similar performance but lower accuracy than RBF-SVM and RF.  
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Table 2. Overall accuracies obtained with other ML algorithms.
RBF-SVM RF k-NN GPC

86.14 % 72.57 % 65.00 % 63.29 %
 

A comparison between the CNN-based methods and other ML algorithms is shown in Figure 5.

The accuracy of PlasticNet (2D) is slightly higher (~1%) than that of RBF-SVM when the input

size  is  larger  than  200  ×  200.  This  indicates  that  RBF-SVM is  comparable  to  CNN-based

methods;  however,  SVMs provide limited  information  on features  that  drive predictions  and

offer limited flexibility to capture different representations for IR data. The results obtained with

SVM confirm that there appears to be enough separation (differences) in the spectra that can be

exploited to classify different types of plastic materials. However, the accuracy of all methods

saturates at 87%, which suggests that the dataset itself contains significant errors that neither the

CNN-based nor the SVM methods can explain.  

To understand exactly what the CNNs have learned from the spectra, we used saliency maps to

find the most important regions for classification. We used the results for PlasticNet (2D) with an

input  size of  200×200, since this  has the highest  accuracy.  Figure 8 shows the average (a)

GASF, (b) GADF, (c) saliency map, (d) spectrum and its important regions of PE. The average

saliency map for each plastic was studied because each spectrum has some subtle differences,

and the common significant patterns were of interest. The darker regions in  Figure 8c are the

most important ones. Specifically, the horizontal bands near 2900 cm-1 and vertical bands 2400

cm-1 were dark, which indicates the importance of the signal at these frequencies.  Figure 8d,

shows the significant signal locations (shaded regions) and the raw spectrum. The bands between

2800 and 2900 cm-1 were of importance. This region provides characteristic IR bands for PE. A

similar trend is observed for other plastics, such as PC and ABS shown in  Error: Reference
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source  not  found and  Figure  9.  Saliency  analysis  shows  that  the  regions  of  interest  for

PlasticNet (2D) are exactly the most physically informative regions. This confirms intuition that

might be exploited by humans to compare different spectra. 

5. Conclusions

A convolutional  neural  network  (CNN)  framework  for  classifying  different  types  of  plastic

materials that are commonly found in MPW based on ATR-FTIR spectra was developed. An

important aspect of this type of spectral data is that it can be collected in real-time; as such, this

approach provides an avenue for the high-throughput characterization of MPW. The proposed

CNN framework (which we call PlasticNet) uses a Gramian angular representation of the IR

spectra  and  we  show  that  this  approach  reaches  overall  classification  accuracies  of  87%.

Moreover, it has been found that certain plastics can be classified with 100% accuracy.  As part

of future work, we aim to test the proposed framework using high-throughput data collected in

an online system and to account for other sources of complexity and noise arising in MPW

systems (e.g., presence of pigments).  
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Figure 1: Normalized infrared spectral intensities of various plastic materials. Each spectrum is a
vector of length 4150. The resulting spectra contain significant noise and systematic errors.

Figure  2:  Schematic  illustration  of  5-fold  cross-validation  procedure  used  to  train  and  test
models. The training-to-testing split is 4:1. Within the training set, we randomly select 30% of
the data as the validation set to tune the parameters of the model.

17



Figure 3: Architectures of (a) PlasticNet (1D) and (b) PlasticNet (2D). PlasticNet (1D) inputs a
vector of 4150 and outputs the predicted plastic type. It contains 4 1D convolutional layers (each
has 64 filters of dim 3), 2 1D max-pooling layers (each has a pooling window size of 2), a flatten
layer, and 3 fully-connected layers (each has 64 units and a dropout ratio of 0.2). The activation
functions  between  the  layers  are  ReLUs.  The  final  output  activation  function  is  softmax.
PlasticNet (2D) inputs a GASF and a GADF matrix.  The input size varies from 50×50×2 to
250×250×2. It has  4 2D convolutional layers (each has 64 filters of 3×3), 2 2D max-pooling
layers  (each  has  a  pooling  window  size  of  2×2).  The  flatten,  fully-connected  layers  and
activation function setups are the same as the ones of PlasticNet (1D).

Figure  4:  Conversion from 1D signal  to  GASF and GADF matrices.  The 1D signal  is  first
mapped to the polar  coordinate  system and finally  converted to GASF and GADF matrices.
Encoding the 1D signal into GAF matrices captures the relationship between the signal intensity
at different wavenumbers.
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Figure  5:  Comparison  of  the  accuracy  of  CNN-based  methods  and  other  ML  algorithms.
PlasticNet (2D) with an input size of 200×200×2 has the highest accuracy of 87.29%. SVM with
RBF kernels has a comparable accuracy of 86.14%. The accuracy of PlasticNet (2D) is always
higher than that of PlasticNet (1D), indicating that the conversion from the original 1D signal to
2D GAF matrices captures more information. The accuracy of PlasticNet (2D) increases as the
input matrix increases, indicating that a larger input matrix contains more information.
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Figure  6:  Confusion  matrix  for  PlasticNet  (2D)  with  an  input  size  200×200×2.  The overall
accuracy is 87.3%. Each column represents a true plastic species, and each row represents a
model predicted plastic species. The entries along the diagonal are where the plastic species are
correctly classified. Many diagonal entries are close to one, indicating that the PlasticNet (2D)
has excellent classification accuracy. However, some plastic types cannot be classified with high
accuracy (e.g., PC and AC). 
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Figure 7: Saliency analysis for PE. The average (a) GASF and (b) GADF matrices of size 200 ×
200, where darker colors represent larger values. (c) The average saliency map of size 200 × 200.
The darker regions are the most important regions for classification. (d) The average IR spectrum
and the most important signals, shaded in gray. The most important region includes the bands
between 2800-2900 cm-1, which are the characteristic IR peaks of the PC.
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Figure 8: Saliency analysis for PC. The average (a) GASF and (b) GADF matrices of size 200 × 
200. (c) The average saliency map of size 200 × 200. (d) The average IR spectrum and the most 
important signals, shaded in gray.
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Figure 9: Saliency analysis for ABS. The average (a) GASF and (b) GADF matrices of size 200 
× 200. (c) The average saliency map of size 200 × 200. (d) The average IR spectrum and the 
most important signals, shaded in gray.
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