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Abstract

A formalism for expansions of all Jahn-Teller and pseudo-Jahn-Teller Hamiltonian

operators in all axial symmetries is presented. The formalism provides Hamiltonian

expansions up to arbitrarily high order and including an arbitrary number of vibra-

tional modes, which are of arbitrary types. It consists of three equations and two

tables. The formalism is user-friendly since it can be used without understanding its

derivation. An example of E′′3 ⊗ e′1 Jahn-Teller interaction of cycloheptatrienyl cation

is used to demonstrate the correctness of the formalism. A Python program is devel-

oped to automate the generation of Hamiltonian expansions for all axial Jahn-Teller

and pseodo-Jahn-Teller problems, , and interface the expansions to quantum dynamics

simulation program. This is the first unified Hamiltonian formalism for axial Jahn-

Teller and pseudo-Jahn-Teller problems. And it is the only one.
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1 INTRODUCTION

In the mid-1930s, the idea of instability of nuclear configurations in degenerate electronic

states was conceived by Landau, Teller, and Jahn.1 This idea was formulated by Jahn and

Teller in 1937,2 after whom the resultant theorem is named. According to this theorem: (1)

nonlinear polyatomic systems with ≥ 3-fold symmetry have orbital degeneracy; (2) degener-

ate electronic states arising from this orbital degeneracy have non-totally symmetric electron

density; (3) the non-totally symmetric force the electrons impart on the nuclear framework

lowers its symmetry, and consequently lifts the degeneracy.1,3,4 Twenty years later, Öpik and

Pryce proposed that similar symmetry-lowering also occurs for a non-degenerate electronic

state, if there is a significant interaction between the state and (an)other electronic state(s)

along the distortion.5 This phenomenon is termed pseudo-Jahn-Teller (pJT) distortion. The

Jahn-Teller (JT) and pJT interactions are the only driving forces for spontaneous symmetry

breaking in polyatomic systems.6 Their consequences, termed JT and pJT effects, are com-

monly seen in spectroscopy, structural chemistry, solid-state physics, and optoelectronics.7–18

The JT and pJT interactions belong to the broader category of vibronic interactions, since

they involve interactions between electronic and vibrational degrees of freedom.3,19 Naturally,

accurate vibronic Hamiltonians for JT/pJT problems are of critical importance to simulate

and understand the associated JT/pJT effects. Usually, one such Hamiltonian operator is

resolved in a set of electronic states within which the JT/pJT interactions occur, and the

set of states are selected to be diabatic states.20–25 The diabatic states vary smoothly along

nuclear structural change, so that their Hamiltonian matrix elements are differentiable func-

tions of vibrational coordinates. The matrix elements can hence be expanded as polynomial

series of vibrational coordinates. Overall, the selections of the electronic states, vibrational

coordinates, and the orders of the expansions determine the accuracy of the Hamiltonian.

An appropriate selection of coordinates, e.g., a Morse-type coordinate instead of a conven-

tional normal mode coordinate, can significantly reduce the necessary order of expansions.

Still, in general, higher order expansions give more accurate a JT/pJT Hamiltonian.
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Standard JT/pJT models3,4 with the expansions truncated at the second order have

been know to be inadequate for systems with large amplitude vibrations.26–34 Mathematical

formulas for high order expansions of JT/pJT Hamiltonians are strongly desired. This is not

just true for theoreticians, but for experimentalists as well.32,35–38 Without the knowledge

of high order expansion formulas, spectroscopists will have to fit their accurate vibronic

spectra using inaccurate models. This is likely to impair the interpretation of the spectra.

In the end, “there must be a rigorous connection between the experimentally measured,

‘effective’ molecular parameters and the calculated ones.”38 Pioneering derivations of the

high-order JT/pJT Hamiltonians were performed for classic problems, such as E ⊗ e in C3v

symmetry,26,27 T2⊗ t2 and T2⊗e problems in Td symmetry.39,40 The derivations were quickly

extended to problems with more than one set of vibrational modes and one electronic term,

e.g., the (A1 + E) ⊗ (a2 + e) problem in C3v symmetry.30 There were also recent attempts

to derive high-order expansions for spin-orbit JT/pJT Hamiltonians.41,42

These studies were dedicated to specific cases and, despite the unprecedentedly high or-

ders attained therein, the reported expansions were still of finite orders. These pioneering

studies motivated us to derive JT/pJT expansion formulas that are of arbitrarily high or-

ders and are as inclusive as for one class of symmetries, instead of one symmetry. So far, we

have successfully derived arbitrarily high order expansion formulas for all bimodal JT/pJT

problems in trigonal symmetries,43,44 tetragonal symmetries,45 cubic group symmetries,46,47

and spin-orbit JT/pJT problems in trigonal and tetragonal symmetries.48 These formalisms

are inclusive, yet not enough. Problems with more than two sets of JT/pJT active vibra-

tional modes and of higher axial symmetries, e.g., pentagonal (cyclopentadienyl ring49,50),

hexagonal (benzene51,52), and in general n-gonal (nanotubes, nanohoops, and nanoloops of

different sizes53–56), await to be addressed. “It is somewhat tedious to evaluate all possible

cases of quadratic activity”, this is a statement about deriving second order JT Hamiltonian

for the cyclopentadienyl ring in an up-to-date excellent review article on vibronic coupling.38

Naturally, it would be more “tedious” and prone to mistakes if we use conventional methods
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to derive even higher order Hamiltonians. The necessity and urgency of a JT/pJT Hamil-

tonian formalism, which covers higher orders expansions and more axial symmetries, are

unambiguously demonstrated. In this work, we make a larger stride forward to derive a

unified JT/pJT Hamiltonian formalism that covers all problems in all axial symmetries with

arbitrary numbers of all types of vibrational modes. The resultant more inclusive formalism

turns out to adopt a simpler form than the previous ones for trigonal and tetragonal bimodal

problems.43–45

In Section 2, we briefly overview axial symmetries and the conventional symbols of

JT/pJT problems in those symmetries. The mathematical symbols that are used in our

derivations are also introduced. The derivation is presented in Section 3. The new for-

malism is incorporated in a Python program, VHEGEN2.0, which generates axial JT/pJT

expansion formulas with minimal information of a problem. This program is introduced in

Section 4. Section 5 concludes this work.

