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Abstract 

    The photophysical analysis of thermally activated delayed fluorescence (TADF) materials has become 

instrumental to providing insight into their stability and performance, which is not only relevant for organic light-

emitting diodes (OLED), but also for other applications such as sensing, imaging and photocatalysis. Thus, a deeper 

understanding of the photophysics underpinning the TADF mechanism is required to push materials design further. 

Previously reported analyses in the literature of the kinetics of the various processes occurring in a TADF material rely 

on several a priori assumptions to estimate the rate constants for forward and reverse intersystem crossing (ISC and 

RISC, respectively). In this report, we demonstrate a method to determine these rate constants using a three-state model 

together with a steady-state approximation and, importantly, no additional assumptions. Further, we derive the exact 

rate equations, greatly facilitating a comparison of the TADF properties of structurally diverse emitters and providing 

a comprehensive understanding of the photophysics of these systems. 

1. Introduction 

In recent years, organic thermally activated delayed fluorescence (TADF) materials have attracted significant attention 

within the organic semiconductor community as TADF provides a route for 100% internal quantum efficiency in 

organic light-emitting diodes (OLEDs), without the need to use precious noble metal complexes.1-4 Distinct from 

phosphors that rely on large spin-orbit coupling to drive the conversion of singlet excitons to triplets and then 

phosphorescence of the latter, organic TADF materials convert triplet excitons to singlet excitons by taking advantage 

of the small energy gap (ΔEST), typically taken as less than 200 meV, between the lowest singlet (S1) and triplet (T1) 

excited states. As T1 excitons are efficiently upconverted into an S1 level through a reverse intersystem crossing (RISC) 

route, OLEDs can harvest the 75% of electrically generated excitons that are triplets for electroluminescence (EL) as 
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delayed fluorescence from the singlet excited state. The most common molecular design that shows small ΔEST is based 

on a donor-acceptor architecture wherein there is poor electronic communication between the two moieties, resulting 

in a small exchange integral and a correspondingly small ΔEST. TADF materials typically exhibit dual fluorescence 

consisting of a prompt nanosecond fluorescence originating from the radiative decay of directly formed singlet excitons 

and a microsecond to millisecond delayed fluorescence that originates from the multiple ISC and RISC cycles preceding 

emission from the singlet excited state. The performance of the OLED, and in particular the efficiency roll-off and the 

device stability, are intimately linked to the population of the long-lived triplet excitons. As RISC is the slowest process 

typically observed in OLEDs using organic TADF emitters, the optimization of the device performance is intimately 

linked to increasing the rate constant associated with RISC, kRISC. Thus, it is essential to have an accurate measure of 

this key rate constant. 

    Many researchers have tried to understand the photophysics of TADF materials by curve fitting the time-resolved 

photoluminescence (PL) decays using a conventional rate equation strategy that accounts for each decay process. While 

this approach is useful, most previous analyses require several a priori assumptions, leading to rather large deviations 

from experiment or, in some cases, completely incorrect conclusions. For example, in 1983, McMillin and co-workers 

explained the TADF behavior of a Cu(I) complex using a Boltzmann statistical analysis of the population equilibrium 

of excitons in the S1 and T1 states, this analysis based on several assumptions. These included that the intersystem 

crossing (ISC) efficiency (𝛷𝐼𝑆𝐶) is almost unity and the rate constant of nonradiative decay from the singlet excited 

state (𝑘𝑛𝑟
𝑆 ) is 0.5 In a very early study in 2012, our group applied this method to organic TADF materials having nearly 

100% PL quantum yield (PLQY).6 Here, 𝑘𝑅𝐼𝑆𝐶  was given by 

𝑘𝑅𝐼𝑆𝐶 =
1

3
𝑘𝑟
𝑆 exp (

−Δ𝐸𝑆𝑇
𝑅𝑇

) , (1. 1) 

where 𝑅 and 𝑇 are the ideal gas constant and the temperature, respectively. However, the materials that can be 

analyzed using this method are quite limited because of the demanding assumptions this model makes. Subsequently, 

in our first kinetics analysis model in 2012, 𝑘𝑅𝐼𝑆𝐶  was obtained but with a less stringent set of assumptions that the 

radiative and nonradiative decay rate constant from a singlet excited state (𝑘𝑟
𝑆) and 𝑘𝑛𝑟

𝑆 , respectively, and the ISC rate 

constant (𝑘𝐼𝑆𝐶) are all significantly larger than both the rate constants of nonradiative decay from a triplet excited state 

(𝑘𝑛𝑟
𝑇 ) and 𝑘𝑅𝐼𝑆𝐶 ; further, it was assumed that radiative decay from a triplet excited state (𝑘𝑟

𝑇) does not occur.7 In our 

second, revised, kinetics analysis study, we further simplified the model by imposing the additional assumption that 

𝑘𝑛𝑟
𝑆 = 0,8 which implies that 𝑘𝑟

𝑆 and 𝑘𝐼𝑆𝐶  are significantly larger than 𝑘𝑛𝑟
𝑆  and 𝑘𝑅𝐼𝑆𝐶 . Within this framework, 𝑘𝐼𝑆𝐶  

and 𝑘𝑅𝐼𝑆𝐶  can be formulated as: 

𝑘𝑅𝐼𝑆𝐶 =
𝑘𝑝𝑘𝑑

𝑘𝐼𝑆𝐶
⋅
𝛷𝐷𝐸
𝛷𝑃𝐹

, (1. 2) 

𝑘𝐼𝑆𝐶 = 𝑘𝑝(1 − 𝛷𝑃𝐹), (1. 3) 

where 𝛷𝑃𝐹, 𝛷𝐷𝐸, 𝑘𝑝 and 𝑘𝑑 are the experimentally obtained PL efficiencies and decay rates for the prompt and 

delayed emissions. In 2016, Wu, Wong and co-workers arrived at the same equations as those of Eqs. 1.2 and 1.3, but 



3 

 

by imposing fewer assumptions in their model.9 In the same paper, they also obtained the following equation with the 

assumption of 𝑘𝑟
𝑇 = 𝑘𝑛𝑟

𝑇 = 0 as: 

𝑘𝑅𝐼𝑆𝐶 =
𝑘𝑝𝑘𝑑

𝑘𝑟
𝑆 𝛷𝑃𝐿𝑄𝑌, (1. 4) 

Dias, Penfold and Monkman more recently proposed a model that applies for TADF emitters that show a large fraction 

of delayed emission, i.e., 𝛷𝐷𝐸/𝛷𝑃𝐹 > 4, and with the assumptions that 𝑘𝑟
𝑇 = 𝑘𝑛𝑟

𝑇 = 0.10 

𝑘𝑅𝐼𝑆𝐶 = 𝑘𝑑
𝛷𝑃𝐹 + 𝛷𝐷𝐸

𝛷𝑃𝐹
, (1. 5) 

Kaji and co-workers removed the constraint that 𝛷𝐷𝐸/𝛷𝑃𝐹 > 4 and showed that 𝑘𝑅𝐼𝑆𝐶  could be estimated with only 

the assumptions that 𝑘𝑟
𝑇 = 𝑘𝑛𝑟

𝑇 = 0.11 

𝑘𝑅𝐼𝑆𝐶 =
𝑘𝑝 + 𝑘𝑑

2
− √(

𝑘𝑝 + 𝑘𝑑

2
)

2

− 𝑘𝑝𝑘𝑑 (1 +
𝛷𝐷𝐸
𝛷𝑃𝐹

) . (1. 6) 

Taking each a different approach, Hasse, Brütting, Monkman and co-workers demonstrated the direct fitting of the 

time-resolved PL decays using the rate constants as fitting parameters,12 while Nguyen et al. provided an analysis model 

derived from experiments employing an exciton quencher.13 Goodson and co-workers extracted the triplet decay rate 

using transient absorption (TA) measurement as a proxy for the RISC rate constant, but they did not appear to consider 

cycling between the singlets and triplets.14 The constraints and assumptions for these RISC rate constant estimations 

are summarized in Table S1. Since there are now a large number of different models used to estimate 𝑘𝑅𝐼𝑆𝐶 , each with 

their own set of assumptions, it has become impossible to accurately compare the estimated rate constants across these 

studies, complicating any meta-analysis. To reduce the number of assumptions and the differences in estimated 𝑘𝑅𝐼𝑆𝐶 , 

𝛷𝐼𝑆𝐶  must be measured experimentally. 

    Because 𝛷𝐼𝑆𝐶  and its related rate constant 𝑘𝐼𝑆𝐶  are two of the essential parameters of photochemical processes 

that implicate triplet states, dating back to before 1970, several groups have focused on an estimation method of 

accurate 𝛷𝐼𝑆𝐶 . Scott and Maltenieks proposed a method to estimate 𝑘𝐼𝑆𝐶  using triplet absorption under steady-state 

conditions.16 To apply this method to TADF materials, their equation can be rewritten as 

𝛷𝐼𝑆𝐶 =
𝜌(𝜆)𝑆𝑆𝑘𝑑
𝜀𝑇(𝜆)𝐼𝑎𝑙

, (1. 7) 

where 𝜌(𝜆)𝑆𝑆 is the optical density change due to the triplet-triplet absorption from a T1 state to a higher-lying triplet 

(Tn) state at the steady-state condition, 𝜀𝑇(𝜆) is the triplet-triplet extinction coefficient, 𝐼𝑎 is the rate of absorption 

of exciting light, and 𝑙 is the optical path length. It should be noted that 𝜀𝑇(𝜆) can be estimated experimentally.17 In 

another study, Berberan-Santos et al. provided an estimation of 𝛷𝐼𝑆𝐶  by fitting the intensity ratio of the prompt and 

delayed emission (𝐼𝑃𝐹 𝐼𝐷𝐹⁄ ), corresponding to 𝛷𝑃𝐿
𝑝
𝛷𝑃𝐿
𝑑⁄ , vs 1 𝑇⁄  by using Eq. 1.8.18 

ln [
𝐼𝑃𝐹
𝐼𝐷𝐹

− (
1

𝛷𝐼𝑆𝐶
− 1)] =

Δ𝐸𝑆𝑇
𝑅

∙
1

𝑇
 + ln (

𝑘𝑟
𝑇 + 𝑘𝑛𝑟

𝑇

𝑘̅𝑅𝐼𝑆𝐶
) , (1. 8) 

where 𝑘̅𝑅𝐼𝑆𝐶  is the average rate constant for RISC. The shape of the plot is very sensitive to 𝛷𝐼𝑆𝐶 , and is normally not 

linear. Continuous variation of 𝛷𝐼𝑆𝐶  within the search for maximum linearity yields its best value. It should be noted 
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that this method assumes that (𝑘𝑟
𝑇 + 𝑘𝑛𝑟

𝑇 ) and 𝛷𝐼𝑆𝐶  are each essentially temperature independent. They also provided 

another analysis method for 𝛷𝐼𝑆𝐶 , shown in Eq. 1.9, which combines a steady-state condition and a time-resolved 

analysis.19 

𝜏𝐷𝐹 = 𝜏𝑃ℎ𝑜𝑠
0 − (

1

𝛷𝐼𝑆𝐶
− 1) 𝜏𝑃ℎ𝑜𝑠

0 𝐼𝐷𝐹
𝐼𝑃𝐹

, (1. 9) 

where 𝜏𝐷𝐹 is the delayed fluorescence lifetime (1 𝑘𝑑⁄ ) and 𝜏𝑃ℎ𝑜𝑠
0  is the low-temperature phosphorescence lifetime 

without any contribution to the emission associated with TADF, which means 1 (𝑘𝑟
𝑇 + 𝑘𝑛𝑟

𝑇 )⁄ . This method also 

assumes that (𝑘𝑟
𝑇 + 𝑘𝑛𝑟

𝑇 ) is temperature independent. Our group demonstrated an estimation of 𝛷𝐼𝑆𝐶  for thin film 

samples by combining pulse-excited electroluminescence (EL) and PL measurements.7 Here, 𝛷𝐼𝑆𝐶  can be obtained as 

𝛷𝐼𝑆𝐶 =
3𝑁

𝑀 − 𝑁
, (1. 10) 

where 𝑀  and 𝑁  are the quantum yield ratio of delayed fluorescence and prompt fluorescence for EL and PL, 

respectively; 𝛷𝐸𝐿
𝑑 𝛷𝐸𝐿

𝑝
⁄ = 𝑀, 𝛷𝑃𝐿

𝑑 𝛷𝑃𝐿
𝑝

⁄ = 𝑁. This method is very effective since it requires only the ratio of initial 

exciton distribution between S1 and T1 states, although this model is only relevant for thin films where OLED driving 

is applicable. Very recently, Naito et al. reconsidered the estimation method to obtain 𝑘𝐼𝑆𝐶  from PL decay 

measurements under the assumption of 𝑘𝑟
𝑆 + 𝑘𝐼𝑆𝐶 ≫ 𝑘𝑅𝐼𝑆𝐶 ≫ 𝑘𝑟

𝑇 + 𝑘𝑛𝑟 
𝑇 , (Eq. 1.11).20 This is a reasonable assumption 

for efficient organic TADF emitters. 

𝛷𝐼𝑆𝐶 =
𝛷𝐷𝐹 + 𝛷𝑃ℎ𝑜𝑠

𝛷𝑟
𝑆 + 𝛷𝐷𝐹 + 𝛷𝑃ℎ𝑜𝑠

 =
𝛷𝐷𝐸
𝛷𝑃𝐿𝑄𝑌

. (1. 11) 

This equation for 𝛷𝐼𝑆𝐶  converges to our three-state analysis (see Eq. S6.4) when 𝛷𝑛𝑟
𝑇 = 0 and 𝛷𝑟

𝑇 = 0  are 

employed; however, we note that Eq. 1.11 is derived without these assumptions. This method should only be applied 

at around room temperature for organic TADF materials where triplet excitons mainly decay by a RISC path. Naito et 

al. also provided an equation for 𝛷𝐼𝑆𝐶  determined at low temperature where the TADF is completely suppressed. For 

the temperature region where contributions from nonradiative decay paths cannot be ignored, an alternative approach 

using the temperature dependence of the prompt fluorescence rate is also provided. 

    Thus, if thin film samples are available, our model using Eq. 1.10 is the most promising and provides the most 

accurate determination of 𝛷𝐼𝑆𝐶 . Without considering the complexity of the experimental setup and the associated 

specialized instrumentation, the method proposed by Scott and Maltenieks should be employed for solution-state 

samples. Both methods provided by Berberan-Santos et al. assume that (𝑘𝑟
𝑇 + 𝑘𝑛𝑟

𝑇 ) is temperature independent, which 

is a limitation of their methods as 𝑘𝑛𝑟
𝑇  usually possesses a temperature dependence that is explained in terms of the 

thermal quench model.21,22 The method of Naito et al. should be useful as it does not assume temperature independence 

for (𝑘𝑟
𝑇 + 𝑘𝑛𝑟

𝑇 ); however, it cannot be applied to inefficient TADF materials. 