2 SYMBOLS, SETTING, AND TERMINOLOGIES

2.1 A brief review of axial symmetries

Axial symmetries mean those with one principal axis, i.e., those of Cn, S2n, Cnh, Cnv, Dn,

Dnd, and Dnh point groups. Throughout this work, n is reserved to label the n-gonal principal

axis. If necessary, no and ne are used to indicate n being odd and even, respectively. Eigenval-

ues of Ĉn operators (χCn) are the n-th roots of unity: eiκ
2π
n with κ = 0,±1,±2, · · · ,±Int

(
no
2

)
for no; κ = 0,±1,±2, · · · ,±

(
ne
2
− 1
)
, ne

2
for ne. Int () means taking the integer part of the

quotient as its argument. κ = 0 and ne
2

correspond to eigenvalue χCn = 1 and −1, giving the

non-degenerate A- and B-type irreducible representations (IRREPs). Cn-eigenfunctions of

these two IRREPs can always be chosen to be real-valued. The other χCn ’s are in complex-

conjugate pairs, as are their corresponding eigenfunctions which are inter-converted by the

time-reversal (TR) operator T̂ . Each pair of the TR-related Cn-eigenfunctions form an E-
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type IRREP. Given a T̂ -invariant Hamiltonian, an eigenfunction and its complex-conjugate

must have the same energy. This is why the E-type eigenstates form degenerate pairs. The

E-type IRREPs are labeled as Ek for k = 1, 2, · · · , Int
(
no
2

)
or ne

2
− 1. For trigonal and

tetragonal symmetries, only k = 1 is allowed and the subscript is neglected in literature for

the only E-type IRREP therein.

As the symmetry is increased from Cn to Dn, the extra Ĉ ′2 operator around (one of) the

C2 axis(axes) perpendicular to Cn further differentiate the A and B IRREPs to Ak and Bk

IRREPs, with k = 1, 2 depending on whether their χC2 = 1 or −1. Ĉ ′2 interchanges the two

E complex-valued components as T̂ , and there is no further labeling for the E-type IRREPs

in the Cn to Dn symmetry increase. Cnv is isomorphic to Dn, with C ′2 being replaced by

σv. D2nd is isomorphic to D4n, with Cn being replaced by Sn. From Cno symmetry to Cnoh

symmetry, prime and double-prime are added to the A and E-type IRREP symbols of Cno to

indicate their σ̂h-parities. For Cneh symmetries, it is conventional to add g and u subscripts

to label the A, B, and E-type IRREPs to indicate their Î-parities, instead of the prime and

double-prime σ̂h-parities. Similarly, from Dno to Dnoh symmetry, prime and double-prime

are added to IRREP symbols; from Dne to Dneh symmetry, g and u subscripts are added.

Dnod is isomorphic to Dnoh, with σh being replaced by I. Correspondingly, the prime and

double-prime in the Dnoh IRREP symbols are replaced by g and u, correspondingly, in the

Dnod IRREPs. S2n is isomorphic to C2n, with the proper principal axis being replaced by the

improper principal axis. They share the same character table. Given the aforementioned

isomorphisms, it is only necessary to consider Cn, Cnh, Dn, and Dnh symmetries in the

derivation below.

2.2 Electronic states and vibrational modes in axial JT/pJT in-

teractions

We follow the convention of using upper case IRREP symbols to label electronic states and

lower case symbols for vibrational modes. Real-valued components of an |Ek〉 state are
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labeled as |Xk〉 and |Yk〉. They are defined so that they transform under Ĉn as

Ĉn |Xk〉 = cos
2kπ

n
|Xk〉+ sin

2kπ

n
|Yk〉 ; Ĉn |Y 〉 = − sin

2kπ

n
|Xk〉+ cos

2kπ

n
|Yk〉 . (1)

The two real-valued components of an ek vibrational modes (ekx and eky) follow the same

transformation. The two Cartesian coordinates of an ek mode are labeled as xk and yk. A

function f (xk, yk) under Ĉn have the coordinates transform in the same way as Eq. 1. It

is more convenient to use polar coordinates ρk and φk (xk = ρk cosφk, yk = ρk sinφk) to

describe the action of Ĉn: Ĉnf (ρk, φk) = f
(
ρk, φk − 2kπ

n

)
. The real-valued |Xk〉 and |Yk〉

component states are combined to form eigenstates of Ĉn:

(|+k〉 |−k〉) = (|Xk〉 |Yk〉)
1√
2

 1 1

i −i

 ; Ĉn |±k〉 = e∓i
2kπ
n |±k〉 . (2)

As the symmetry is increased from Cn to Cnv, Dn, Dnd, and Dnh, the presence of the

C ′2 or σv further define the |Ek〉 and ek components: |Xk〉 and ekx must be symmetric with

respect to one Ĉ ′2 action in Dn, Dnd, and Dnh, while |Yk〉 and eky must be antisymmetric.

The same definitions apply to Cnv symmetry but with σh being replaced by σv. With such

definitions,

Ĉ ′2f (ρk, φk) = f (ρk,−φk) , σ̂vf (ρk, φk) = f (ρk,−φk) ,

Ĉ ′2 |±k〉 = |∓k〉 = (|±k〉)∗ ; σ̂v |±k〉 = |∓k〉 = (|±k〉)∗ . (3)

Clearly, for |±k〉, Ĉ ′2 and σ̂v have the same effect as T̂ . Examples of the E-type states and

e-type modes in pentagonal and hexagonal symmetries are given in Figure S.1 and S.2 in

Supporting Information (SI).

z and w are reserved to label coordinates of a- and b-type modes, respectively. Like for
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those modes, a subscript k = 1, 2 is attached to the coordinates to label their Ĉ ′2/σ̂v-parities.

Ĉnf (zka , wkb) = f (zka ,−wkb) , (4)

Ĉ ′2f (zka , wkb) = f
(

(−1)δka,2 zka , (−1)δkb,2 wkb

)
, (5)

where the Kronecker delta is used to indicate the possible sign flipping of the coordinates.

Since
[
σ̂h, Ĉ

′
2

]
= [σ̂h, σ̂v] =

[
σ̂h, Ĉn

]
= 0 and the commutations hold when σ̂h is replaced

by Î, we can dress the vibrational modes, the vibrational coordinates, and the electronic

states with the σ̂h/Î-parities independent of their transformations under Ĉn, Ĉ ′2, and σ̂v.

For ek-type vibrational coordinates, it is only necessary to dress ρk with the σ̂h/Î-parities,

not φk. p, q = g, u,′ ,′′ are used to indicate the parities.