    As explained above, most of the previously reported rate equations used for TADF compounds are based on 

models derived from highly emissive materials and assume 𝛷𝑛𝑟
𝑆 = 0 or 𝛷𝑛𝑟

𝑇 = 0, in order to obtain an estimation of 

𝛷𝐼𝑆𝐶 . Therefore, most of these previously reported rate equations are not appropriate for the analysis of low efficiency 

TADF materials. However, we often find reports that uncritically employ these models and equations to extract rate 
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constants for low efficiency materials. In addition, assumptions such as 𝛷𝑛𝑟
𝑆 = 0 or 𝛷𝑛𝑟

𝑇 = 0 raise the question about 

“which parameter should be set to zero”. Here, we introduce two kinetics analysis methods for TADF materials based 

on a three-state system of S0, S1, and T1. In our first method where we invoke a steady-state approximation, no other 

assumptions are required in order to derive the set of rate constants related to the emission of TADF materials. This 

method not only can help in our understanding of TADF processes, but it can demonstrate the connections between 

several previously reported methods; however, this method still has the weakness in terms of providing an accurate 

estimation of 𝛷𝐼𝑆𝐶 . To resolve this outstanding issue, we then present a derived exact solution to provide precise rate 

constants in the kinetics analysis of TADF materials. 

2. Exact equation for emission decay curve for a three-state system 

We first present an exact equation to model the emission decay that occurs from a three-state system comprising 

S1 and T1 coupled excited states and the S0 ground state (Figure 1). The combined decay rates from both excited states 

in the absence of exciton-formation processes can be formulated as  

𝑑[S1]

𝑑𝑡
= −(𝑘𝑟

𝑆 + 𝑘𝑛𝑟
𝑆 + 𝑘𝐼𝑆𝐶)[S1] + 𝑘𝑅𝐼𝑆𝐶[T1], (2. 1) 

𝑑[T1]

𝑑𝑡
= −(𝑘𝑟

𝑇 + 𝑘𝑛𝑟
𝑇 + 𝑘𝑅𝐼𝑆𝐶)[T1] + 𝑘𝐼𝑆𝐶[S1], (2. 2) 

where [S1] and [T1] are the populations of S1 and T1 excitons. The differential equations, Eqs. 2.1 and 2.2, are a 

system of ordinary differential equations of the general formula of 𝑑Y⃗⃗ (𝑡) 𝑑𝑡⁄ = 𝐴Y⃗⃗ (𝑡), and can be written as, 

𝑑

𝑑𝑡
(
[S1]

[T1]
) = (

−𝑘𝑆 𝑘𝑅𝐼𝑆𝐶
𝑘𝐼𝑆𝐶 −𝑘𝑇

) (
[S1]

[T1]
) , (2. 3) 

where 𝑘𝑆 = 𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶 and 𝑘𝑇  = 𝑘𝑟
𝑇 + 𝑘𝑛𝑟

𝑇 + 𝑘𝑅𝐼𝑆𝐶 , respectively. The general solution to this system is given 

by, 

𝑌⃗ (𝑡) =∑𝑐𝑖𝑣𝑖⃗⃗⃗  exp(𝜆𝑖𝑡)

𝑛

𝑖=1

, (2. 4) 

where 𝑣𝑖⃗⃗⃗   is the eigenvector with corresponding eigenvalue 𝜆𝑖 of the matrix 𝐴, and 𝑐𝑖  is a constant depending on 

the initial conditions. For the matrix 𝐴 in Eq. 2.3, the eigenvalues can be calculated as, 

det(𝐴 − 𝜆𝐸) = det [(
−𝑘𝑆 − 𝜆 𝑘𝑅𝐼𝑆𝐶
𝑘𝐼𝑆𝐶 −𝑘𝑇 − 𝜆

)] = (𝑘𝑆 + 𝜆)(𝑘𝑇 + 𝜆) − 𝑘𝐼𝑆𝐶𝑘𝑅𝐼𝑆𝐶 = 0, (2. 5) 

where 𝐸 is the identity matrix. Eq. 2.5 can be rewritten as, 

𝜆2 + (𝑘𝑆 + 𝑘𝑇)𝜆 + 𝑘𝑆𝑘𝑇 − 𝑘𝐼𝑆𝐶𝑘𝑅𝐼𝑆𝐶 = 0. (2. 6) 

This quadratic equation provides λ as, 

𝜆1,2 = −
𝑘𝑆 + 𝑘𝑇

2
± √

(𝑘𝑆 + 𝑘𝑇)2

4
− 𝑘𝑆𝑘𝑇 + 𝑘𝐼𝑆𝐶𝑘𝑅𝐼𝑆𝐶 = −

1

2
(𝑘𝑆 + 𝑘𝑇 ∓√(𝑘𝑆 − 𝑘𝑇)2 + 4𝑘𝐼𝑆𝐶𝑘𝑅𝐼𝑆𝐶) . (2. 7) 
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Here, it is worth pointing out that λ1 < λ2 < 0 and, therefore, the exact prompt and delayed emission decays for the 

photoluminescence (𝑘𝑝, 𝑘𝑑) are written as 𝑘𝑝 = −𝜆1 and 𝑘𝑑 = −𝜆2, respectively. Several rate equations introduced 

in the previous section have been derived from Eq. 2.7 but employ a number of different assumptions. Here, we note 

that Eq. 2.7 provides a relationship among 𝑘𝑆, 𝑘𝑇 , 𝑘𝑝, and 𝑘𝑑 as, 

𝑘𝑆 + 𝑘𝑇 = 𝑘𝑝 + 𝑘𝑑 . (2. 8) 

Considering the clear relationships of 𝑘S > 𝑘𝑑 and 𝑘𝑝 > 𝑘
𝑇, Eq. 2.5 implies the relationships of 𝑘𝑝 > 𝑘

𝑆 and 𝑘𝑇 >

𝑘𝑑 (these provided relationships are explained again in section 5). If these relationships are not operative, then there 

should be no observed delayed emission. The corresponding eigenvectors are given by evaluating 𝜆𝑖𝑣𝑖⃗⃗⃗  = 𝐴𝑣𝑖⃗⃗⃗  . 

λ𝑖 (
𝑥1
𝑥2
) = (

−𝑘𝑆 𝑘𝑅𝐼𝑆𝐶
𝑘𝐼𝑆𝐶 −𝑘𝑇

) (
𝑥1
𝑥2
) . (2. 9) 

Eq. 2.9 leads to the relationship of Eq. 2.10. 

{
 

 𝑥1 =
𝑘𝑅𝐼𝑆𝐶
𝑘𝑆 + 𝜆𝑖

𝑥2

𝑥2 =
𝑘𝐼𝑆𝐶

𝑘𝑇 + 𝜆𝑖
𝑥1

  ⟺ {
𝑥1 =

𝑘𝑅𝐼𝑆𝐶
𝑘𝑆 + 𝜆𝑖

𝑥2

𝑥2 =  𝑥2, 𝑥2 ∈ ℝ

  ⟺ {

𝑥1 = 𝑥1, 𝑥1 ∈ ℝ

𝑥2 =
𝑘𝐼𝑆𝐶

𝑘𝑇 + 𝜆𝑖
𝑥1

. (2. 10) 

Using Eq 2.5, this set of equations can be easily reduced to a linear relationship between the dimensions of the 

eigenvector, allowing for the other dimension to be fixed to a freely chosen value. When 𝑥2 = 1 is chosen, both 

eigenvectors, 𝑣1⃗⃗⃗⃗  and 𝑣2⃗⃗⃗⃗  are given by 

𝑣1⃗⃗⃗⃗ = (
𝑘𝑅𝐼𝑆𝐶
𝑘𝑆 + 𝜆1
1

) , 𝑣2⃗⃗⃗⃗ = (
𝑘𝑅𝐼𝑆𝐶
𝑘𝑆 + 𝜆2
1

) . (2. 11) 

Inserting Eq. 2.11 in Eq. 2.4 yields the following equations for [S1] and [T1] as a function of time. 

(
[S1]

[T1]
) = 𝑐1 (

𝑘𝑅𝐼𝑆𝐶
𝑘𝑆 + 𝜆1
1

) exp(𝜆1𝑡) + 𝑐2 (
𝑘𝑅𝐼𝑆𝐶
𝑘𝑆 + 𝜆2
1

) exp(𝜆2𝑡) , (2. 12) 

{
[S1] = 𝑐1

𝑘𝑅𝐼𝑆𝐶
𝑘𝑆 − 𝑘𝑝

exp(−𝑘𝑝𝑡) + 𝑐2
𝑘𝑅𝐼𝑆𝐶
𝑘𝑆 − 𝑘𝑑

exp(−𝑘𝑑𝑡)

[T1] = 𝑐1 exp(−𝑘𝑝𝑡) + 𝑐2 exp(−𝑘𝑑𝑡)

. (2. 13) 

The pre-exponential factors depend on the initial conditions. Using [S1] = [S1]𝑡=0 and [T1] = [T1]𝑡=0 = 0 at 𝑡 =

 0, they are expressed as follows. 

(
[S1]𝑡=0
0

) = 𝑐1 (

𝑘𝑅𝐼𝑆𝐶
𝑘𝑆 − 𝑘𝑝

1

) + 𝑐2 (
𝑘𝑅𝐼𝑆𝐶
𝑘𝑆 − 𝑘𝑑

1

) . (2. 14) 

Eq. 2.14 expresses the relationship of Eq. 2.15. 

{
[S1]𝑡=0 = 𝑐1

𝑘𝑅𝐼𝑆𝐶
𝑘𝑆 − 𝑘𝑝

+ 𝑐2
𝑘𝑅𝐼𝑆𝐶
𝑘𝑆 − 𝑘𝑑

𝑐1 = −𝑐2

. (2. 15) 

Here, [S1]𝑡=0 and 𝑐2 are given as Eqs. 2.16 and 2.17. 

[S1]𝑡=0 = 𝑐2
𝑘𝑅𝐼𝑆𝐶(𝑘𝑝 − 𝑘𝑑)

(𝑘𝑝 − 𝑘
𝑆)(𝑘𝑆 − 𝑘𝑑)

, (2. 16) 
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𝑐2 = [S1]𝑡=0
𝑘𝐼𝑆𝐶

𝑘𝑝 − 𝑘𝑑
. (2. 17) 

From Eqs. 2.13, 2.16, and 2.17, the exact [S1] and [T1] can be written as following equations. 

[S1] =
[S1]𝑡=0
𝑘𝑝 − 𝑘𝑑

[(𝑘𝑆 − 𝑘𝑑) exp(−𝑘𝑝𝑡) + (𝑘𝑝 − 𝑘
𝑆) exp(−𝑘𝑑𝑡)]. (2. 18) 

[T1] =
[S1]𝑡=0𝑘𝐼𝑆𝐶
𝑘𝑝 − 𝑘𝑑

[− exp(−𝑘𝑝𝑡) + exp(−𝑘𝑑𝑡)]. (2. 19) 

Here, it is evident that Eq. 2.18 provides a bi-exponential decay of the S1 population, and Eq. 2.19 provides a convex 

curve behavior of the evolution of the T1 population. Hasse et al. reported that the emission decay of TADF materials 

corresponds to the S1 population decay when assuming 𝑘𝑟
𝑇 = 𝑘𝑛𝑟

𝑇 = 0.12 They also verified that the depletion of the T1 

population was accurately determined by the TA decay. When now including the depletion from the T1 state term 

described in Eq. 2.19, the total emission decay now includes the contributions from both S1 and T1 populations. Because 

the total emission from S1 is the sum of the overall emission efficiencies from S1 excitons, which are generated by 

direct photoexcitation and indirectly from the T1 population, i.e., sum of prompt and delayed fluorescence (𝛷𝑃𝐹 +𝛷𝐷𝐹), 

the contribution arising from generated triplet excitons must also be accounted for within the emission efficiency from 

T1, phosphorescence (𝛷𝑃ℎ𝑜𝑠 ). The S1 and T1 populations described by Eqs. 2.18 and 2.19 do not consider the 

luminescence. Therefore, the exact emission decay can be modelled as a bi-exponential decay as described in Eq. 2.20 

using the radiative decay ratio for each exciton (Figure 2). 

𝐼(𝑡) = 𝛷𝑟
𝑆[S1] + 𝛷𝑟

𝑇[T1]

=
[𝑆1]𝑡=0
𝑘𝑝 − 𝑘𝑑

{[(𝑘𝑆 − 𝑘𝑑)𝛷𝑟
𝑆 − 𝑘𝐼𝑆𝐶𝛷𝑟

𝑇] 𝑒𝑥𝑝(−𝑘𝑝𝑡) + [(𝑘𝑝 − 𝑘
𝑆)𝛷𝑟

𝑆 + 𝑘𝐼𝑆𝐶𝛷𝑟
𝑇] 𝑒𝑥𝑝(−𝑘𝑑𝑡)}. (2. 20)

 

where 𝐼(𝑡) is the time-dependent emission intensity, 𝛷𝑟
𝑆 and 𝛷𝑟

𝑇 are the quantum efficiencies of the radiative decay 

for S1 and T1 as written by and 𝑘𝑟
𝑆 𝑘𝑆⁄  and 𝑘𝑟

𝑇 𝑘𝑇⁄ , respectively. By using this equation that describes explicitly the 

emission decay, we can deeply understand the kinetics of TADF based on a three-state system. 

3. Derivation of rate equations using steady-state approximation 

    In the previous section, we derived the rate equations for the emission decay of TADF materials based on a three-

state system. In this section, we derive the rate equations by using the assumption of 𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶 ≫ 𝑘𝑅𝐼𝑆𝐶 . This 

assumption implies that at least one of 𝑘𝑟
𝑆, 𝑘𝑛𝑟

𝑆 , or 𝑘𝐼𝑆𝐶  is much larger than 𝑘𝑅𝐼𝑆𝐶 . Since the T1 level is lying below 

the S1 level, 𝑘𝐼𝑆𝐶 ≫ 𝑘𝑅𝐼𝑆𝐶  should always be valid and no further assumptions are employed. 

    Before deriving the rate equations, we define 𝛷𝑃𝐹  and 𝛷𝐷𝐸  in terms of 𝐴𝑝 ,  𝐴𝑑 , 𝑘𝑝  and 𝑘𝑑  which are 

parameters that describe a bi-exponential decay curve; these parameters are the pre-exponential factors (𝐴) and decay 

rate constants (𝑘) for the prompt (𝑝) and delayed (𝑑) components, respectively. There are several reported methods to 

obtain these values experimentally.23 For instance, these values can be obtained from the integration of the emission 

decay corresponding to the prompt and delayed emission, respectively.24 Also, there is the rough method of using the 
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experimentally determined PLQY under aerated conditions as a surrogate for 𝛷𝑃𝐹; however, the triplet state may not 

be completely quenched by O2 under aerated conditions, and it is not the case that oxygen is benign to reaction with 

the S1 state of TADF materials as its presence has been shown to increase the nonradiative decay path from the S1 

state.15 The most commonly used approach to determine these values would be using Eqs. S3.1 and S3.2 where 𝐴𝑝, 𝐴𝑑, 

𝑘𝑝 and 𝑘𝑑 can be obtained from bi-exponential curve fitting. However, the two exponential curves in Eq. 2.20 do not 

directly correspond to the exact “prompt emission” and “delayed emission”, respectively. To estimate each efficiency, 

therefore, it is necessary to rewrite Eq. 2.20 as,  

𝐼(𝑡) = (𝐴𝑝 + 𝐴𝑑) exp(−𝑘𝑝𝑡) + 𝐴𝑑[− exp(−𝑘𝑝𝑡) + exp(−𝑘𝑑𝑡)]. (3. 1) 

In this form, the first and second terms exactly correspond to the prompt and delayed emission, respectively (Figure 3). 

The quantum efficiency of the prompt (𝛷𝑃𝐹) and delayed emission (𝛷𝐷𝐸) are therefore given by, 

𝛷𝑃𝐹 =

𝐴𝑝 + 𝐴𝑑
𝑘𝑝

𝐴𝑝 + 𝐴𝑑
𝑘𝑝

+
𝐴𝑑
𝑘𝑑
−
𝐴𝑝
𝑘𝑝

𝛷𝑃𝐿𝑄𝑌 =
(𝐴𝑝 + 𝐴𝑑)𝑘𝑑

𝐴𝑝𝑘𝑑 + 𝐴𝑑𝑘𝑝
𝛷𝑃𝐿𝑄𝑌, (3. 2) 

𝛷𝐷𝐸 =

𝐴𝑑
𝑘𝑑
−
𝐴𝑝
𝑘𝑝

𝐴𝑝 + 𝐴𝑑
𝑘𝑝

+
𝐴𝑑
𝑘𝑑
−
𝐴𝑝
𝑘𝑝

𝛷𝑃𝐿𝑄𝑌 =
𝐴𝑑(𝑘𝑝 − 𝑘𝑑)

𝐴𝑝𝑘𝑑 + 𝐴𝑑𝑘𝑝
𝛷𝑃𝐿𝑄𝑌, (3. 3) 

    Under the assumption of 𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶 ≫ 𝑘𝑅𝐼𝑆𝐶  and with the restriction condition of [S1] ≫ [T1]  (𝑡 ≪

1 𝑘𝑝⁄ ), the emission decay agrees with the prompt decay in this region and [T1] can be approximated to be 0. Eq. 2.1 

can therefore be rewritten as Eq. 3.4. Hence, the singlet decay rate (𝑘𝑆) can be approximated to the prompt decay rate 

(𝑘𝑝), and the evolution of the S1 population as a function of time at short time can be written as Eq. 3.5. 

𝑑[S1]

[S1]
≈ −(𝑘𝑟

𝑆 + 𝑘𝑛𝑟
𝑆 + 𝑘𝐼𝑆𝐶)𝑑𝑡. (3. 4) 

[S1] ≈ 𝐴𝑆 exp[−(𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶)𝑡] =𝐴𝑆exp(−𝑘
𝑆𝑡) ≈ 𝐴𝑆 exp(−𝑘𝑝𝑡) , (3. 5) 

where 𝐴𝑆 is a pre-exponential factor. 

    Next, we focus on the exponential decay of [T1] to derive 𝑘ISC. Eq. 2.2 can be rewritten as Eq. 3.6. 

𝑑[T1]

[T1]
≈ −(𝑘𝑟

𝑇 + 𝑘𝑛𝑟
𝑇 + 𝑘𝑅𝐼𝑆𝐶 − 𝑘𝐼𝑆𝐶

[S1]

[T1]
) 𝑑𝑡. (3. 6) 

Here, since [S1] and [T1] are time-dependent terms; this equation cannot be integrated. In the delayed decay region, 

however, we note that the decay rate is not exactly the same as the intrinsic triplet decay rate, as delayed emission decay 

also contains a term relating to the singlet population given that there is an exp(−𝑘𝑑𝑡) term found in the corresponding 

equations of Eqs. 2.18-2.20. Therefore, the ratio of singlet and triplet population, [S1] [T1]⁄ , is not a time-dependent 

value but an exactly fixed value in the delayed decay region (𝑡 ≫ 1 𝑘𝑝⁄ ). Further, the delayed component that originates 

from an S1 population decay is extremely small compared with the T1 population decay, [T1] ≫ [S1], because 𝑘𝐼𝑆𝐶 ≫

𝑘𝑅𝐼𝑆𝐶  (Figure 2b). Therefore, the temporal differentiation of [S1] can be approximated to be 0, i.e., 𝑑[S1] 𝑑𝑡⁄ ≈ 0, in 

this time region. In other word, the population of the intermediate state S1 resulting from upconversion of T1 excitons, 

which then decay to S0 can be considered using the steady-state approximation. We thus obtain the ratio of [S1] [T1]⁄  



9 

 

in Eq. 3.6 by using the steady-state approximation (SSA) in this time region. By the SSA, the ratio of [S1] [T1]⁄  can 

be provided as Eq. 3.7. Also, the SSA provides a description of the time dependence for [T1] as Eq. 3.8. 

[S1]

[T1]
≈

𝑘𝑅𝐼𝑆𝐶

𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶
. (3. 7) 

[T1] ≈ 𝐴𝑇 exp {− [𝑘𝑟
𝑇 + 𝑘𝑛𝑟

𝑇 + (1 −
𝑘𝑅𝐼𝑆𝐶

𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶
) 𝑘𝑅𝐼𝑆𝐶] 𝑡} =𝐴𝑇 exp(−𝑘𝑑𝑡) , (3. 8) 

where 𝐴𝑇  is a pre-exponential factor for the delayed decay component of the triplet excitons. Now, 𝑘𝑑  can be 

approximated as, 

𝑘𝑑 ≈ 𝑘𝑟
𝑇 + 𝑘𝑛𝑟

𝑇 + (1 −
𝑘𝑅𝐼𝑆𝐶

𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶
)𝑘𝑅𝐼𝑆𝐶 . (3. 9) 

For this approximation, 𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶 ≫ 𝑘𝑅𝐼𝑆𝐶  remains a necessary assumption to achieve the restriction condition 

of [T1] ≫ [S1]. However, this assumption is valid in general as we explained previously. Invoking the SSA leads to a 

reduction in the number of required assumptions for the analysis of the kinetics of organic TADF materials. 

    The total decay efficiency of singlet excitons generated by photoexcitation is the sum of 𝛷𝑟
𝑆, 𝛷𝑛𝑟

𝑆 , and 𝛷𝐼𝑆𝐶  (for 

the distribution of singlet exciton, the ISC/RISC cycles are not considered because 𝑘𝑆 was approximated as 𝑘𝑝 in 

this section by Eq. 3.5, i.e., 𝛷𝑟
𝑆 ≈ 𝛷𝑃𝐹), and the decay efficiency of triplet excitons that results from an ISC process is 

the sum of 𝛷𝑟
𝑇, 𝛷𝑛𝑟

𝑇 , and 𝛷𝑅𝐼𝑆𝐶 , which are given by 

𝛷𝑟
𝑆 +𝛷𝑛𝑟

𝑆 + 𝛷𝐼𝑆𝐶 = 1, (3. 10) 

𝛷𝑟
𝑇 + 𝛷𝑛𝑟

𝑇 + 𝛷𝑅𝐼𝑆𝐶 = 1. (3. 11) 

As a result of 𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶 ≫ 𝑘𝑅𝐼𝑆𝐶 , the RISC process is rate determining for the decay of T1 excitons via the S1 

state while the S1 excitons generated by the RISC process rapidly decay to the S0 state or return back to the T1 state 

according to Eq. 3.10. In other words, the T1 excitons return to T1 state with a certain probability after ISC/RISC cycling.  

In this case, the efficiencies shown in Eq. 3.11 should be modified to take ISC/RISC cycling explicitly into account by 

using overall efficiencies (OEs), which correspond to the distributed exciton ratio between the S1 and T1 populations 

under the SSA via ISC/RISC cycles; these are 𝛷𝑟
𝑇𝑂𝐸 > 𝛷𝑟

𝑇 , 𝛷𝑛𝑟
𝑇 𝑂𝐸

> 𝛷𝑛𝑟
𝑇 , and 𝛷𝑅𝐼𝑆𝐶

𝑂𝐸 < 𝛷𝑅𝐼𝑆𝐶  (see section 4 in 

supporting information for the detailed relationship between efficiencies and OEs). From these, 𝛷𝐼𝑆𝐶  can be divided 

into 𝛷𝑟
𝑇𝑂𝐸, 𝛷𝑛𝑟

𝑇 𝑂𝐸
, and 𝛷𝑅𝐼𝑆𝐶

𝑂𝐸, and the total efficiency is given by 

𝛷𝑟
𝑇𝑂𝐸 + 𝛷𝑛𝑟

𝑇 𝑂𝐸
+ 𝛷𝑅𝐼𝑆𝐶

𝑂𝐸 = 1. (3. 12) 

The fraction of T1 exciton decays via S1 (𝛷𝐼𝑆𝐶𝛷𝑅𝐼𝑆𝐶
𝑂𝐸) can be divided to occur either radiatively (𝛷𝑟

𝑆) or nonradiatively 

(𝛷𝑛𝑟
𝑆 ), because 𝛷𝑅𝐼𝑆𝐶

𝑂𝐸 encompasses the exciton ratio after considering ISC/RISC cycling. The delayed fluorescence 

(𝛷𝐷𝐹) can now be formulated as a function of the radiative fraction to the total efficiency, 𝛷𝑟
𝑆 + 𝛷𝑛𝑟

𝑆 . 

𝛷𝐷𝐹 = 𝛷𝐷𝐸𝑅𝐷𝐸
𝐷𝐹 = 𝛷𝐼𝑆𝐶𝛷𝑅𝐼𝑆𝐶

𝑂𝐸 𝛷𝑟
𝑆

𝛷𝑟
𝑆 + 𝛷𝑛𝑟

𝑆 = 𝛷𝐼𝑆𝐶𝛷𝑅𝐼𝑆𝐶
𝑂𝐸 𝛷𝑟

𝑆

1 − 𝛷𝐼𝑆𝐶
. (3.13) 

where 𝛷𝐷𝐸 are the quantum efficiency of phosphorescence and delayed emission, which are the sum of 𝛷𝐷𝐹 and 

phosphorescence (𝛷𝑃ℎ𝑜𝑠 ), 𝛷𝐷𝐸 = 𝛷𝐷𝐹 + 𝛷𝑝ℎ𝑜𝑠 . 𝑅𝐷𝐸
𝐷𝐹  is the ratio of the delayed fluorescence component of the 
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delayed emission (𝛷𝐷𝐹 𝛷𝐷𝐸⁄ ). On the other hand, the fraction of radiative decay from T1 (𝛷𝐼𝑆𝐶𝛷𝑟
𝑇𝑂𝐸) corresponds to 

𝛷𝑃ℎ𝑜𝑠, as shown in Eq. 3.14. 

𝛷𝐼𝑆𝐶𝛷𝑟
𝑇𝑂𝐸 = 𝛷𝑃ℎ𝑜𝑠 = 𝛷𝑃𝐿𝑄𝑌 − 𝛷𝑃𝐹 −𝛷𝐷𝐹 = 𝛷𝐷𝐸(1 − 𝑅𝐷𝐸

𝐷𝐹), (3. 14) 

In the three-state analysis, the lifetimes of TADF and phosphorescence are exactly the same since they occur from the 

same origin of the T1 state (see Eq. 2.20). Therefore, both 𝛷𝐷𝐹 and 𝛷𝑃ℎ𝑜𝑠 contribute to the delayed emission (𝛷𝐷𝐸). 

The total PL quantum yield (𝛷𝑃𝐿𝑄𝑌) is the sum of 𝛷𝑟
𝑆 and 𝛷𝐷𝐸. Based on the above analysis, all of the efficiencies 

related to the TADF process are presented in Eqs. 3.15-3.20. 

𝛷𝑟
𝑆 =

𝑘𝑟
𝑆

𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶
=
𝑘𝑟
𝑆

𝑘𝑝
. (3. 15) 

𝛷𝑛𝑟
𝑆 = 1 −𝛷𝑟

𝑆 − 𝛷𝐼𝑆𝐶 =
𝑘𝑛𝑟
𝑆

𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶
=
𝑘𝑛𝑟
𝑆

𝑘𝑝
. (3. 16) 

𝛷𝐼𝑆𝐶 =
𝑘𝐼𝑆𝐶

𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶
=
𝑘𝐼𝑆𝐶
𝑘𝑝

. (3. 17) 

𝛷𝑟
𝑇𝑂𝐸 =

𝛷𝑃ℎ𝑜𝑠
𝛷𝐼𝑆𝐶

=
𝑘𝑟
𝑇

𝑘𝑟
𝑇 + 𝑘𝑛𝑟

𝑇 + (1 − 𝛷𝐼𝑆𝐶)𝑘𝑅𝐼𝑆𝐶
=
𝑘𝑟
𝑇

𝑘𝑑
. (3. 18) 

𝛷𝑛𝑟
𝑇 𝑂𝐸

=
𝑘𝑛𝑟
𝑇

𝑘𝑟
𝑇 + 𝑘𝑛𝑟

𝑇 + (1 − 𝛷𝐼𝑆𝐶)𝑘𝑅𝐼𝑆𝐶
=
𝑘𝑛𝑟
𝑇

𝑘𝑑
. (3. 19) 

𝛷𝑅𝐼𝑆𝐶
𝑂𝐸 =

𝛷𝐷𝐹(1 − 𝛷𝐼𝑆𝐶)

𝛷𝑟
𝑆𝛷𝐼𝑆𝐶

=
(1 − 𝛷𝐼𝑆𝐶)𝑘𝑅𝐼𝑆𝐶

𝑘𝑟
𝑇 + 𝑘𝑛𝑟

𝑇 + (1 − 𝛷𝐼𝑆𝐶)𝑘𝑅𝐼𝑆𝐶
=
(1 − 𝛷𝐼𝑆𝐶)𝑘𝑅𝐼𝑆𝐶

𝑘𝑑
. (3. 20) 

The corresponding rate constants are thus described by Eqs. 3.21-3.26. 

𝑘𝑟
𝑆 = 𝑘𝑝𝛷𝑟

𝑆. (3. 21) 

𝑘𝑛𝑟
𝑆 = 𝑘𝑝𝛷𝑛𝑟

𝑆 = 𝑘𝑝(1 − 𝛷𝑟
𝑆 − 𝛷𝐼𝑆𝐶). (3. 22) 

𝑘𝐼𝑆𝐶 = 𝑘𝑝𝛷𝐼𝑆𝐶 . (3. 23) 

𝑘𝑟
𝑇 = 𝑘𝑑𝛷𝑟

𝑇𝑂𝐸 = 𝑘𝑑
𝛷𝑃ℎ𝑜𝑠
𝛷𝐼𝑆𝐶

= 𝑘𝑑
𝛷𝐷𝐸(1 − 𝑅𝐷𝐸

𝐷𝐹)

𝛷𝐼𝑆𝐶
. (3. 24) 

𝑘𝑛𝑟
𝑇 = 𝑘𝑑 − (1 − 𝛷𝐼𝑆𝐶)𝑘𝑅𝐼𝑆𝐶 − 𝑘𝑟

𝑇 . (3. 25) 

𝑘𝑅𝐼𝑆𝐶 = 𝑘𝑅𝐼𝑆𝐶
𝛷𝑅𝐼𝑆𝐶

𝑂𝐸

1 − 𝛷𝐼𝑆𝐶
=
𝑘𝑝𝑘𝑑

𝑘𝐼𝑆𝐶

𝛷𝐷𝐹

𝛷𝑟
𝑆 =

𝑘𝑑𝛷𝐷𝐸𝑅𝐷𝐸
𝐷𝐹

𝛷𝑟
𝑆𝛷𝐼𝑆𝐶

. (3. 26) 

    As explained above, we obtained these rate equations with essentially no assumptions; they are nearly identical to 

those described in Ref 7. The value of 𝑅𝐷𝐸
𝐷𝐹 can be obtained by fitting the delayed emission spectrum with the prompt 

fluorescence and phosphorescence spectra to provide the contribution of the phosphorescence to the delayed emission. 