σ̂hf (zka,pa , wkb,pb , ρke,pe , φke) = f
(

(−1)δpa,′′ zka,pa , (−1)δpb,′′ wkb,pb , (−1)δpe,′′ ρke,pe , φke

)
,(6)

Îf (zka,pa , wkb,pb , ρke,pe , φke) = f
(

(−1)δpa,u zka,pa , (−1)δpb,u wkb,pb , (−1)δpe,u ρke,pe , φke

)
.(7)

For systems with axial symmetries, the JT interactions always occur within one Ek-type

state. They are conventionally labeled as, e.g., Ek ⊗ (a+ b+ e+ · · · ), with the modes that

actively modify the electronic Hamiltonian matrix elements among the Ek component states

being placed in the parentheses. The JT interactions can be viewed as intra-term vibronic

interactions, since the electronic states arise from the same electronic term symbol. Intra-

term interactions also include A⊗- and B⊗-type problems. The pJT interactions occur

between states of different energies. They are conventionally labeled as, e.g., (Ek + Al) ⊗

(a+ b+ e+ · · · ). The vibrational modes included in the second parentheses actively modify

the electronic Hamiltonian matrix elements between the states of two term symbols in the

first parentheses. The pJT interactions are typical inter-term vibronic interactions. In

both JT and pJT interactions, the VIBrational-coordinates-dependence of the electRONIC

Hamiltonian matrix elements coins the term of vibronic interaction.
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2.3 Fundamental expansion formula

Given a problem with Na a-type modes, Nb b-type modes, and Ne e-type modes, a monomial

of the product of powers of their coordinates take the form of

(
Na∏
Ia

z
MIa
kIa ,pIa

Nb∏
Ib

w
MIb
kIb ,pIb

Ne∏
Ie

ρ
|MIe |+2KIe
kIe ,pIe

)
ei(
∑Ne
Ie

MIeφkIe ). (8)

MIa etc. indicate the powers of the coordinates. Throughout this work, when indices are

given in absolute value symbol, they can take all integer values. Otherwise, they can only

take non-negative integer values. The |MIe|+2KIe power of ρkIe ,pIe guarantees no singularity

at the ρkIe ,pIe = 0. The ei(
∑Ne
Ie

MIeφkIe ) phase factor with the integral {MIe} is a term in the

Fourier series of all {φk}, which guarantees invariance with respect to Ĉ1 rotation. This

invariance is a fundamental requirement for any matrix elements of JT/pJT Hamiltonians.

Eq. 8 is applicable for both ne- and no-gonal symmetries; we just need to set Nb = 0 for

no-gonal symmetries.

The ranges of {MIa}, {MIb}, {MIe}, and {KIe} that satisfy
∑Na

Ia
MIa +

∑Nb
Ia
MIb +∑Ne

Ie
|MIe|+2KIe ≤ Norder give us all monomials of the coordinates that make the expansion

up to Norder-th order. The expansion takes the form of

C{MIa},{MIb},{MIe},{KIe}

(
Na∏
Ia

z
MIa
kIa ,pIa

Nb∏
Ib

w
MIb
kIb ,pIb

Ne∏
Ie

ρ
|MIe |+2KIe
kIe ,pIe

)
ei(
∑Ne
Ie

MIeφkIe ). (9)

The Einstein convention of summing over duplicate indices is followed in all expansion for-

mulas in this work. Specifically, the duplicate indices in Eq. 9 are {MIa}, {MIb}, {MIe},

and {KIe}. Norder is not specified as this fundamental expansion formula is applicable for

all orders. The C{MIa},{MIb},{MIe},{KIe}
coefficient is in general complex-valued. It should be

emphasized that Eq. 9 is a complete polynomial expansion formula.
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3 Derivations

The derivations of the expansion formulas for JT/pJT Hamiltonians are separated into two

parts, electronic and vibrational. The electronic part results in symmetry-eigenvalues of

electronic Hamiltonian matrix elements. The vibrational part results in expansion formulas

that feature those eigenvalues. Those expansions are modules to be selected based on the

needs of the electronic part. Such a modularized approach is of critical importance, as it

makes possible to derive formalisms for thousands of problems in one work.44–47 As shown

below, many of the matrix elements share the same set of symmetry-eigenvalues.

3.1 Electronic part

We start the derivation for the Ek-type JT problem. The Hamiltonian is resolved in the

degenerate set |±k〉:

Ĥ = (|+k〉 〈+k|+ |−k〉 〈−k|)Hr
+k+k

+ |+k〉 〈−k|H+k−k + h.c. (10)

The r superscript indicates that Hr
+k+k

is a real-valued element, since it is a diagonal ele-

ment. h.c. means the Hermitian conjugate of the explicitly written part with complex-valued

elements. In this expression, h.c. only consists of one term, |−k〉 〈+k|H∗+k−k . The |+k〉 〈+k|

and |−k〉 〈−k| dyads share the same matrix element as a consequence of TR-symmetry. The

use of the Ĉn-eigenstates |±k〉 simplifies the expression of Ĥ under the action of Ĉn:

ĈnĤĈ
−1
n = (|+k〉 〈+k|+ |−k〉 〈−k|) ĈnHr

+k+k
+ e−i

4kπ
n |+k〉 〈−k| ĈnH+k−k + h.c. (11)

The vibronic Hamiltonian needs to be invariant under all symmetry operations of the relevant

point group. In order to be Ĉn-invariant, the two matrix elements need to satisfy

ĈnH
r
+k+k

= Hr
+k+k

; ĈnH+k−k = ei
4kπ
n H+k−k . (12)
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They are Ĉn-eigenfunctions with the respective χCns.

As the symmetry is increased to Dn, Ĥ needs to be invariant with respect to Ĉ ′2.

Ĉ ′2ĤĈ
′−1
2 = (|−k〉 〈−k|+ |+k〉 〈+k|) Ĉ ′2Hr

+k+k
+ |−k〉 〈+k| Ĉ ′2H+k−k + h.c. (13)

To have Ĉ ′2ĤĈ
′−1
2 = Ĥ, the two elements need to satisfy

Ĉ ′2H
r
+k+k

= Hr
+k+k

; Ĉ ′2H+k−k = H∗+k−k . (14)

While Hr
+k+k

is a Ĉ ′2-eigenfunction with χC
′
2 = 1, H+k−k is not an eigenfunction, as the real

and imaginary parts of H+k−k feature different eigenvalues
(
χ
C′2
Re, χ

C′2
Im

)
= (1,−1), respec-

tively. We use
(
χ
C′2
Re, χ

C′2
Im

)
to indicate the χC

′
2-eigenvalues of the real and imaginary parts of

a matrix element.
(
χ
C′2
Re, χ

C′2
Im

)
= (1, 0) for Hr

+k+k
. The 0 indicates that the matrix element

is real-valued.