However, we note that these equations still require 𝛷𝐼𝑆𝐶  to be known. We can employ 𝛷𝑛𝑟
𝑆 = 0 or 𝛷𝑛𝑟

𝑇 = 0 as the 

limiting conditions to determine 𝛷𝐼𝑆𝐶 . This method should be applicable for most TADF materials; however, it should 

be noted that the model employs the approximation of 𝑘𝑆 ≈ 𝑘𝑝  in this section, which introduces a degree of 

uncertainty to the estimated rate constants, thus reducing their accuracy. 
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4. Reevaluation of rate equation using assumption of 𝜱𝒏𝒓
𝑺 = 𝟎 or 𝜱𝒏𝒓

𝑻 = 𝟎 

    As it is difficult to measure directly 𝑘𝐼𝑆𝐶 , in most of the literature the rate equations for TADF materials have 

been estimated using one of the assumptions of 𝛷𝑛𝑟
𝑆 = 0 or 𝛷𝑛𝑟

𝑇 = 0. The previously reported equations have been 

used indiscriminately to analyze not only highly emissive TADF materials but also poorly emissive materials, despite 

the inappropriateness of these models to handle the latter given their implicit assumptions. The derived rate constants 

must therefore be evaluated skeptically. The equations provided in the previous section using the SSA have an upward 

compatibility with previously reported models, especially those of Goushi-Masui and Dias, which have been often 

employed in the literature. 8,10 When we employ 𝛷𝑛𝑟
𝑆 = 0 or 𝛷𝑛𝑟

𝑇 = 0 as a limiting condition to obtain 𝛷𝐼𝑆𝐶 , our 

equation using SSA leads to the same rate equations as those discussed in Refs 8 and 10 (𝛷𝑃ℎ𝑜𝑠 ≈ 0), respectively, 

shown here as Eqs. 4.1 and 4.2. 

𝛷𝐼𝑆𝐶
𝑛𝑟𝑆=0 = 1 −𝛷𝑃𝐹 . (4. 1) 

𝛷𝐼𝑆𝐶
𝑛𝑟𝑇=0 =

𝛷𝐷𝐸 − 𝛷𝑃ℎ𝑜𝑠(1 − 𝛷𝑃𝐹)

𝛷𝑃𝐹 + 𝛷𝐷𝐸 − 𝛷𝑃ℎ𝑜𝑠
. (4. 2) 

Where 𝛷𝐼𝑆𝐶
𝑛𝑟𝑆=0 and 𝛷𝐼𝑆𝐶

𝑛𝑟𝑇=0 correspond to the maximum and minimum values of 𝛷𝐼𝑆𝐶 , respectively. When 𝛷𝑟
𝑇 ≈ 0 

(this approximation holds for organic TADF emitter behavior at around room temperature), the average 𝑘𝐼𝑆𝐶  and 

𝑘𝑅𝐼𝑆𝐶  values within the range between these limiting conditions (𝑘𝐼𝑆𝐶
𝐴𝑣𝑔.

 and 𝑘𝑅𝐼𝑆𝐶
𝐴𝑣𝑔.

, respectively) are provided as 

follows. 

𝑘𝐼𝑆𝐶
𝐴𝑣𝑔.

=
𝑘𝑝

2
∙
[𝛷𝑃𝐿𝑄𝑌(1 − 𝛷𝑃𝐹) + 𝛷𝐷𝐹] ± [𝛷𝑃𝐿𝑄𝑌(1 − 𝛷𝑃𝐹) − 𝛷𝐷𝐹]

𝛷𝑃𝐿𝑄𝑌
. (4. 3) 

𝑘𝑅𝐼𝑆𝐶
𝐴𝑣𝑔.

=
𝑘𝑑
2
∙
[𝛷𝑃𝐿𝑄𝑌(1 − 𝛷𝑃𝐹) + 𝛷𝐷𝐹] ± [𝛷𝑃𝐿𝑄𝑌(1 − 𝛷𝑃𝐹) − 𝛷𝐷𝐹]

𝛷𝑃𝐹(1 − 𝛷𝑃𝐹)
. (4. 4) 

The maximum and minimum values of 𝑘𝐼𝑆𝐶
𝐴𝑣𝑔.

 are the values for the limiting conditions of 𝛷𝑛𝑟
𝑆 = 0 and 𝛷𝑛𝑟

𝑇 = 0, 

respectively, while the maximum and minimum values of 𝑘𝑅𝐼𝑆𝐶
𝐴𝑣𝑔.

 are the values for the limiting conditions of 𝛷𝑛𝑟
𝑇 = 0 

and 𝛷𝑛𝑟
𝑆 = 0, respectively. 

    We analysed the range of 𝑘𝑅𝐼𝑆𝐶  values of the three-state system by using Eq. 4.4. Figure 4a shows the plot of 

𝑘𝑅𝐼𝑆𝐶
𝐴𝑣𝑔.

 for the delayed emission ratio as a function of PLQY. The maximum and minimum values of the ranges are the 

values for the limiting conditions of 𝛷𝑛𝑟
𝑇 = 0 and 𝛷𝑛𝑟

𝑆 = 0, respectively. The plots of blue circles, green triangles, 

and red squares correspond to the respective values of 0.9, 0.5, and 0.1 for 𝛷𝐷𝐹. The prompt and delayed emission 

lifetimes (𝜏𝑝 and 𝜏𝑑) were fixed at 20 ns and 20 μs, which are representative values observed for organic TADF 

emitters. This plot reveals several important points: (1) the ratio of the delayed emission component significantly affects 

the magnitude of 𝑘𝑅𝐼𝑆𝐶 . When the emission decay has only a small contribution from the delayed component, 𝑘𝑅𝐼𝑆𝐶  

is not only slow but remains slow even if the material shows a high PLQY; (2) When the PLQY of TADF materials is 

not very high, i.e., less than 0.8, there is a larger range of accessible 𝑘𝑅𝐼𝑆𝐶  values within the limiting conditions, 

regardless of the magnitude of 𝛷𝐷𝐸. Similar relationships also exist with respect to 𝑘𝐼𝑆𝐶 . It is important to note that 

the assumption of 𝛷𝑛𝑟
𝑆 = 0 results in both an underestimation of 𝑘𝑅𝐼𝑆𝐶  and an overestimation of 𝑘𝐼𝑆𝐶  while the 

assumption of 𝛷𝑛𝑟
𝑇 = 0 results in both an overestimation of 𝑘𝑅𝐼𝑆𝐶  and an underestimation of 𝑘𝐼𝑆𝐶 . The estimated 
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𝑘𝑅𝐼𝑆𝐶  values do not change as a result of changes to the PLQY when the assumption of 𝛷𝑛𝑟
𝑇 = 0 is employed. This 

in turn creates problems when this assumption is applied to the poorly emissive TADF materials. Especially for 

inefficient emitters (𝛷𝑃𝐿𝑄𝑌 < 0.1), the values of 𝑘𝑅𝐼𝑆𝐶  under the assumption of 𝛷𝑛𝑟
𝑆 = 0 or 𝛷𝑛𝑟

𝑇 = 0 have been 

estimated with one order magnitude higher error depending on the ratio of 𝛷𝑃𝐹 and 𝛷𝐷𝐹 (Figure 4b). Further, despite 

when materials have high PLQY (𝛷𝑃𝐿𝑄𝑌 > 0.9), the difference between 𝑘𝑅𝐼𝑆𝐶
𝑛𝑟𝑆=0 and 𝑘𝑅𝐼𝑆𝐶

𝑛𝑟𝑇=0 can be more than double 

than the 𝛷𝑃𝐹 𝛷𝐷𝐹⁄  ratio. In the supporting information, several equations are provided to convert 𝑘𝐼𝑆𝐶  and 𝑘𝑅𝐼𝑆𝐶  

using a limiting condition to another condition or average rate constants, e.g. these equation make possible to 

interconvert the rate constants defined with the models of either Goushi-Masui or Dias and our models. When the 𝑘𝑝 

and 𝑘𝑑  are each provided in the literature along with 𝛷𝑃𝐿𝑄𝑌 , 𝛷𝑃𝐹 , and 𝛷𝐷𝐹 , Eqs. 4.2 and 4.3 allow direct 

extrapolation of the range of accessible values of 𝑘𝐼𝑆𝐶  and 𝑘𝑅𝐼𝑆𝐶 , and make possible the comparison between the 

value estimated using the different models and thus assess the possible range of values these rate constants can attain. 

    Recently, the importance of the role of intermediate triplet excited states in facilitating RISC processes, aided by 

spin-vibronic coupling has been elucidated.25-28 Thus, we often find the delayed component of TADF shows 

biexponential decay. Naito et al. demonstrated the direct fitting of the TR PL decay by using the rate constants as a 

fitting parameter within a four-state model.26 Very recently, we also reported a rate analysis based on a four-state system 

consisting of S1, T1, Tn, and S0, where Tn is a triplet state of intermediate energy between S1 and T1.29 The rate equations 

for the four-state system implicate that RISC proceeds via transient population of the intermediate Tn state. However, 

it is difficult to derive the exact rate equations for the four-state analysis without invoking several a priori assumptions. 

Such a four-state system can also be modeled by using the SSA in a similar manner as we have described for the three-

state system (see section 10 in supporting information). There are two required assumptions: the direct ISC/RISC 

process between the S1 and T1 states and the direct radiative/nonradiative processes from Tn to S0 be both forbidden, 

which are related to El-Sayed’s and Kasha’s rules, respectively.30,31 This situation occurs when S1 and T1 involve 

orbitals of the same orbital type and thus the corresponding ISC/RISC rate constants are negligibly small. Using a 

similar approach to that employed for the three-state system, we can obtain the rate equations that describe all of the 

rate constants, 𝑘𝑟
𝑆 , 𝑘𝑛𝑟

𝑆 , 𝑘𝐼𝑆𝐶 , 𝑘𝑅𝐼𝑆𝐶 , 𝑘𝐼𝐶
𝑇 , 𝑘𝑅𝐼𝐶

𝑇 , and 𝑘𝑛𝑟
𝑇 . Here, 𝑘𝐼𝐶

𝑇  and 𝑘𝑅𝐼𝐶
𝑇  are the forward (IC) and reverse 

internal conversion (RIC) rate constants between Tn and T1. We again confront the problem of determining 𝛷𝐼𝑆𝐶 . As 

explained in the previous section, we wish to avoid invoking the assumption that 𝛷𝑛𝑟
𝑆 = 0 or 𝛷𝑛𝑟

𝑇 = 0 in order to 

estimate 𝛷𝐼𝑆𝐶 . Therefore, we propose to determine 𝛷𝐼𝑆𝐶  using, again, the average rate constants for the ISC, RISC, 

IC and RIC processes within a range of accessible values as an alternative, assuming 𝛷𝑛𝑟
𝑆 = 0 or 𝛷𝑛𝑟

𝑇 = 0. When 

𝛷𝑟
𝑇 ≈ 0 is employed as a likely limiting condition, in an analogous manner to our previous analysis, 𝑘𝐼𝑆𝐶 , 𝑘𝑅𝐼𝑆𝐶 , 𝑘𝐼𝐶  

and 𝑘𝑅𝐼𝐶  values within these conditions are given by Eqs. 4.5-4.8. 

𝑘𝐼𝑆𝐶
𝐴𝑣𝑔.

=
𝑘𝑝[2𝛷𝑃𝐿𝑄𝑌 − 𝛷𝑃𝐹(1 + 𝛷𝑃𝐿𝑄𝑌) ± 𝛷𝑃𝐹(1 − 𝛷𝑃𝐿𝑄𝑌)]

2𝛷𝑃𝐿𝑄𝑌
. (4. 5) 

𝑘𝑅𝐼𝑆𝐶
𝐴𝑣𝑔.

=
𝑘𝑑1𝛷𝐷𝐸1[2𝛷𝑃𝐿𝑄𝑌 − 𝛷𝑃𝐹(1 + 𝛷𝑃𝐿𝑄𝑌) ± 𝛷𝑃𝐹(1 − 𝛷𝑃𝐿𝑄𝑌)]

2𝛷𝑃𝐹(1 − 𝛷𝑃𝐹)(𝛷𝑃𝐿𝑄𝑌 − 𝛷𝑃𝐹)
. (4. 6) 
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𝑘𝐼𝐶
𝐴𝑣𝑔.

= 𝑘𝑑1 −
𝑘𝑑1𝛷𝐷𝐸1[1 + 𝛷𝑃𝐿𝑄𝑌 − 2𝛷𝑃𝐹 ± (1 − 𝛷𝑃𝐿𝑄𝑌)]

2(1 − 𝛷𝑃𝐹)(𝛷𝑃𝐿𝑄𝑌 −𝛷𝑃𝐹)
. (4. 7) 

𝑘𝑅𝐼𝐶
𝐴𝑣𝑔.

=
𝑘𝑑2[2𝛷𝐷𝐸2(1 − 𝛷𝑃𝐹) + 𝛷𝐷𝐸1(1 − 𝛷𝑃𝐿𝑄𝑌) ± 𝛷𝐷𝐸1(1 − 𝛷𝑃𝐿𝑄𝑌)]

2𝛷𝐷𝐸1(1 − 𝛷𝑃𝐹 − 𝛷𝐷𝐸1)
. (4. 8) 

5. Derivation of exact rate equations for three-state system containing 𝒌𝑰𝑺𝑪. 

    In section 2, we derived the exact equation to model the experimental bi-exponential emission decay of TADF 

materials. In section 3, we also provided a solution to determine the rate equations while minimizing the assumptions 

made. Though these rate equations provide several important insights, they are still based on the approximation of 

𝑘𝑆 ≈ 𝑘𝑝. Here, we show that this approximation need not be invoked and derive the exact rate equations. In so doing, 

we aim to eliminate the confusion caused by implicating this approximation. 

    Here, we focus on the exponential decay of [T1] to derive 𝑘ISC. In section 3, we obtained the ratio of [S1] [T1]⁄  

by applying the SSA to Eq. 2.1, but the exact value of [S1] [T1]⁄  within the delayed emission regime can be provided 

from the exact population decay equations of Eqs. 2.18 and 2.19. 

[S1]

[T1]
=
𝑘𝑝 − 𝑘

𝑆

𝑘𝐼𝑆𝐶
=

𝑘𝑅𝐼𝑆𝐶
𝑘𝑆 − 𝑘𝑑

. (5. 1) 

Therefore, Eq. 3.6 can be integrated and the evolution of [T1] as a function of time becomes, 

[T1] = 𝐴𝑑
𝑇𝑒𝑥𝑝 {− [𝑘𝑟

𝑇 + 𝑘𝑛𝑟
𝑇 + (1 −

𝑘𝐼𝑆𝐶
𝑘𝑆 − 𝑘𝑑

) 𝑘𝑅𝐼𝑆𝐶] 𝑡} =
[S1]𝑡=0𝑘𝐼𝑆𝐶
𝑘𝑝 − 𝑘𝑑

exp(−𝑘𝑑𝑡) , (5. 2) 

where 𝐴𝑑
𝑇  is a preexponential factor of the delayed decay of triplet excitons. Therefore, 𝑘𝑑 can be written by, 

𝑘𝑑 = 𝑘𝑟
𝑇 + 𝑘𝑛𝑟

𝑇 + (1 −
𝑘𝐼𝑆𝐶

𝑘𝑆 − 𝑘𝑑
) 𝑘𝑅𝐼𝑆𝐶 . (5. 3) 

From the relationship of Eqs. 2.8 and 5.3, 𝑘𝑝 can be written by 

𝑘𝑝 = 𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + (1 +
𝑘𝑅𝐼𝑆𝐶
𝑘𝑆 − 𝑘𝑑

) 𝑘𝐼𝑆𝐶 . (5. 4) 

Surprisingly, Eq. 5.4 implies that 𝑘𝐼𝑆𝐶  is slightly accelerated by the presence of multiple ISC/RISC cycles, and the 

resulting relationship of the observed decay rate of S1 (𝑘𝑝) is larger than the pure decay rate of S1 (𝑘𝑆), in spite of 

increasing the singlet exciton population due to the upconversion from a T1 state. The relationship 𝑘𝑝 > 𝑘
𝑆  was 

mentioned also in section 2. This phenomenon would be the result of the inflow from T1. From the relationship of Eqs. 

2.5, 5.3 and 5.4, the overall efficiency of ISC and RISC (𝛷𝐼𝑆𝐶
𝑂𝐸, 𝛷𝑅𝐼𝑆𝐶

𝑂𝐸) can be written as, 

𝛷𝐼𝑆𝐶
𝑂𝐸 =

(1 +
𝑘𝑅𝐼𝑆𝐶
𝑘𝑆 − 𝑘𝑑

) 𝑘𝐼𝑆𝐶

𝑘𝑝
=
𝑘𝐼𝑆𝐶 + 𝑘𝑝 − 𝑘

𝑆

𝑘𝑝
, (5. 5) 

𝛷𝑅𝐼𝑆𝐶
𝑂𝐸 =

(1 −
𝑘𝐼𝑆𝐶

𝑘𝑆 − 𝑘𝑑
) 𝑘𝑅𝐼𝑆𝐶

𝑘𝑑
=
𝑘𝑅𝐼𝑆𝐶 − 𝑘𝑝 + 𝑘

𝑆

𝑘𝑑
. (5. 6)

 

Because 𝛷𝐷𝐹 can be explained as the overall emission efficiency from S1 via T1, it can be defined as,  
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𝛷𝐷𝐹 = 𝛷𝐷𝐸𝑅𝐷𝐸
𝐷𝐹 = 𝛷𝐼𝑆𝐶

𝑂𝐸𝛷𝑅𝐼𝑆𝐶
𝑂𝐸 𝛷𝑃𝐹

1 − 𝛷𝐼𝑆𝐶
𝑂𝐸 =

𝑘𝑟
𝑆

𝑘𝑆 − 𝑘𝐼𝑆𝐶
𝛷𝐼𝑆𝐶

𝑂𝐸𝛷𝑅𝐼𝑆𝐶
𝑂𝐸 , (5. 7) 

where 𝛷𝑃𝐹 corresponds to the overall quantum efficiency of the radiative decay from excitons populated directly at 

S1. Note that the generated S1 excitons via T1 described as 𝛷𝐼𝑆𝐶
𝑂𝐸𝛷𝑅𝐼𝑆𝐶

𝑂𝐸  decay to S0 both radiatively or 

nonradiatively because 𝛷𝐼𝑆𝐶
𝑂𝐸𝛷𝑅𝐼𝑆𝐶

𝑂𝐸 is the final distributed exciton ratio of S1 via T1, considering the ISC/RISC 

cycles. They should not distribute to T1 anymore. From Eq. 5.7, the quadratic equation for 𝑘𝐼𝑆𝐶  can be obtained as 

𝑘𝐼𝑆𝐶 =
−𝑏 − √𝑏2 − 4𝑎𝑐

2𝑎
, (5. 8) 

𝑎 = 𝑘𝑑
𝛷𝐷𝐸
𝛷𝑃𝐹

𝑅𝐷𝐸
𝐷𝐹 − 𝑘𝑝 + 𝑘

𝑆 , (5. 9) 

𝑏 = (𝑘𝑝 − 𝑘
𝑆)(𝑘𝑆 − 𝑘𝑝 − 𝑘𝑑) − 𝑎𝑘

𝑆, (5. 10) 

𝑐 = (𝑘𝑝 − 𝑘
𝑆)
2
(𝑘𝑆 − 𝑘𝑑). (5. 11) 

As 𝑘𝐼𝑆𝐶  should be smaller than 𝑘𝑆 , the value is uniquely determined as described in Eq. 5.8. When we can 

approximate that the delayed emission does not contain phosphorescence (𝑅𝐷𝐸
𝐷𝐹 ≈ 1), the value of 𝑎 becomes 0 and 

the equation for 𝑘𝐼𝑆𝐶  can be rewritten more simply as, 

𝑘𝐼𝑆𝐶 =
(𝑘𝑝 − 𝑘

𝑆)(𝑘𝑆 − 𝑘𝑑)

𝑘𝑑 + 𝑘𝑝 − 𝑘
𝑆 . (5. 12) 

𝑘𝑅𝐼𝑆𝐶  can be obtained from the relationship shown in Eq. 5.13, which is also found in Eq. 2.5. The equation for 𝑘𝑅𝐼𝑆𝐶  

is provided as Eq. 5.14 with the approximation of 𝑅𝐷𝐸
𝐷𝐹 ≈ 1. 

𝑘𝑅𝐼𝑆𝐶 =
(𝑘𝑝 − 𝑘

𝑆)(𝑘𝑆 − 𝑘𝑑)

𝑘𝐼𝑆𝐶
. (5. 13) 

𝑘𝑅𝐼𝑆𝐶 = 𝑘𝑑 + 𝑘𝑝 − 𝑘
𝑆 . (5. 14) 

From Eq. 2.20, the ratio of the pre-exponential factor, 𝐴𝑑 𝐴𝑝⁄ , associated with the prompt and delayed components 

(𝐴𝑝 and 𝐴𝑑, respectively) can be written by, 

𝐴𝑑
𝐴𝑝

=
(𝑘𝑝 − 𝑘

𝑆)𝛷𝑟
𝑆 + 𝑘𝐼𝑆𝐶𝛷𝑟

𝑇

(𝑘𝑆 − 𝑘𝑑)𝛷𝑟
𝑆 − 𝑘𝐼𝑆𝐶𝛷𝑟

𝑇 . (5. 15) 

Eqs. 2.22, 3.2, 3.3, and 5.15 provide an exact solution for the singlet decay rate (𝑘𝑆) as, 

𝑘𝑆 = 𝑘𝑝 − 𝑘𝑑
𝛷𝐷𝐸
𝛷𝑃𝐹

+ 𝑘𝐼𝑆𝐶
𝛷𝑟
𝑇

𝛷𝑟
𝑆 . (5. 16) 

When 𝑅𝐷𝐸
𝐷𝐹 ≈ 1, 𝑘𝑆 is simplified as the phosphorescence related term vanishes as Eq. 5.17.  

𝑘𝑆 = 𝑘𝑝 − 𝑘𝑑
𝛷𝐷𝐸
𝛷𝑃𝐹

. (5. 17) 

The rate constants for non-radiative decay from S1 and T1 can be extracted from Eq. 2.8 without invoking the 

simplification of 𝑅𝐷𝐸
𝐷𝐹 ≈ 1 as, 

𝑘𝑛𝑟
𝑆 = 𝑘𝑆 − 𝑘𝑟

𝑆 − 𝑘𝐼𝑆𝐶 , (5. 18) 

𝑘𝑛𝑟
𝑇 = 𝑘𝑇 − 𝑘𝑅𝐼𝑆𝐶 − 𝑘𝑟

𝑇 = 𝑘𝑑 + 𝑘𝑝 − 𝑘
𝑆 − 𝑘𝑅𝐼𝑆𝐶 − 𝑘𝑟

𝑇 . (5. 19) 
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When data is collected at 300 K or in solution state, it is not unusual to assume the observed emission does not contain 

phosphorescence (𝛷𝑃ℎ𝑜𝑠 ≈ 0), i.e., 𝑅𝐷𝐸
𝐷𝐹 ≈ 1. However, 𝑘𝑛𝑟

𝑇  is always 0 when approximated as 𝑅𝐷𝐸
𝐷𝐹 ≈ 1 because of 

Eqs. 5.14 and 5.19. As a result, the rate constants for 𝑘𝑛𝑟
𝑆 , 𝑘𝐼𝑆𝐶 , and 𝑘𝑅𝐼𝑆𝐶  under the approximation of 𝑅𝐷𝐸

𝐷𝐹 ≈ 1 can 

be written in terms of decay rates and efficiencies for prompt and delayed component as shown in Eqs. 5.20-5.22. In 

this case, it should be noted that 𝑘𝑅𝐼𝑆𝐶  is obtained as a maximum for these possible values. 

𝑘𝑛𝑟
𝑆 = 𝑘𝑝

𝛷𝑃𝐹
𝛷𝑃𝐿𝑄𝑌

(1 − 𝛷𝑃𝐿𝑄𝑌), (5. 20) 

𝑘𝐼𝑆𝐶 = 𝑘𝑝
𝛷𝐷𝐹
𝛷𝑃𝐿𝑄𝑌

− 𝑘𝑑
𝛷𝐷𝐹
𝛷𝑃𝐹

. (5. 21) 

𝑘𝑅𝐼𝑆𝐶 = 𝑘𝑑
𝛷𝑃𝐿𝑄𝑌

𝛷𝑃𝐹
. (5. 22) 

Interestingly, the rate equation for 𝑘𝑅𝐼𝑆𝐶  is exactly same with the model of Dias. The radiative decay rate 𝑘𝑟
𝑆 is 

independently obtained by, 

𝑘𝑟
𝑆 = 𝑘𝑝𝛷𝑃𝐹 . (5. 23) 

    Next, we provide the exact solution of the kinetics analysis for TADF of a three-state system without any 

assumptions and approximations. The relationship related to the phosphorescence is provided as, 

𝛷𝐼𝑆𝐶
𝑂𝐸𝛷𝑟

𝑇𝑂𝐸 = 𝛷𝑃ℎ𝑜𝑠 = 𝛷𝑃𝐿𝑄𝑌 − 𝛷𝑃𝐹 − 𝛷𝐷𝐹 = 𝛷𝐷𝐸(1 − 𝑅𝐷𝐸
𝐷𝐹), (5. 24) 

From Eq. 5.24 the rate equation and radiative decay quantum efficiency for T1 excitons (𝑘𝑟
𝑇  and 𝛷𝑟

𝑇) can be described 

as Eqs. 5.25 and 2.26. 

𝑘𝑟
𝑇 =

𝑘𝑑𝛷𝐷𝐸(1 − 𝑅𝐷𝐸
𝐷𝐹)

𝛷𝐼𝑆𝐶
𝑂𝐸 =

𝑘𝑝𝑘𝑑𝛷𝐷𝐸(1 − 𝑅𝐷𝐸
𝐷𝐹)

𝑘𝐼𝑆𝐶 + 𝑘𝑝 − 𝑘
𝑆 . (5. 25) 

𝛷𝑟
𝑇 =

𝑘𝑑𝛷𝑟
𝑇𝑂𝐸

𝑘𝑇𝛷𝐼𝑆𝐶
𝑂𝐸 =

𝑘𝑝𝑘𝑑𝛷𝐷𝐸(1 − 𝑅𝐷𝐸
𝐷𝐹)

(𝑘𝑝 + 𝑘𝑑 − 𝑘
𝑆)(𝑘𝐼𝑆𝐶 + 𝑘𝑝 − 𝑘

𝑆)
. (5. 26) 

From the Eqs. 5.16 and 5.24 the exact 𝑘𝑆 can be obtained as a solution of the following cubic equation, 

𝑘𝑆
3
+ 𝑑𝑘𝑆

2
+ 𝑒𝑘𝑆 + 𝑓 = 0. (5. 27) 

𝑑 = − [𝑘𝐼𝑆𝐶 + 3𝑘𝑝 + 𝑘𝑑 (1 −
𝛷𝐷𝐸
𝛷𝑃𝐹

)] . (5. 28) 

𝑒 = [2𝑘𝐼𝑆𝐶𝑘𝑝 + 3𝑘𝑝
2 + (2𝑘𝑝𝑘𝑑 + 𝑘𝐼𝑆𝐶𝑘𝑑) (1 −

𝛷𝐷𝐸
𝛷𝑃𝐹

) − 𝑘𝑑
2𝛷𝐷𝐸
𝛷𝑃𝐹

−
𝑘𝐼𝑆𝐶𝑘𝑑𝛷𝐷𝐸(1 − 𝑅𝐷𝐸

𝐷𝐹)

𝛷𝑃𝐹
] . (5. 29) 

𝑓 = −(𝑘𝐼𝑆𝐶 + 𝑘𝑝)(𝑘𝑝 + 𝑘𝑑) (𝑘𝑝 − 𝑘𝑑
𝛷𝐷𝐸
𝛷𝑃𝐹

) . (5. 30) 

Because 𝑘𝑆 should be smaller than 𝑘𝑝 and larger than 𝑘𝐼𝑆𝐶  (𝑘𝐼𝑆𝐶 < 𝑘
𝑆 < 𝑘𝑝), the solution to the cubic equation is 

uniquely determined using the Cardano–Tartaglia formula as, 

𝑘𝑆 =
−1 + 𝑖√3

2
× √−

27𝑓 + 2𝑑3 − 9𝑑𝑒

54
+ √(

27𝑓 + 2𝑑3 − 9𝑑𝑒

54
)

2

+ (
3𝑒 − 𝑑2

9
)

33
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+
−1 − 𝑖√3

2
× √−

27𝑓 + 2𝑑3 − 9𝑑𝑒

54
− √(

27𝑓 + 2𝑑3 − 9𝑑𝑒

54
)

2

+ (
3𝑒 − 𝑑2

9
)

33

−
1

3
𝑑. (5. 31) 

Because the exact equations for 𝑘𝐼𝑆𝐶  and 𝑘𝑆 contain the terms of 𝑘𝑆 and 𝑘𝐼𝑆𝐶 , respectively, a numerical analysis is 

required to obtain the exact rate. For example, 𝑘𝐼𝑆𝐶  at 𝑅𝐷𝐸
𝐷𝐹 ≈ 1 can be provided to obtain 𝑘𝑆 and then estimated 

𝑘𝐼𝑆𝐶  were evaluated to avoid the circular reference; a new 𝑘𝐼𝑆𝐶  value can be provided to minimize the difference 

between the given and estimated values. The 𝑅𝐷𝐸
𝐷𝐹 is given as all rate constants are provided as ≥ 0. 

    Here, we derived the exact rate equations for organic TADF materials based on the three-state model. It is 

noteworthy that the equations in this section considerably reduce the errors in the estimation of the rate constants 

compared with the previous methods without the requirement of additional experiments except the transient PL decay 

and PLQY measurements to obtain 𝑘𝐼𝑆𝐶 . The equation for 𝑘𝐼𝑆𝐶  cannot be applied to the previously reported rate 

equations that use the approximation of 𝑘𝑆 ≈ 𝑘𝑝 . We note here again, the emission lifetimes of TADF and 

phosphorescence are exactly the same as in the three-state system because both decays are related to the T1 decay; the 

ISC/RISC cycles behave as an exciton pool for both decays. Therefore, the delayed emission should always include 

both contributions from delayed fluorescence and phosphorescence at the fixed ratio (𝑅𝐷𝐸
𝐷𝐹 and 1 − 𝑅𝐷𝐸

𝐷𝐹) in the three-

state model. In other words, when data contain three or more decays, the “exact” rate equation derived in this section 

should not be applied. For example, phosphorescence often can be found as an additional radiative decay distinct from 

TADF. In this case, the material should be analyzed by another modes, e.g., four-state model explained in SI of this 

paper. Because the rate equations describing the three-state system were derived considering the phosphorescence is 

intrinsic to the delayed emission, it is favorable to collect the emission decay data in the full-range of fluorescence and 

phosphorescence spectra, i.e., the decay data collected not only by a single wavelength measurement but also with 

multiple wavelength measurements. When the single wavelength measurement is employed, the measurement 

wavelength should be a wavelength around the intersection between the normalized fluorescence and phosphorescence 

spectra. 