As the symmetry is increased from Cn to Cnh, all the ket-bra dyads are σ̂h-invariant

(and Î-invariant if n is even). Consequently, χσh/I = 1 for the two elements. The higher

Dnh symmetry is a composites of Dn and Cnh symmetries. The elements then need to carry

all their symmetry-eigenvalues above. The unique matrix elements and their symmetry-

eigenvalues are summarized in the Ek,p row of Table 1.

We then move on to the (Ek + El)-type pJT problem, whose Hamiltonian reads

Ĥ = (|+k〉 〈+l|+ |−l〉 〈−k|)H+k+l + (|+k〉 〈−l|+ |+l〉 〈−k|)H+k−l + h.c. (15)

Again, the dyads in each set of parentheses share the same matrix element as a consequence

of TR-symmetry.

ĈnĤĈ
−1
n = e−i

2(k−l)π
n (|+k〉 〈+l|+ |−l〉 〈−k|) ĈnH+k+l

+e−i
2(k+l)π

n (|+k〉 〈−l|+ |+l〉 〈−k|) ĈnH+k−l + h.c. (16)
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Table 1: Forms of Hamiltonians of all intra- and inter-term vibronic Hamiltonians in ax-
ial symmetries, and the symmetry-eigenvalues of their matrix elements. Each set of the
symmetry-eigenvalues are given for the matrix element in the same row.

Problem Ĥ χCn/Sn ,
(
χ
C′2/σv
Re , χ

C′2/σv
Im

)
, χσh/I

Ek,p
(|+k,p〉 〈+k,p|+ |−k,p〉 〈−k,p|)Hr

+k,p+k,p

+ |+k,p〉 〈−k,p|H+k,p−k,p + h.c.

1, (1, 0) , 1

ei
4kπ
n , (1,−1) , 1

Ak,p |Ak,p〉 〈Ak,p|Hr
Ak,pAk,p

1, (1, 0) , 1

Bk,p |Bk,p〉 〈Bk,p|Hr
Bk,pBk,p

1, (1, 0) , 1

(Ek,p + El,q)
(|+k,p〉 〈+l,q|+ |−l,q〉 〈−k,p|)H+k,p+l,q

+ (|+k,p〉 〈−l,q|+ |+l,q〉 〈−k,p|)H+k,p−l,q + h.c.
ei

2(k−l)π
n , (1,−1) , (−1)δp,q+1

ei
2(k+l)π

n , (1,−1) , (−1)δp,q+1

(Ek,p + Al,q) (|+k,p〉 〈Al,q|+ |Al,q〉 〈−k,p|)H+k,pAl,q + h.c. ei
2kπ
n ,
(

(−1)δl,2 , (−1)δl,1
)
, (−1)δp,q+1

(Ek,p +Bl,q) (|+k,p〉 〈Bl,q|+ |Bl,q〉 〈−k,p|)H+k,pBl,q + h.c. ei
(2k−n)π

n ,
(

(−1)δl,2 , (−1)δl,1
)
, (−1)δp,q+1

(Ak,p + Al,q) (|Ak,p〉 〈Al,q|+ |Al,q〉 〈Ak,p|)Hr
Ak,pAl,q

1,
(

(−1)δkl+1 , 0
)
, (−1)δp,q+1

(Bk,p +Bl,q) (|Bk,p〉 〈Bl,q|+ |Bl,q〉 〈Bk,p|)Hr
Bk,pBl,q

1,
(

(−1)δkl+1 , 0
)
, (−1)δp,q+1

(Ak,p +Bl,q) (|Ak,p〉 〈Bl,q|+ |Bl,q〉 〈Ak,p|)Hr
Ak,pBl,q

−1,
(

(−1)δkl+1 , 0
)
, (−1)δp,q+1
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The conditions for ĈnĤĈ
−1
n = Ĥ are

ĈnH+k+l = ei
2(k−l)π

n H+k+l ; ĈnH+k−l = ei
2(k+l)π

n H+k−k . (17)

In Dn symmetry,

Ĉ ′2ĤĈ
′−1
2 = (|−k〉 〈−l|+ |+l〉 〈+k|) Ĉ ′2H+k+l

+ (|−k〉 〈+l|+ |−l〉 〈+k|) Ĉ ′2H+k−l + h.c. (18)

Ĉ ′2ĤĈ
′−1
2 = Ĥ requires

Ĉ ′2H+k+l = H∗+k+l
; Ĉ ′2H+k−l = H∗+k−k . (19)

In Cnh symmetry, to the σ̂h/Î-parities of the matrix elements must be equal to the parities

of the associated dyads (i.e., (−1)δp,q+1) to make the Hamiltonian σ̂h/Î-invariant. All these

symmetry-eigenvalues of the (Ek + El)-type pJT problem are summarized in the (Ek + El)

row of Table 1. The derivations for the electronic parts of the other intra- and inter-term

problems follow the same route and are presented in Section S.2 in SI. The forms of Hamil-

tonians of all vibronic problems in axial symmetries and the symmetry-eigenvalues of their

matrix elements are summarized in Table 1.

3.2 Vibrational part

The symmetry-eigenvalues in Table 1 impose constraints onto the most general polynomial

expansion formula of vibrational coordinates in Eq. 9. Some of the terms must be excluded

and the coefficients must adopt specific forms to give the appropriate symmetry-eigenvalues.
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The monomial in Eq. 8 transforms under Ĉn as

Ĉn

(
Na∏
Ia

z
MIa
kIa ,pIa

Nb∏
Ib

w
MIb
kIb ,pIb

Ne∏
Ie

ρ
|MIe |+2KIe
kIe ,pIe

)
ei(
∑Ne
Ie

MIeφkIe )

=

(
Na∏
Ia

z
MIa
kIa ,pIa

Nb∏
Ib

(−1)MIb w
MIb
kIb ,pIb

Ne∏
Ie

ρ
|MIe |+2KIe
kIe ,pIe

)
e
i
(∑Ne

Ie
MIe

(
φkIe

−
2kIe

π

n

))

=

(
Na∏
Ia

z
MIa
kIa ,pIa

Nb∏
Ib

w
MIb
kIb ,pIb

Ne∏
Ie

ρ
|MIe |+2KIe
kIe ,pIe

)
ei(
∑Ne
Ie

MIeφkIe )e
−i
(∑Ne

Ie
MIekIe+n

2

∑Nb
Ib

MIb

)
2π
n (20)

The reason of using such monomials in the expansion is now obvious: they are Ĉn-eigenfunctions.