    Finally, we re-estimated the rate constants for several TADF materials in the literature: 4CzIPN;27 5CzBN;27,32 

3Cz2DPhCzBN;32 5Cz-TRZ;33 TQ;34 ν-DABNA;35 TMCz-BO;36 TPAt-tFFO;11 Br-3PXZ-XO;37 DiKTa;38 and MCz-

TXT.39 We undertook this analysis with the approximation of 𝑅𝐷𝐸
𝐷𝐹 ≈ 1. The rate constant values listed in Table 1 

contain the originally reported values from the literature, the values using the equations where the SSA is invoked with 

the general estimation method of 𝛷𝑃𝐹 and 𝛷𝐷𝐸 (SSA-1), the values using equations where the SSA is invoked with 

the corrected estimation method of 𝛷𝑃𝐹 and 𝛷𝐷𝐸 (SSA-2), and using the “exact” equations for the three-state model. 

For SSA-1 and SSA-2, the 𝑘𝐼𝑆𝐶  and 𝑘𝑅𝐼𝑆𝐶  values are provided with the limiting conditions of 𝑘𝑛𝑟
𝑆 = 0 and 𝑘𝑛𝑟

𝑇 =

0.  

    An evaluation of the results using these different models reveals that the literature reported 𝑘𝑅𝐼𝑆𝐶  values and 

those using SSA-1 are similar. Most of the literature reported 𝑘𝑅𝐼𝑆𝐶  values using the assumption of 𝑘𝑛𝑟
𝑆 = 0 and 

those using the exact value (𝑘𝑛𝑟
𝑇 = 0) show no difference; however, this is the result of a fortuitous cancellation of 

errors with the assumption of 𝑘𝑛𝑟
𝑆 = 0, the approximation of 𝑘𝑆 ≈ 𝑘𝑝, and the estimation method of 𝛷𝑃𝐹 and 𝛷𝐷𝐸. 
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The 𝑘𝑅𝐼𝑆𝐶  values of TPAt-tFFO, which is estimated with the assumption of 𝑘𝑛𝑟
𝑇 = 0,  show relatively large 

differences depending on the model used. This is related to the estimation method of 𝛷𝑃𝐹 and 𝛷𝐷𝐸 and the use of 

the approximation via a Maclaurin expansion. For the 𝑘𝑅𝐼𝑆𝐶  estimation, the SSA-2 with the condition of 𝑘𝑛𝑟
𝑇 = 0 

showed good agreement with those using the exact equation. This is because both rate equations to determine 𝑘𝑅𝐼𝑆𝐶  

are exactly the same (see Eqs. 5.22 and S7.5) when approximating 𝑅𝐷𝐸
𝐷𝐹 ≈ 1 and when using SSA with the limiting 

condition of 𝑘𝑛𝑟
𝑇 = 0. When TADF materials show very fast T1-S1 upconversion, i.e. 𝑘𝑝 ≈ 𝑘𝑑 , will become available, 

the equations using the SSA cannot be applied, but there remains no restriction to the use of the exact equations. In 

addition, when using the wrong estimation of 𝛷𝑃𝐹  and 𝛷𝐷𝐸  by Eqs. S3.1 and S3.2 employed in many literature 

reports, 𝑘𝐼𝑆𝐶  tended to be overestimated; this can be found by comparing the 𝑘𝐼𝑆𝐶  between SSA-1 and SSA-2. To 

reduce the estimation error of the rate constants, it is important to use the corrected estimation method for 𝛷𝑃𝐹 and 

𝛷𝐷𝐸. Further, Eqs. 5.21 and S6.4 provide the correction coefficient, −𝑘𝑑 𝛷𝐷𝐹 𝛷𝑃𝐹⁄  for 𝑘𝐼𝑆𝐶  to exclude the affection 

of 𝑘𝑆 ≈ 𝑘𝑝 . Thus, all derived equations help understand the spin-flip processes with the exact rate constants for 

reported TADF materials; the equations in the model with practically no assumptions allow the conversion of the rate 

constants obtained using the model of Goushi-Masui’s to those using the model of Dias, and the correction coefficient 

between the model of Dias and exact model provides the exact rate constants. 

    As an additional finding, the estimated rate constants numerical analysis showed no change with the case of 

𝑅𝐷𝐸
𝐷𝐹 ≈ 1  for most of the materials explained above. Both 𝑘𝑟

𝑇  and 𝑘𝑛𝑟
𝑇  are estimated as ≪ 1 . Therefore, the 

approximation of 𝑅𝐷𝐸
𝐷𝐹 ≈ 1 should be reasonable. This finding is highly suggestive in the photophysics in three-state 

system. When there is the decay channel of T1 via S1, then direct decay from T1 to S0 is not available. To explain the 

direct decay of T1, a new model would be necessary to explain the materials that show the dual emission of TADF and 

room temperature phosphorescence. The four-state kinetics analysis explained in the SI would help to understand 

advanced function of emissive materials. 

6. Summary 

    In this paper, we provided the exact decay curve equation for the TADF materials on the three-state system. The 

equation was derived from exact S1 and T1 population decays considering all exciton decay processes. The exact 

equations of exciton population decays help advance our understanding of the photophysics of not only TADF materials 

but also materials related to the three-state system of S1, T1, and S0, because these equations were derived without 

employing any approximations and assume not particular preferential decay pathway. In addition, the equations to 

estimate the efficiencies for the prompt and delayed emission components (𝛷𝑃𝐹  and 𝛷𝐷𝐸 ) were corrected. The 

estimation method of efficiencies strongly influenced the estimated value of rate constants. Further, we demonstrated 

that it is possible to derive the rate equations with “practically” and “perfectly” no-assumptions. The rate equations are 

summarized in Table 2. 

    For the first method, we employed two approximations. One is 𝑘𝑆 ≈ 𝑘𝑝, which is commonly used, to analyse the 

prompt emission under the condition of [S1] ≫ [T1] (𝑡 ≪ 1 𝑘𝑝⁄ ). This approximation requires the assumption of 
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𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶 ≫ 𝑘𝑅𝐼𝑆𝐶 ; however, this is satisfied because of the relationship of exo- and endothermic processes of 

𝑘𝐼𝑆𝐶  and 𝑘𝑅𝐼𝑆𝐶 . The other one is the steady-state approximation of the S1 population to obtain the [S1] [T1]⁄  ratio at 

the delayed emission region of [S1] ≪ [T1] (𝑡 ≫ 1 𝑘𝑝⁄ ). This approximation also requires the assumption of 𝑘𝑟
𝑆 +

𝑘𝑛𝑟
𝑆 + 𝑘𝐼𝑆𝐶 ≫ 𝑘𝑅𝐼𝑆𝐶 . To analyse the experimental data, this method requires that the 𝛷𝐼𝑆𝐶  must be provided by 

additional measurement; however, it is possible to employ 𝛷𝑛𝑟
𝑆 = 0 or 𝛷𝑛𝑟

𝑇 = 0 as not assumptions but as limiting 

conditions. This practically no-assumption method makes exchange these two assumptions used in the most of 

literatures being able to compare the reported values. This method has some margin of error; however, it should be 

noted that there are some inapplicable cases because of the approximations employed. When 𝛷𝐼𝑆𝐶  is not provided, the 

rate constants should be reported as average values between both sets of limiting conditions. In addition, the rate 

equations for the TADF materials using a four-state system of S0, S1, Tn and T1 are derived in the supporting information. 

    We also derived the “exact” rate equations for the TADF materials on the three-state model. In this model, 𝛷𝐼𝑆𝐶  

can be estimated without any other additional measurements other than emission spectra, transient emission decay, and 

PLQY. This method requires the estimation of 𝛷𝑝ℎ𝑜𝑠, which can be obtained by spectral fitting or numerical analysis. 

However, there is difficult case because of the high accuracy of the equations. In this case, the equations allow to 

approximate 𝛷𝑝ℎ𝑜𝑠 ≈ 0, which can be applied to the data collected at temperatures where TADF is operational and is 

used in most of the literature reports. With the approximation of no phosphorescence contribution, the rate equations 

simplify and a consequence of this approximation within the model is that 𝛷𝑛𝑟
𝑇 = 0; i.e. the rate constants of radiative 

and non-radiative decay from T1 are coupled. This method provides the most precise set of rate constants for TADF 

materials. Further, the exact equations reveal the presence of an important relationship on the photophysics; the singlet 

population decay is accelerated by the presence of a RISC process. By using either model reported here, we can derive 

the exact rate constants from reported values in the literature by analysing the data using the modesl of   either Goushi-

Masui or Dias, which are the ones most commonly used. We believe the equations provided here will enable the 

universalization of the kinetics analysis of TADF materials and so lead to a better understanding of their photophysics, 

and ultimately better materials. 
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Figure 1. The scheme of photophysical process for three-state system. 

 

 

Figure 2. Emission decay curve and theoretical curves of Eqs. 2.18-2.20 within nano second time range (a) and milli 

second time range (b). the difference of total emission and S1 population decays is related to the phosphorescence 

contribution. 

 

 

Figure 3. (a) Emission decay curve and biexponential fitting curves which are employed to estimate the prompt and 

delayed emission efficiency in general. (b) Corrected prompt and delayed component curves to provide exact emission 

efficiencies. (c) Closeup within nano second range to recognise difference of prompt components for general and 

corrected estimation method. 
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Figure 4. (a) Plot of 𝑘𝑅𝐼𝑆𝐶
𝐴𝑣𝑒.  for the delayed emission ratio to PLQY; blue circle, 𝛷𝑃𝐹: 𝛷𝐷𝐹 = 0.1: 0.9; green triangle, 

𝛷𝑃𝐹: 𝛷𝐷𝐹 = 0.5: 0.5; red square, 𝛷𝑃𝐹: 𝛷𝐷𝐹 = 0.9: 0.1; 1 𝑘𝑝⁄ , 20 ns; 1 𝑘𝑑⁄ , 20 μs; plot was generated using Eq. 4.4. 

(b) Ratio of RISC rate constant between assuming 𝑘𝑛𝑟
𝑆 = 0 and 𝑘𝑛𝑟

𝑇 = 0 for each PLQY with color properties 

indicating the ratio of 𝛷𝑃𝐹 and 𝛷𝐷𝐹; solid black line, 𝛷𝑃𝐹: 𝛷𝐷𝐹 = 1; plot was generated by using Eq. 4.4. 
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Table 1. Rate constants of interest TADF materials in this paper for three-state TADF system (assuming 𝑅𝐷𝐸
𝐷𝐹 ≈ 1). 

  𝜱𝑷𝑭 𝜱𝑫𝑭 
𝒌𝒑 

(107 s-1) 

𝒌𝒅 

(105 s-1) 

𝒌𝒓
𝑺 

(107 s-1) 

𝒌𝒏𝒓
𝑺  

(106 s-1) 

𝒌𝑰𝑺𝑪 

(107 s-1) 

𝒌𝒏𝒓
𝑻  

(104 s-1) 

𝒌𝑹𝑰𝑺𝑪 

(105 s-1) 

4CzIPN 

   in toluene 

original 0.21a 0.65 

8.850 2.174 

1.8 - 7.0 - 8.8 

SSA-1 0.21a 0.65 

1.858 0 6.991 3.853 8.517 

1.858 3.025 6.689 0 8.903 

exact 0.21a 0.65 1.858 3.190 6.61 0 8.836 

5CzBN 

   in toluene 

original 0.07a 0.68 

26.32 0.214 

1.9 - 25 - 2.2 

SSA-1 0.07a 0.68 

1.842 0 24.47 0.574 2.232 

1.842 6.140 23.86 0 2.289 

exact 0.07a 0.68 1.842 6.160 23.84 0 2.288 

5CzBN 

 20 wt% 

   in mCBP 

original 0.16 0.65 

31.25 0.980 

5.0 - 26 4.1 3.6 

SSA-1 0.16 0.65 

5.000 0 26.24 2.218 4.730 

5.000 11.73 25.07 0 4.952 

SSA-2 0.160 0.650 

5.006 0 26.24 2.218 4.735 

5.006 11.74 25.07 0 4.957 

exact 0.160 0.650 5.006 11.74 25.03 0 4.957 

3Cz2DPhCzBN 

 20 wt% 

   in mCBP 

original 0.14 0.80 

22.22 1.770 

3.0 - 19 4.1 9.9 

SSA-1 0.14 0.80 

1.552 0 19.11 1.235 11.76 

1.552 19.86 18.91 0 11.88 

SSA-2 0.141 0.799 

3.125 0 19.10 1.236 11.717 

3.125 19.95 18.90 0 11.83 

exact 0.141 0.799 3.125 19.95 18.80 0 11.83 

5Cz-TRZ 

   in toluene 

original 0.031 0.889 

24.39 2.439 

0.544 - 17 - 150 

SSA-1 0.031 0.889 

0.544 0 17.00 4.345 155.8 

0.544 0.473 16.95 0 156.2 

SSA-2 0.034 0.886 

0.591 0 16.95 4.357 143.4 

0.591 0.514 16.90 0 143.8 

exact 0.034 0.886 0.591 0.514 15.52 0 143.8 

TQ 

 10 wt%  

   in DPEPO 

original 0.459 0.095 

8.8 111 

- - - - 0.035 

SSA-1 0.459 0.095 

5.216 0 6.148 0.743 0.034 

5.216 41.99 1.949 0 0.109 

SSA-2 0.459 0.095 

5.216 0 6.148 0.743 0.034 

5.216 41.99 1.948 0 0.109 

exact 0.459 0.095 5.216 41.99 1.948 0 0.109 
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  𝜱𝑷𝑭 𝜱𝑫𝑭 
𝒌𝒑 

(107 s-1) 

𝒌𝒅 

(105 s-1) 
𝒌𝒓
𝑺 

(107 s-1) 

𝒌𝒏𝒓
𝑺  

(106 s-1) 

𝒌𝑰𝑺𝑪 

(107 s-1) 
𝒌𝒏𝒓
𝑻  

(104 s-1) 

𝒌𝑹𝑰𝑺𝑪 

(105 s-1) 

ν-DABNA 

   in toluene 

original 0.82 0.08 

24.39 2.439 

20 22 2.3 0 2.0 

SSA-1 0.82 0.08 

20.00 0 4.390 13.55 1.322 

20.00 22.22 2.168 0 2.677 

SSA-2 0.820 0.080 

20.00 0 4.388 13.56 1.321 

20.00 22.22 2.166 0 2.677 

exact 0.820 0.080 20.00 22.22 2.163 0 2.677 

TMCz-BO 

 30 wt% 

   in PPF 

original 0.66 0.32 

2.632 13.33 

1.7 - 0.9 - 19 

SSA-1 0.66 0.32 

1.737 0 0.895 7.843 19.01 

1.737 0.354 0.859 0 19.80 

SSA-2 0.676 0.304 

1.780 0 0.852 8.236 18.50 

1.780 0.363 0.816 0 19.32 

exact 0.676 0.304 1.780 0.363 0.762 0 18.14 

TpAT-tFFO 

   in mCBP 

original 0.02 0.82 

6.536 2.262 

0.11 0.20 5.3 - 120 

SSA-1 0.02 0.82 

0.131 0 6.405 3.694 94.65 

0.131 0.249 6.380 0 95.02 

SSA-2 0.023 0.817 

0.149 0 6.387 3.705 82.84 

0.149 0.284 6.358 0 83.21 

exact 0.023 0.817 0.149 0.284 5.549 0 83.21 

Br-3PXZ-XO 

   in toluene 

original 0.033 0.42 

20.00 20.41 

0.68 - 19 120 260 

SSA-1 0.033 0.42 

0.660 0 19.34 115.4 268.6 

0.660 7.970 18.54 0 280.1 

SSA-2 0.037 0.416 

0.746 0 19.25 116.0 236.4 

0.746 9.005 18.35 0 247.9 

exact 0.037 0.416 0.746 9.005 16.08 0 247.9 

DiKTa 

   in toluene 

original 0.25 0.01 

19.61 0.435 

4.9 140 0.75 - 0.46 

SSA-1 0.25 0.01 

4.902 0 14.71 4.290 0.023 

4.902 139.5 0.754 - 0.452 

SSA-2 0.25 0.01 

4.902 0 14.71 4.290 0.023 

4.902 139.5 0.754 - 0.452 

exact 0.25 0.01 4.902 139.5 0.754 0 0.452 

MCz-TXT 

   in mCBP 

original 0.012b 0.908 

107.3 13.33 

1.3 - 94 - 1100 

SSA-1 0.012b 0.908 

1.287 0 106.0 10.80 1021.0 

1.287 1.119 105.9 0 1022.2 

SSA-2 0.013b 0.907 

1.287 0 105.8 10.81 933.2 

1.408 1.224 105.7 0 934.3 

exact 0.013b 0.907 1.408 1.224 96.51 0 934.3 

a) using the PLQY before introduce the inert gas.  
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Table 2. Summary of rate equations provided in this paper for three-state TADF system. 

Entry Equations Comments 

1 

𝑘𝑟
𝑆 = 𝑘𝑝𝛷𝑃𝐹 

𝑘𝑛𝑟
𝑆 = 𝑘𝑝(1 − 𝛷𝑃𝐹 −𝛷𝐼𝑆𝐶) 

𝑘𝐼𝑆𝐶 = 𝑘𝑝𝛷𝐼𝑆𝐶  

𝑘𝑟
𝑇 = 𝑘𝑑

𝛷𝐷𝐸(1 − 𝑅𝐷𝐸
𝐷𝐹)

𝛷𝐼𝑆𝐶
 

𝑘𝑛𝑟
𝑇 = 𝑘𝑑 − (1 − 𝛷𝐼𝑆𝐶)𝑘𝑅𝐼𝑆𝐶 − 𝑘𝑟

𝑇 

𝑘𝑅𝐼𝑆𝐶 =
𝑘𝑑𝛷𝐷𝐸𝑅𝐷𝐸

𝐷𝐹

𝛷𝐼𝑆𝐶𝛷𝑃𝐹
 

Assumption: 𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶 ≫ 𝑘𝑅𝐼𝑆𝐶 

to approximate 𝑘𝑝 ≈ 𝑘
𝑆  and apply steady state 

approximation. 

 

Requirement to obtain all rate constants 

𝑘𝐼𝑆𝐶  estimation or assuming 𝑘𝑛𝑟
𝑆 = 0 or 𝑘𝑛𝑟

𝑇 = 0 

𝑅𝐷𝐸
𝐷𝐹 estimation or assuming 𝑅𝐷𝐸

𝐷𝐹 = 1 

 

𝛷𝑟
𝑆 = 𝛷𝑃𝐹 =

𝑘𝑑(𝐴𝑝 + 𝐴𝑑)

𝐴𝑝𝑘𝑑 + 𝐴𝑑𝑘𝑝
𝛷𝑃𝐿𝑄𝑌 

𝛷𝐷𝐸 =
𝐴𝑑(𝑘𝑝 − 𝑘𝑑)

𝐴𝑝𝑘𝑑 + 𝐴𝑑𝑘𝑝
𝛷𝑃𝐿𝑄𝑌 

2 

𝑘𝑟
𝑆 = 𝑘𝑝𝛷𝑃𝐹 

𝑘𝑛𝑟
𝑆 𝑀𝑎𝑥

= 𝑘𝑝 (1 − 𝛷𝑃𝐹 −
𝛷𝐷𝐹
𝛷𝑃𝐿𝑄𝑌

) 

𝑘𝐼𝑆𝐶
𝐴𝑣𝑒. =

𝑘𝑝

2
∙
[𝛷𝑃𝐿𝑄𝑌(1 − 𝛷𝑃𝐹) + 𝛷𝐷𝐹] ± [𝛷𝑃𝐿𝑄𝑌(1 − 𝛷𝑃𝐹) − 𝛷𝐷𝐹]

𝛷𝑃𝐿𝑄𝑌
 

𝑘𝑛𝑟
𝑇 𝑀𝑎𝑥

= 𝑘𝑑 (1 −
𝛷𝐷𝐹

1 − 𝛷𝑃𝐹
) 

𝑘𝑅𝐼𝑆𝐶
𝐴𝑣𝑒. =

𝑘𝑑
2
∙
[𝛷𝑃𝐿𝑄𝑌(1 − 𝛷𝑃𝐹) + 𝛷𝐷𝐹] ± [𝛷𝑃𝐿𝑄𝑌(1 − 𝛷𝑃𝐹) − 𝛷𝐷𝐸]

𝛷𝑃𝐹(1 − 𝛷𝑃𝐹)
 

Based on method 1. 

Assumption: 𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶 ≫ 𝑘𝑅𝐼𝑆𝐶 

to approximate 𝑘𝑝 ≈ 𝑘
𝑆  and apply steady state 

approximation. 

 

𝛷𝑟
𝑆 = 𝛷𝑃𝐹 =

𝑘𝑑(𝐴𝑝 + 𝐴𝑑)

𝐴𝑝𝑘𝑑 + 𝐴𝑑𝑘𝑝
𝛷𝑃𝐿𝑄𝑌 

𝛷𝐷𝐸 =
𝐴𝑑(𝑘𝑝 − 𝑘𝑑)

𝐴𝑝𝑘𝑑 + 𝐴𝑑𝑘𝑝
𝛷𝑃𝐿𝑄𝑌 

 

3 

𝑘𝑟
𝑆 = 𝑘𝑝𝛷𝑃𝐹 

𝑘𝑛𝑟
𝑆 = 𝑘𝑆 − 𝑘𝑟

𝑆 − 𝑘𝐼𝑆𝐶  

𝑘𝐼𝑆𝐶 =
−𝑏 − √𝑏2 − 4𝑎𝑐

2𝑎
 

𝑘𝑅𝐼𝑆𝐶 =
(𝑘𝑝 − 𝑘

𝑆)(𝑘𝑆 − 𝑘𝑑)

𝑘𝐼𝑆𝐶
 

𝑘𝑟
𝑇 =

𝑘𝑝𝑘𝑑𝛷𝐷𝐸(1 − 𝑅𝐷𝐸
𝐷𝐹)

𝑘𝐼𝑆𝐶 + 𝑘𝑝 − 𝑘
𝑆

 

𝑘𝑛𝑟
𝑇 = 𝑘𝑝 + 𝑘𝑑 − 𝑘

𝑆 − 𝑘𝑅𝐼𝑆𝐶 − 𝑘𝑟
𝑇 

 

𝑘𝑆 can be obtained as the solution of cubic equation 

𝑘𝑆
3
+ 𝑑𝑘𝑆

2
+ 𝑒𝑘𝑆 + 𝑓 = 0 

No assumption (require numerical analysis) 

𝛷𝑃𝐹 =
𝑘𝑑(𝐴𝑝 + 𝐴𝑑)

𝐴𝑝𝑘𝑑 + 𝐴𝑑𝑘𝑝
𝛷𝑃𝐿𝑄𝑌 

𝛷𝐷𝐸 =
𝐴𝑑(𝑘𝑝 − 𝑘𝑑)

𝐴𝑝𝑘𝑑 + 𝐴𝑑𝑘𝑝
𝛷𝑃𝐿𝑄𝑌 

{
 
 

 
 𝑎 =

𝛷𝐷𝐸
𝛷𝑃𝐹

𝑘𝑑𝑅𝐷𝐸
𝐷𝐹 − 𝑘𝑝 + 𝑘

𝑆

𝑏 = (𝑘𝑝 − 𝑘
𝑆)(𝑘𝑆 − 𝑘𝑝 − 𝑘𝑑) − 𝑎𝑘

𝑆

𝑐 = (𝑘𝑝 − 𝑘
𝑆)
2
(𝑘𝑆 − 𝑘𝑑)

 

{
 
 
 
 

 
 
 
 𝑑 = − [𝑘𝐼𝑆𝐶 + 3𝑘𝑝 + 𝑘𝑑 (1 −

𝛷𝐷𝐸
𝛷𝑃𝐹

)]

𝑒 =

[
 
 
 
 2𝑘𝐼𝑆𝐶𝑘𝑝 + 3𝑘𝑝

2 + (2𝑘𝑝𝑘𝑑 + 𝑘𝐼𝑆𝐶𝑘𝑑) (1 −
𝛷𝐷𝐸
𝛷𝑃𝐹

)

 −𝑘𝑑
2𝛷𝐷𝐸
𝛷𝑃𝐹

−
𝑘𝐼𝑆𝐶𝑘𝑑𝛷𝐷𝐸(1 − 𝑅𝐷𝐸

𝐷𝐹)

𝛷𝑃𝐹 ]
 
 
 
 

𝑓 = −(𝑘𝐼𝑆𝐶 + 𝑘𝑝)(𝑘𝑝 + 𝑘𝑑) (𝑘𝑝 − 𝑘𝑑
𝛷𝐷𝐸
𝛷𝑃𝐹

)

 

4 

𝑘𝑟
𝑆 = 𝑘𝑝𝛷𝑃𝐹 

𝑘𝑛𝑟
𝑆 = 𝑘𝑝

𝛷𝑃𝐹
𝛷𝑃𝐿𝑄𝑌

(1 − 𝛷𝑃𝐿𝑄𝑌) 

𝑘𝐼𝑆𝐶 = 𝑘𝑝
𝛷𝐷𝐹
𝛷𝑃𝐿𝑄𝑌

− 𝑘𝑑
𝛷𝐷𝐹
𝛷𝑃𝐹

 

𝑘𝑅𝐼𝑆𝐶 = 𝑘𝑑
𝛷𝑃𝐿𝑄𝑌
𝛷𝑃𝐹

 

𝑘𝑛𝑟
𝑇 = 0 

Based on method 3. 

Approximation: 𝑅𝐷𝐸
𝐷𝐹 ≈ 1 (or when 𝑅𝐷𝐸

𝐷𝐹 = 1) 

 

𝛷𝑃𝐹 =
𝑘𝑑(𝐴𝑝 + 𝐴𝑑)

𝐴𝑝𝑘𝑑 + 𝐴𝑑𝑘𝑝
𝛷𝑃𝐿𝑄𝑌 

𝛷𝐷𝐸 =
𝐴𝑑(𝑘𝑝 − 𝑘𝑑)

𝐴𝑝𝑘𝑑 + 𝐴𝑑𝑘𝑝
𝛷𝑃𝐿𝑄𝑌 
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1. Summary of the methods to estimate 𝒌𝑹𝑰𝑺𝑪 (Table S1) 

Entry Equations Assumptions Comments 

15 𝑘𝑅𝐼𝑆𝐶 =
1

3
𝑘𝐼𝑆𝐶exp (

−Δ𝐸𝑆𝑇
𝑅𝑇

) 

• 𝛷𝐼𝑆𝐶 ≈ 1 

 (𝛷𝑝 ≪ 𝛷𝑑 , 𝑘𝑛𝑟
𝑆 ≈ 0) 

• 𝑘𝐼𝑆𝐶 ≫ 𝑘𝑟
𝑆 

• 𝑘𝑅𝐼𝑆𝐶 ≫ 𝑘𝑟
𝑇 + 𝑘𝑛𝑟

𝑇  

For metal complexes. 

26 𝑘𝑅𝐼𝑆𝐶 =
1

3
𝑘𝑟
𝑆 exp (

−Δ𝐸𝑆𝑇
𝑅𝑇

) 

• 𝛷𝑃𝐿𝑄𝑌 ≈ 1 

 (𝑘𝑛𝑟
𝑆 ≈ 0, 𝑘𝑛𝑟

𝑇 ≈ 0) 

• 𝛷𝑝 < 𝛷𝑑 , (𝑘𝐼𝑆𝐶 ≫ 𝑘𝑟
𝑆) 

• 𝜏𝑑>1 μs 

• 0.05 eV < Δ𝐸𝑆𝑇 < 0.3 eV 

 (𝑘𝑟
𝑇 ≈ 0) 

 

37 𝑘𝑅𝐼𝑆𝐶 =
𝑘𝑝𝑘𝑑

𝑘𝐼𝑆𝐶
∙
𝛷𝑑
𝛷𝑝

= 𝑘𝑑
𝛷𝑑

𝛷𝑝𝛷𝐼𝑆𝐶
 

• 𝑘𝑟
S,  𝑘𝑛𝑟

S ,  𝑘𝐼𝑆𝐶 ≫ 𝑘𝑅𝐼𝑆𝐶 ,  𝑘𝑛𝑟
𝑇  

• 𝑘𝑟
T ≈ 0 

 

48 𝑘𝑅𝐼𝑆𝐶 =
𝑘𝑝𝑘𝑑

𝑘𝐼𝑆𝐶
∙
𝛷𝑑
𝛷𝑝

= 𝑘𝑑
𝛷𝑑

𝛷𝑝𝛷𝐼𝑆𝐶
 

• 𝑘𝑟
S,  𝑘𝐼𝑆𝐶 ≫ 𝑘𝑅𝐼𝑆𝐶,  𝑘𝑛𝑟

𝑇  

• 𝑘𝑛𝑟
S ≈ 0 

• 𝑘𝑟
T ≈ 0 

Transient PL prompt must be 

temperature independent. 

59 
(1)    𝑘𝑅𝐼𝑆𝐶 =

𝑘𝑝𝑘𝑑

𝑘𝐼𝑆𝐶
∙
𝛷𝑑
𝛷𝑝

 

(2)    𝑘𝑅𝐼𝑆𝐶 =
𝑘𝑝𝑘𝑑

𝑘𝑟
S
𝛷𝑃𝐿𝑄𝑌 

• 𝑘𝑝 ≫ 𝑘𝑑, 𝑘𝑟
T ≈ 0 

 (𝑘𝑟
S + 𝑘𝑛𝑟

S + 𝑘𝐼𝑆𝐶 ≫ 𝑘𝑅𝐼𝑆𝐶 + 𝑘𝑛𝑟
T ) 

• 𝑘𝑛𝑟
S ≈ 0, 𝛷𝑃𝐿𝑄𝑌 ≥ 0.9 for (1) 

• 𝑘𝑛𝑟
T ≈ 0 for (2) 

𝑘𝑅𝐼𝑆𝐶  can be determined even 

when 𝑘𝑟
S < 𝑘𝑅𝐼𝑆𝐶 . 

610 𝑘𝑅𝐼𝑆𝐶 = 𝑘𝑑
1

1 − 𝛷𝐼𝑆𝐶
= 𝑘𝑑

𝛷𝑝 +𝛷𝑑

𝛷𝑝
 

• 𝑘n𝑟
T ≈ 0 

• 𝑘𝑟
T ≈ 0 

• 𝑘𝐼𝑆𝐶 ≫ 𝑘𝑟
S ≫ 𝑘𝑛𝑟

S  

• 𝑘𝐼𝑆𝐶 ≫ 𝑘𝑅𝐼𝑆𝐶  

• 𝛷𝑑/𝛷𝑝 ≥ 4 

 

711 𝑘𝑅𝐼𝑆𝐶 =
𝑘𝑝 + 𝑘𝑑

2
− √(

𝑘𝑝 + 𝑘𝑑

2
)

2

− 𝑘𝑝𝑘𝑑 (1 +
𝛷𝑑
𝛷𝑝
) 

• 𝑘n𝑟
T ≈ 0 

• 𝑘𝑟
T ≈ 0 

𝑘𝑅𝐼𝑆𝐶  can be determined even 

when 𝑘𝑟
S < 𝑘𝑅𝐼𝑆𝐶 . 