To have χCn = ei
2κπ
n , the power indices of the ek-type and b-type coordinates must satisfy

Ne∑
Ie

MIekIe +
n

2

Nb∑
Ib

MIb = Ln− κ, (21)

where L can take any integer values from−∞ to∞. Clearly, in Eq. 9, only the C{MIa},{MIb},{MIe},{KIe}

coefficients with their {MIb} and {MIe} indices satisfying Eq. 21 can be nonzero. We can

then obtain expansions for the matrix elements in Table 1 according to their χCn values.

The Ln factor in Eq. 21 determines that there are in general fewer terms in the vibronic

Hamiltonian expansions for systems with a higher axial symmetry. Generally, fewer combi-

nations of indices on the left hand side of the equation match a larger n periodicity on the

right hand side.

The situations of κ = 0 and ne
2

(χCn = 1,−1) are worth further discussion. Ĉn-

eigenfunctions with those χCn values transform as A- or B-type IRREPs and can be ex-

panded using real-valued bases. We then choose the cos and sin functions of the phase

angles in Eq. 9 to expand those Ĉn-eigenfunctions:

Cc
{MIa},{MIb},{M̄Ie},{KIe}

(
Na∏
Ia

z
MIa
kIa ,pIa

Nb∏
Ib

w
MIb
kIb ,pIb

Ne∏
Ie

ρ
|MIe |+2KIe
kIe ,pIe

)
cos

(
Ne∑
Ie

MIeφkIe

)

+Cs
{MIa},{MIb},{M̄Ie},{KIe}

(
Na∏
Ia

z
MIa
kIa ,pIa

Nb∏
Ib

w
MIb
kIb ,pIb

Ne∏
Ie

ρ
|MIe |+2KIe
kIe ,pIe

)
sin

(
Ne∑
Ie

MIeφkIe

)
. (22)
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To avoid duplication of the cos and sin functions, one of the {MIe} indices is restricted to

take only nonnegative integer values. It is naturally to choose the first ek-type mode to

impose such an additional restriction, which is denoted by an overhead bar in
{
M̄Ie

}
in the

expression. The Cc and Cs coefficients are in general complex-valued. It is convenient to

use Eq. 22 to derive the expansions with appropriate χC
′
2 . Note that Eq. 22 is just a special

form of Eq. 9, and the constraint of Eq. 21 holds in Eq. 22 for κ = 0, ne
2

.

Under the action of Ĉ ′2, the expansion in Eq. 22 becomes

Cc
{MIa},

{
MIb

}
,{M̄Ie},{KIe}

(−1)

∑Na
Ia

MIaδkIa
,2+

∑Nb
Ib

MIb
δkIb

,2

Na∏
Ia

z
MIa
kIa ,pIa

Nb∏
Ib

w
MIb
kIb

,pIb

Ne∏
Ie

ρ
|MIe |+2KIe
kIe ,pIe

 cos

Ne∑
Ie

MIeφkIe


−Cs
{MIa},

{
MIb

}
,{M̄Ie},{KIe}

(−1)

∑Na
Ia

MIaδkIa
,2+

∑Nb
Ib

MIb
δkIb

,2

Na∏
Ia

z
MIa
kIa ,pIa

Nb∏
Ib

w
MIb
kIb

,pIb

Ne∏
Ie

ρ
|MIe |+2KIe
kIe ,pIe

 sin

Ne∑
Ie

MIeφkIe

 . (23)

The (−1)
∑Na
Ia

MIaδkIa ,2
+
∑Nb
Ib

MIb
δkIb

,2 factor contains all possible sign flipping for the a- and

b-type coordinates, if their subscripts are 2. The minus sign of −Cs
{MIa},{MIb},{M̄Ie},{KIe}

arises from flipping the signs of all
{
φkIe

}
angles. The real and imaginary parts of the ex-

pansion above solely come from the real and imaginary parts of the Cc = Cc,r + iCc,i and

Cs = Cs,r + iCs,i coefficients. To have χ
C′2
Re = 1 for this expansion, we need

∑Na
Ia
MIaδkIa ,2 +∑Nb

Ib
MIbδkIb ,2 = even in Cc,r

{MIa},{MIb},{M̄Ie},{KIe} and odd in Cs,r

{MIa},{MIb},{M̄Ie},{KIe}. The op-

posite even/odd constraints give χ
C′2
Re = −1. Transplanting the constraints onto Cc,i

{MIa},{MIb},{M̄Ie},{KIe}
and Cs,i

{MIa},{MIb},{M̄Ie},{KIe} give the corresponding χ
C′2
Im. These constraints and their resul-

tant χ
C′2
Re and χ

C′2
Im are summarized in the “1 or −1” row of Table 2. As shown in Table 1,

when χCn = 1 or −1, the possible
(
χ
C′2
Re, χ

C′2
Im

)
values are (1, 0), (−1, 0), (1,−1), and (−1, 1).

It is convenient to use Eq. 22 and Table 2 to obtain the expansions that fit the four sets of

values. For the real-valued expansions with χ
C′2
Im = 0, we may just set all {Cc,i, Cs,i} values

to be zero.

Eq. 9 is used for expansions with χCn 6= ±1. Writing its real and imaginary parts of the

expansion explicitly, Eq. 9 becomes

(
Na∏
Ia

z
MIa

kIa ,pIa

Nb∏
Ib

w
MIb

kIb
,pIb

Ne∏
Ie

ρ
|MIe |+2KIe

kIe ,pIe

)[
Cr
{··· } cos Φ− Ci

{··· } sin Φ + i
(
Cr
{··· } sin Φ− Ci

{··· } cos Φ
)]
. (24)
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Table 2: Constraints of the χCn/Sn-eigenexpansions to have appropriate
(
χ
C′2/σv
Re , χ

C′2/σv
Im

)
and

χσh/I .

χCn/Sn
(
χ
C′2/σv
Re , χ

C′2/σv
Im

) ∑Na
Ia
MIaδkIa ,2 +

∑Nb
Ib
MIbδkIb ,2 =

1 or -1a
χ
C′2/σv
Re =

1 even in Cc,r, odd in Cs,r

−1 odd in Cc,r, even in Cs,r

χ
C′2/σv
Im =

1 even in Cc,i, odd in Cs,i

−1 odd in Cc,i, even in Cs,i

othersb
(1,−1) even in Cr, odd in Ci

(−1, 1) odd in Cr, even in Ci

χCn/Sn χσh/I
∑Na

Ia
MIaδpIa ,′′/u +

∑Nb
Ib
MIbδpIb ,′′/u +

∑Ne
Ie
MIeδpIe ,′′/u =

allc
1 even
−1 odd

a The constraints apply to the expansion in Eq. 22. b The constraints apply to the expansion in

Eq. 9. c The constraints apply to both Eqs. 9 and 22.

To save space, the subscripted indices sets of the coefficients are abbreviated as {· · · } and

the total phase angle is abbreviated as Φ, regardless of the values of the indices. Under Ĉ ′2,

the expansion becomes

(−1)
∑Na
Ia

MIaδkIa ,2
+
∑Nb
Ib

MIb
δkIb

,2

(
Na∏
Ia

z
MIa
kIa ,pIa

Nb∏
Ib

w
MIb
kIb ,pIb

Ne∏
Ie

ρ
|MIe |+2KIe
kIe ,pIe

)
[
Cr
{··· } cos Φ + Ci

{··· } sin Φ + i
(
−Cr

{··· } sin Φ− Ci
{··· } cos Φ

)]
. (25)

Again, the (−1)
∑Na
Ia

MIaδkIa ,2
+
∑Nb
Ib

MIb
δkIb

,2 factor comes from possible sign changes for the

a- and b-type coordinates, and the sign changes in front of the sin Φ terms come from

flipping the signs of all
{
φkIe

}
angles. As shown in Table 1, the only possible

(
χ
C′2
Re, χ

C′2
Im

)
combinations for the matrix elements with χCn 6= ±1 are (1,−1) and (−1,+1). For the

former,
∑Na

Ia
MIaδkIa ,2 +

∑Nb
Ib
MIbδkIb ,2 needs to be even in Cr

{MIa},{MIb},{MIe},{KIe}
and odd

in Ci
{MIa},{MIb},{MIe},{KIe}

. For the latter, the opposite evenness-oddness is needed. These

constraints are summarized in the “others” row of Table 2.
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Each term in Eqs. 9 and 22 is a σ̂h-eigenfunction with

χσh = (−1)
∑Na
Ia

MIaδpIa ,
′′+
∑Nb
Ib

MIb
δpIb

,′′+
∑Ne
Ie

MIeδpIe ,
′′
. Therefore, to have an expansion with

χσh = 1 or −1, only those terms with
∑Na

Ia
MIaδpIa ,′′+

∑Nb
Ib
MIbδpIb ,′′+

∑Ne
Ie
MIeδpIe ,′′ = even

or odd, respectively, shall be kept. These constraints are included in the “all” row of Table 2.

It is never tedious to emphasize that the constraints for obtaining expansions with χCn above

are also applicable for obtaining expansions with χSn in Sne and D2ned symmetries. In those

symmetries, the principal axes are Sne and S2ne , respectively. The constraints for obtaining

expansions with
(
χ
C′2
Re, χ

C′2
Im

)
are applicable for obtaining expansions with (χσvRe, χ

σv
Im) in Cnv

symmetries. The constraints for obtaining expansions with χσh are applicable for obtaining

expansions with χI in Cneh, Dneh, and Dnod symmetries. In Tables 1 and 2, the slash “/”

is used to indicate the multiple symmetry elements to which the symmetry-eigenvalues and

constraints are applicable.

The three equations (9, 22, and 21) and the two tables conveys a unified formalism for all

JT/pJT vibronic Hamiltonians in axial symmetries. It is more concise than those separately

derived before for trigonal and tetragonal symmetries. The trigonal formalism44 consists of

1 table of symmetry-eigenvalues, 2 tables of expansion formulas, and 4 tables of constraints.

The corresponding numbers are 1, 3, and 6 in the tetragonal formalism.45 Also, the previous

formalisms are for bimodal problems only, while the present one is for an arbitrary number

of modes of arbitrary types.

3.3 Renner-Teller problems

Like JT/pJT interactions in systems with axial symmetries, vibronic interactions in linear

molecules involving degenerate vibrational modes result in orbital degeneracy lifting. The

associated effects are called the Renner-Teller (RT) effects.57,58 The C∞v or D∞h symmetries

of linear molecules are special cases of axial symmetries. Therefore, the presented formalism

must cover Renner-Teller problems, with the limit of n → ∞. In a linear molecule, each

atom can only move along or perpendicular the molecular axis. Therefore, all vibrational
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modes must transform as Σ+ or Π IRREP, corresponding to a1-type and e1-type modes in

the present formalism. Eqs. 9 and 22 are thus simplified to

C{MIa},{MIe},{KIe}

(
Na∏
Ia

z
MIa
1Ia ,pIa

Ne∏
Ie

ρ
|MIe |+2KIe
1Ie ,pIe

)
ei(
∑Ne
Ie

MIeφ1Ie
); (26)

Cc
{MIa},{M̄Ie},{KIe}

(
Na∏
Ia

z
MIa
1Ia ,pIa

Ne∏
Ie

ρ
|MIe |+2KIe
1Ie ,pIe

)
cos

(
Ne∑
Ie

MIeφ1Ie

)

+Cs
{MIa},{M̄Ie},{KIe}

(
Na∏
Ia

z
MIa
1Ia ,pIa

Ne∏
Ie

ρ
|MIe |+2KIe
1Ie ,pIe

)
sin

(
Ne∑
Ie

MIeφ1Ie

)
. (27)

Eq. 21 becomes

Ne∑
Ie

MIe = −κ. (28)

The Ln in Eq. 21 is dropped since the summation of the finite {MIe} values never reaches

the infinite Ln. The Σ+ and Σ−-type electronic states correspond to A1- and A2-type states,

and the other states characterized by Λ correspond to the Ek-type states with k = Λ, e.g.,

Π, ∆ corresponding to E1, E2, etc. Since n → ∞, B-type states with Λ = n
2

can never be

reached. With all these simplifications and correspondences, the unified formalism can be

used to obtain Hamiltonian expansion formulas for all RT problems.

3.4 Rules for linear coupling

Linear vibronic coupling in JT interactions is of special interest. It makes a high-symmetry

configuration a conical intersection on adiabatic potential energy surface and and leads to

geometric phase effects.59–61 For a degenerate Ek-type term symbol, χCn = 1, ei
4kπ
n (κ = 0, 2k)

in Table 1 for the two unique matrix elements. According to Eq. 21, the linear coupling mode

must be an el-type mode that has ±l = Ln or Ln − 2k, or a b-type mode when ne
2

= Lne

or Lne − 2k. ne
2

= Lne is certainly impossible except for the non-existing case of ne = 0.

Also, ±l = Ln is impossible given the range of l = 1, 2, · · · Int
(
no
2

)
or ne

2
− 1. The only
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possibility for ne
2

= Lne − 2k is k = ne
4

. This is why the E-type terms of tetragonal systems

feature linear JT interactions along b-type modes, hexagonal systems do not have linear JT

interactions along b-modes, and octagonal systems only have their E2-type terms have linear

couplings along b-type modes. Only 4n-gonal systems have their En terms feature linear JT

interactions along b-type modes. The range of l reduces ±l = Ln− 2k to l = n− 2k or 2k.

This explains the E ⊗ e linear JT interaction in trigonal systems (l = 1, k = 1, n = 3), the

lack of this type in tetragonal systems (l = 1, k = 1, n = 3), and the E2 ⊗ e1-type linear JT

interactions in pentagonal systems.

The χσh/I = 1 for H+k,p−k,p determines that in axial symmetries where there are σh or

I, only the modes have even σ̂h/Î-parity can give linear JT interactions. In all cases of(
χ
C2′/σv
Re , χ

C2′/σv
Im

)
in Table 2, the odd constraint applies to at least one set of coefficients.

Therefore, both b1- and b2-type modes can give linear JT interactions in axial symmetries

with σv or C ′2. There is also no restriction onto el-type modes due to the presence of σv or

C ′2. All rules for the existence of linear JT interactions in axial symmetries are included in

these two paragraphs.

As to linear molecules, only el=1-type modes are available for distorting (bending) struc-

ture. The ±l = Ln− 2k condition is reduced to 2k = 1, which is impossible. There is hence

no linear vibronic coupling within a degenerate term symbol in linear molecules, and a linear

structure that undergoes bending has a maximum (instead of a conical intersection) of its

ground state potential energy surface when it is unbent. The χCn values in Table 1 indicate

that linear vibronic coupling in linear molecules can only occur between states with their

Λ values differing by ±1, i.e., a type of pJT interaction, which is essentially the only driv-

ing force for bending a linear molecule, as the RT bending propensity is generally weak.62

Many of the aforementioned rules are well known. The present formalism elucidates them

in a very clear way and more importantly, provides quick and correct predictions for the

(non-)existence of vibronic couplings at certain orders.
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3.5 An Example

We use a E ′′3 ⊗ e′1 problem of a heptagonal system to demonstrate the use and correctness of

the presented formalism. The system is chosen to be the cycloheptatrienyl cation (C7H+
7 ). Its

degenerate HOMO+3,4 are chosen as the two components of a single-electron E ′′3 state. The

e′1 mode of 1012 cm−1 is selected. The C7H+
7 structure, orbitals, and vibrational modes were

obtained at the B3LYP/cc-pVDZ level of calculation. The orbitals and component modes

are shown in Figure 1(a). The orbitals are frozen so that they are strict diabatic states. We

choose such a heptagonal system, instead of those with lower n values, to emphasize that

the formalism is applicable to arbitrarily high axial symmetries.

For such a unimodal problem, Eq. 9 is reduced to

CM,Kρ
|M |+2K
1 eiMφ1 , (29)

which is applicable to both H+′′3 +′′3
and H+′′3−′′3 , the only two matrix elements according

to the Ek,p row in Table 1. We focus on the H+′′3−′′3 element. The Ek,p row in Table 1

indicates that this matrix element features χCn ,
(
χ
C′2
Re, χ

C′2
Im

)
= ei

12π
7 , (1,−1). With κ = 6,

Nb = 0, Ne = 1, k1 = 1, and n = 7, Eq. 21 becomes M = 7L − 6. Certainly, only

M = 1,−6, 8,−13, 15, · · · are kept in Eq. 29 in the expansion for H+′′3−′′3 . Since Na = Nb = 0,∑Na
Ia
MIaδkIa ,2 +

∑Nb
Ib
MIbδkIb ,2 = 0. Given this even number and χCn 6= ±1, Table 2 indicates

that CM,K in Eq. 29 must be real-valued to expand H+′′3−′′3 :

H+′′3−′′3 = Cr
M,Kρ

|M |+2K
1 eiMφ1 . (30)

In the more commonly used real-valued electronic bases |X ′′3 〉 and |Y ′′3 〉 (see Eq. 2 for the

transformation), the real and imaginary parts of H+′′3−′′3 become

HX′′3X
′′
3
−HY ′′3 Y

′′
3

2
= Cr

M,Kρ
|M |+2K
1 cos (Mφ1) ;HX′′3 Y

′′
3

= −Cr
M,Kρ

|M |+2K
1 sin (Mφ1) , (31)
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with the aforementioned M range. We calculated
HX′′3X

′′
3
−HY ′′3 Y ′′3
2

and HX′′3 Y
′′
3

on a (ρ1, φ1)

grid, and then expand them into Fourier series of sin (Mφ1) and cos (Mφ1) at each of the

ρ1 grid point. The expansion coefficients were obtained by numerically integrating φ1 from

0 to 2π on a Chebyshev quadrature.
HX′′3X

′′
3
−HY ′′3 Y ′′3
2

and HX′′3 Y
′′
3

are labeled as “Diff” and

“Off” terms henceforth, for they are the difference between diagonal and the off-diagonal

element, respectively. The Diff and Off expansion coefficients discussed below are obtained

from the calculated Diff and Off values independently, without assuming any magnitude and

sign relations between the two sets. The resultant sign and magnitude relations confirm the

relations predicted by the formalism.
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Figure 1: (a) The HOMO+3,4 orbitals and the e′1 component modes of C7H+
7 used to demon-

strate the formalism; (b) The Fourier series coefficients for
HX′′3X

′′
3
−HY ′′3 Y ′′3
2

(labeled as “Diff”)
and HX′′3 Y

′′
3

(labeled as “Off’). The coefficients are scaled so that they can be compared in
the same graph.
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sin (Mφ1) and cos (Mφ1) terms up to M = 18 are included in the Diff and Off expansions

at each ρ. Shown by the markers in Figure 1(b) are the expansion coefficients that are

substantial in the range of distortion (ρmax = 6.3
√

amuÅ). By substantial, we also mean

the rate of magnitude increase as ρ becomes larger. For instance, the coefficients for the

M = 13, 15 terms are small throughout the ρ range and need to be amplified by 600 and

1500 times to be comparable with the M = 1 coefficients. However, their magnitudes

increase sharply as ρ increases. The unsubscripted ρ coordinate in the figure is renormalized

as ρ1/ρmax and has no unit. The Diff and Off expansions only take cos (Mφ1) terms and

sin (Mφ1) terms, respectively, with M = 1, 6, 8, 13, 15. The magnitude of coefficients of

all the other cos (Mφ1) and sin (Mφ1) terms, which is calculated as the square root of the

summation of their squares, is plotted in Figure 1(b) and labeled as “others”. The Diff

“others” and almost identical to the Off analogues and only the formers are plotted. The

“others” coefficients remain small throughout the range of distortion and never rise up quickly

as the M = 13, 15 coefficients. The magnitudes of the corresponding cos and sin coefficients

for Diff and Off are essentially identical. They have the opposite signs for M = 1, 8, 15,

which is consistent with the minus sign for the Off expansion in Eq. 31. They have the

same sign for M = 6, 13, and this is because it is M = −6,−13 that enter Eq. 31; the

minus sign does not affect the cos terms in the Diff expansion, and it is cancelled by the

minus sign for the Off expansion. The correctness of the angular factors in Eq. 31 and the

M = 1,−6, 8,−13, 15, · · · selection are fully confirmed. Note that for the E ⊗ e problem in

the lower trigonal symmetry, the selection of M for H+− is M = −1, 2,−4, 5,−7, 8, · · · . As

expected, high symmetry imposes more constrains on Hamiltonian expansion, following the

same logics as the constraints in Table 2. For the larger n, the constraint is hidden in the

larger periodicity of Ln in Eq. 21.

The dashed curves shown in Figure 1(b) are the fitted curves for each set of the Fourier

coefficients. We use a three terms polynomial aMρ
M + aM+2ρ

M+2 + aM+4ρ
M+4 to fit the

cos (Mφ1) coefficients with one M (always taken to be positive as in the figure). Another
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fitting was done for the corresponding sin (Mφ1) coefficients. For instance, the resultant

polynomials for cos (φ1) and sin (φ1) coefficients are

−7.05969ρ− 3.46937ρ3 + 1.14006ρ5; 7.06001ρ+ 3.47178ρ3 − 1.13934ρ5, (32)

respectively. As expected, the magnitude and sign relations between the Diff and Off ex-

pansion coefficients are maintained in the two polynomials above, and in all the other pairs

(given in Section S.3). The three terms fittings give very small errors in this large range of

distortion, as shown by the consistence between the curves and the markers in Figure 1(b).

This consistence confirms the adequacy of the ρ
|M |+2K
1 power selection with just lowest order

terms. We do not need to prove the correctness of this radial coordinate power selection

using a free fitting, as for the angular factors. This is because the power selection is ensured

by the smooth variation of the calculated data around ρ = 0, i.e., the fitted function must

be a differentiable functions of the associated Cartesian coordinates.

4 VHEGEN2.0

A Python program called VHEGEN (Vibronic Hamiltonian Expansion GENerator) was devel-

oped to generate expansion formulas for all bimodal and unimodal pJT/JT Hamiltonians in

trigonal and tetragonal symmetries.63 The 2.0 version of the program has been extended to

allow any axial symmetries and any numbers and types of modes. Instead of having specific

root formulas and constrain tables for each state combination, the general root formulas of

Eqs. 9, 22, 26 and 27 are used in the program, along with Tables 1 and 2. The package can

be installed through pip install vhegen. After installation, the program can be called as

described in Ref. 63 or by using the interactive script vhegen in command line.

In order to efficiently obtain the Hamiltonian expansions for a given order o, a constrained

summation64 approach has been used to select the appropriate mode combinations. This

attenuates the exponential scaling with the number of modes m and order o such that the
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search space reduces from om to (o+m)!
m!o!

. With this problem being solved, the main bottleneck

of the program is the symbolic conversion from polar to Cartesian functions. This conversion

is performed by the sympy package with the substitution φ→ atan2(y, x), ρ→
√
x2 + y2 for

each e-mode followed by an expand command.

The program has also been extended to output two MCTDH65 operator files such that

one can simulate the dynamics of the system in either polar or Cartesian coordinates. The

Laplace operator for polar coordinates is described in Section S.4. The summation of φ

coordinates in the polar expansion’s sin and cos terms have been further expanded such

that the generated operator is in the necessary sum-of-products form. For each set of polar

e-mode coordinates, the generalized Laguerre polynomials with α = 1 (lagu1 in MCTDH) shall

be used as radial basis and either exponential or FFT functions with a range of [0, 2π) as

polar angle basis. For Cartesian coordinates, harmonic oscillator basis functions are a good

choice. VHEGEN2.0 outputs an MCTDH input file with reasonable basis function parameters

made.

As an example, the program is used to generate the E1g⊗(2e2g+e1g+e1u+e2u) Hamilto-

nian in D6h from zero to sixth order. This is a two-state, ten-mode problem that one would

see in the benzene cation. The program generates the Hamiltonian and outputs the pdf and

MCTDH input files in about 15 minutes on a desktop workstation. The generated expansion

satisfies all the constraints listed above and includes 1092 parameters. This compares to

32032 parameters in the full series expansion (including terms that are not of the correct

symmetry) with order ≤ 6. A step-by-step instruction of obtaining the program and running

it for the example is given in Section S.5.

5 CONCLUSIONS

There have been numerous endeavours to derive high order expansion formulas for JT/pJT

Hamiltonians. Usually, these attempts are performed in a case by case, and order by order
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manner. In this work, we derive and present a unified Hamiltonian formalism for JT/pJT

problems in all axial symmetries. The formalism is inclusive, as it covers all axial JT/pJT

problems, with all possible combinations of electronic states, with an arbitrary number of

all types of vibrational modes, covering all axial symmetries from C1 to D∞h. Of likewise

importance, it gives Hamiltonian expansions up to arbitrary orders. The formalism is concise

and easy to use. It essentially consists of three equations and two tables. The correctness

and convenience of the formalism is demonstrated using a E ′′3 ⊗ e′1 problem in a heptagonal

system. The formalism is programmable, as it involves looking up the tables and imposing

constraints on the generic expansion formulas. A Python code, VHEGEN2.0, is developed

to generate any desired Hamiltonian expansion formulas based on the simplest input. The

program also interfaces the expansion formulas to the quantum dynamics simulation program

MCTDH. This work has significantly simplified future studies of pJT/JT problems in high order

axial symmetries. The knowledge gained in this study is of critical importance for future

works in deriving JT/pJT Hamiltonians for cubic group systems, and spin-orbit JT/pJT

Hamiltonians for axial and cubic group systems.
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