812 

d[S1]

d𝑡
= −(𝑘𝑟

S + 𝑘𝐼𝑆𝐶)[S1] + 𝑘𝑅𝐼𝑆𝐶[T1] 

d[T1]

d𝑡
= 𝑘𝐼𝑆𝐶[S1] − 𝑘𝑅𝐼𝑆𝐶[T1] 

• 𝛷𝑃𝐿𝑄𝑌 ≈ 1 

 (𝑘𝑛𝑟
𝑆 ≈ 0, 𝑘𝑛𝑟

𝑇 ≈ 0) 

• 𝑘𝑟
T ≈ 0 

Estimated by multi-parameter 

fitting. 

913 𝑘𝑅𝐼𝑆𝐶 =
𝑘𝑑0

2 − 𝑘𝑝0𝑘𝑑0

𝑘𝐼𝑆𝐶 + 𝑘𝑑0 − 𝑘𝑝0
 

• 𝑘𝑛𝑟
𝑇 ≈ 0 

• 𝑘𝑟
T ≈ 0 

Prepare the pristine and quencher 

doped film. 

𝑘𝑝0  and 𝑘𝑑0  are prompt and 

delayed decay rate of pristine film. 

𝑘𝐼𝑆𝐶  is estimated by curve fitting 

of delayed emission for quencher 

doped film. 

Other parameters such as exciton 

diffusion coefficients and length 

are also estimated. 

1014 𝑘𝑅𝐼𝑆𝐶 = 𝑘𝑇𝛷𝑇𝐴𝐷𝐹 
• S1 exciton is not quenched by 

O2. 

𝑘𝑇  is triplet lifetime from 

transient absorption spectra. 

𝛷𝑇𝐴𝐷𝐹  is the difference of PLQY 

presence and absence of O2. 

𝑘𝑅𝐼𝑆𝐶  is estimated as not an 

elementary rate but an effective 

rate, because ISC/RISC cycle is not 

considered. 

Reference numbers is corresponding to that in main text. 
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2. Summary of the methods to estimate 𝜱𝑰𝑺𝑪 (Table S2) 

Entry Equations Assumptions Comments 

116 𝛷𝐼𝑆𝐶 =
𝜌(𝜆)𝑆𝑆𝑘𝑑
𝜀𝑇(𝜆)𝐼𝑎𝑙

 
• Depending on estimation 

method of 𝜀𝑇(𝜆)17 
 

218 ln [
𝐼𝑃𝐹
𝐼𝐷𝐹

− (
1

𝛷𝐼𝑆𝐶
− 1)] =

Δ𝐸𝑆𝑇
𝑅

∙
1

𝑇
 + ln (

𝑘𝑟
𝑇 + 𝑘𝑛𝑟

𝑇

𝑘̅𝑅𝐼𝑆𝐶
) 

• 𝑘𝑟
𝑇 + 𝑘𝑛𝑟

𝑇  and 𝛷𝐼𝑆𝐶  are 

temperature independent 

Temperature dependency of the 

ratio of prompt and delayed 

emission are measured to provide 

the plot by using equation. 

Then, you can find a best 𝛷𝐼𝑆𝐶  value 

to obtain linearity of plot by 

continuous variation of 𝛷𝐼𝑆𝐶 . 

319 𝜏𝐷𝐹 = 𝜏𝑃ℎ𝑜𝑠
0 − (

1

𝛷𝐼𝑆𝐶
− 1) 𝜏𝑃ℎ𝑜𝑠

0
𝐼𝐷𝐹
𝐼𝑃𝐹

 
• 𝑘𝑟

𝑇 + 𝑘𝑛𝑟
𝑇  and 𝛷𝐼𝑆𝐶  are 

temperature independent 

When 𝜏𝑃ℎ𝑜𝑠
0  is not provided, 𝜏𝑃ℎ𝑜𝑠

0  

and 𝛷𝐼𝑆𝐶  can be obtained by the 

similar method of entry 2 with the 

temperature dependency of 𝜏𝐷𝐹 

and 𝐼𝐷𝐹 𝐼𝑃𝐹⁄ . 

47 
𝛷𝐼𝑆𝐶 =

3𝑁

𝑀 −𝑁
 

 𝑀 = 𝛷𝐸𝐿
𝑑 𝛷𝐸𝐿

𝑝
⁄  

 𝑁 = 𝛷𝑃𝐿
𝑑 𝛷𝑃𝐿

𝑝
⁄  

 

Only thin film state can be applied. 

The OLED device should be 

fabricated using same emissive layer 

with the thin layer for PL 

measurement. 

520 𝛷𝐼𝑆𝐶 =
𝛷𝐷𝐹 + 𝛷𝑃ℎ𝑜𝑠

𝛷𝑟
𝑆 + 𝛷𝐷𝐹 + 𝛷𝑃ℎ𝑜𝑠

 =
𝛷𝐷𝐸
𝛷𝑃𝐿𝑄𝑌

 • 𝑘𝑟
𝑆 + 𝑘𝐼𝑆𝐶 ≫ 𝑘𝑅𝐼𝑆𝐶 ≫ 𝑘𝑟

𝑇 + 𝑘𝑛𝑟
𝑇  

This method can be applicable to the 

efficient TADF emitters. 

Reference numbers is corresponding to that in main text. 
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3. Conversion equation from quantum efficiency of prompt and delayed emission component commonly used 

to precise efficiency. 

The quantum efficiency of prompt and delayed emission components, which have been used commonly in most 

of literature, were written as, 

𝛷𝑝 =
𝐴𝑝𝑘𝑑

𝐴𝑝𝑘𝑑 + 𝐴𝑑𝑘𝑝
𝛷𝑃𝐿𝑄𝑌, (𝑆3.1) 

𝛷𝑑 =
𝐴𝑑𝑘𝑝

𝐴𝑝𝑘𝑑 + 𝐴𝑑𝑘𝑝
𝛷𝑃𝐿𝑄𝑌. (𝑆3.2) 

 

From Eqs. 3.2, 3.3, S3.1 and S3.2 the conversion equations can be obtained as,  

𝛷𝑃𝐹 = 𝛷𝑝 +
𝑘𝑑
𝑘𝑝
𝛷𝑑 , (𝑆3.3) 

𝛷𝐷𝐸 = (1 −
𝑘𝑑
𝑘𝑝
)𝛷𝑑 , (𝑆3.4) 
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4. Relationship between efficiencies and overall efficiencies (for section 3) 

The efficiencies related to the distribution of triplet exciton can be described to Eqs. S4.1-S4.3. 

𝛷𝑅𝐼𝑆𝐶 =
𝑘𝑅𝐼𝑆𝐶

𝑘𝑅𝐼𝑆𝐶 + 𝑘𝑟
𝑇 + 𝑘𝑛𝑟

𝑇 . (S4.1) 

𝛷𝑟
𝑇 =

𝑘𝑟
𝑇

𝑘𝑅𝐼𝑆𝐶 + 𝑘𝑟
𝑇 + 𝑘𝑛𝑟

𝑇 . (S4.2) 

𝛷𝑛𝑟
𝑇 =

𝑘𝑛𝑟
𝑇

𝑘𝑅𝐼𝑆𝐶 + 𝑘𝑟
𝑇 + 𝑘𝑛𝑟

𝑇 . (S4.3) 

The overall efficiencies related to final distribution of triplet exciton can be described to Eqs. 4.17-4.19. From tease 

equations, the relationship between overall efficiencies and the efficiencies related to the distribution of T1 population 

as Eqs. S4.4-S4.6. 

𝛷𝑅𝐼𝑆𝐶
𝑂𝐸 =

(1 − 𝛷𝐼𝑆𝐶)𝛷𝑅𝐼𝑆𝐶
1 − 𝛷𝐼𝑆𝐶𝛷𝑅𝐼𝑆𝐶

. (S4.4) 

𝛷𝑟
𝑇𝑂𝐸 =

𝛷𝑟
𝑇

1 − 𝛷𝐼𝑆𝐶𝛷𝑅𝐼𝑆𝐶
. (S4.5) 

𝛷𝑛𝑟
𝑇 𝑂𝐸

=
𝛷𝑛𝑟
𝑇

1 − 𝛷𝐼𝑆𝐶𝛷𝑅𝐼𝑆𝐶
. (S4.6) 
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5. Derivation of 𝜱𝑰𝑺𝑪
𝒏𝒓𝑻=𝟎 for three-state analysis 

From Eqs. 3.23, 3.24, and 3.25, 

𝑘𝑛𝑟
𝑇 = 0 = 𝑘𝑑 − (1 − 𝛷𝐼𝑆𝐶

𝑛𝑟𝑇=0)
(𝛷𝐷𝐸 − 𝛷𝑃ℎ𝑜𝑠)

𝛷𝑃𝐹
∙
𝑘𝑝𝑘𝑑

𝑘𝐼𝑆𝐶
𝑛𝑟𝑇=0 − 𝑘𝑑

𝛷𝑃ℎ𝑜𝑠

𝛷𝐼𝑆𝐶
𝑛𝑟𝑇=0

= 1 −
𝛷𝐼𝑆𝐶
𝑛𝑟𝑇=0𝛷𝑃ℎ𝑜𝑠 −𝛷𝐼𝑆𝐶

𝑛𝑟𝑇=0𝛷𝐷𝐸 + 𝛷𝐷𝐸 − 𝛷𝑃ℎ𝑜𝑠 − 𝛷𝑟
𝑆𝛷𝑃ℎ𝑜𝑠

𝛷𝑃𝐹𝛷𝐼𝑆𝐶
𝑛𝑟𝑇=0 , 

therefore, 

𝛷𝐼𝑆𝐶
𝑛𝑟𝑇=0 =

𝛷𝐷𝐸 − 𝛷𝑃ℎ𝑜𝑠(1 + 𝛷𝑟
𝑆)

𝛷𝑃𝐹 + 𝛷𝐷𝐸 − 𝛷𝑃ℎ𝑜𝑠
. (S5.1) 
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6. Derivation of 𝒌𝑰𝑺𝑪 at the limit conditions (𝒌𝑰𝑺𝑪
𝒏𝒓𝑺=𝟎, 𝒌𝑰𝑺𝑪

𝒏𝒓𝑻=𝟎) for three-state analysis 

    From Eq. 3.10, 

𝛷𝐼𝑆𝐶
𝑛𝑟𝑆=0 = 1 − 𝛷𝑟

𝑆 = 1 −𝛷𝑃𝐹 . (S6.1) 

From Eqs. 3.22 and S6.1, 

𝑘𝐼𝑆𝐶
𝑛𝑟𝑆=0 = 𝑘𝑝(1 − 𝛷𝑃𝐹). (S6.2) 

 

    From Eqs. 3.22 and S5.1, 

𝑘𝐼𝑆𝐶
𝑛𝑟𝑇=0 = 𝑘𝑝

𝛷𝐷𝐸 −𝛷𝑃ℎ𝑜𝑠(1 + 𝛷𝑃𝐹)

𝛷𝑃𝐹 + 𝛷𝐷𝐸 − 𝛷𝑃ℎ𝑜𝑠
. (S6.3) 

When 𝛷𝑃ℎ𝑜𝑠 ≈ 0 was employed, 

𝑘𝐼𝑆𝐶
𝑛𝑟𝑇=0 ≈ 𝑘𝑝

𝛷𝐷𝐹
𝛷𝑃𝐹 +𝛷𝐷𝐸

= 𝑘𝑝
𝛷𝐷𝐹
𝛷𝑃𝐿𝑄𝑌

. (S6.4) 

 

    From Eqs. S6.2 and S6.4 the exchange equation of 𝑘𝐼𝑆𝐶  between the limit condition is provided as, 

𝑘𝐼𝑆𝐶
𝑛𝑟𝑇=0 = 𝑘𝐼𝑆𝐶

𝑛𝑟𝑆=0
𝛷𝐷𝐹

(1 − 𝛷𝑃𝐹)𝛷𝑃𝐿𝑄𝑌
. (S6.5) 
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7. Derivation of 𝒌𝑹𝑰𝑺𝑪 at the limit conditions (𝒌𝑹𝑰𝑺𝑪
𝒏𝒓𝑺=𝟎, 𝒌𝑹𝑰𝑺𝑪

𝒏𝒓𝑻=𝟎) for three-state analysis 

From Eqs. 3.19 and 3.25, 

𝑘𝑅𝐼𝑆𝐶 = 𝑘𝑑
𝛷𝐷𝐸 − 𝛷𝑃ℎ𝑜𝑠
𝛷𝑃𝐹𝛷𝐼𝑆𝐶

. (S7.1) 

From Eqs. S5.1, S6.1, and S7.1, 

𝑘𝑅𝐼𝑆𝐶
𝑛𝑟𝑆=0 = 𝑘𝑑

𝛷𝐷𝐸 −𝛷𝑃ℎ𝑜𝑠
𝛷𝑃𝐹(1 − 𝛷𝑃𝐹)

, (S7.2) 

𝑘𝑅𝐼𝑆𝐶
𝑛𝑟𝑇=0 = 𝑘𝑑

𝛷𝐷𝐸(𝛷𝑃𝐹 − 𝛷𝐷𝐸) − 𝛷𝑃ℎ𝑜𝑠(𝛷𝑃𝐹 − 𝛷𝑃ℎ𝑜𝑠)

𝛷𝑃𝐹𝛷𝐷𝐸 −𝛷𝑃𝐹𝛷𝑃ℎ𝑜𝑠(1 + 𝛷𝑃𝐹)
. (S7.3) 

When 𝛷𝑃ℎ𝑜𝑠 ≈ 0 was employed for simplification, 

𝑘𝑅𝐼𝑆𝐶
𝑛𝑟𝑆=0 = 𝑘𝑑

𝛷𝐷𝐹
𝛷𝑃𝐹(1 − 𝛷𝑃𝐹)

= 𝑘𝑑
𝛷𝐷𝐹

𝛷𝑃𝐹𝛷𝐼𝑆𝐶
, (S7.4) 

𝑘𝑅𝐼𝑆𝐶
𝑛𝑟𝑇=0 = 𝑘𝑑

𝛷𝑃𝐹 +𝛷𝐷𝐹
𝛷𝑃𝐹

= 𝑘𝑑
𝛷𝑃𝐿𝑄𝑌

𝛷𝑃𝐹
. (S7.5) 

Eqs. S7.4 and S7.5 are completely corresponding to the Goushi-Masui’s equation and Dias’ equation respectively (see 

Entry 3, 4, and 6 in Table S1). This means 𝑘𝑅𝐼𝑆𝐶  values in the literatures estimated by their method with the different 

assumption of 𝛷𝑛𝑟
𝑆 = 0 and 𝛷𝑛𝑟

𝑇 = 0 can be compared by using Eq. S7.6. In this case, the efficiency values of 𝛷𝑃𝐹 

and 𝛷𝐷𝐹 or 𝛷𝑃𝐿𝑄𝑌 with the ratio of 𝛷𝑃𝐹 and 𝛷𝐷𝐹 are requested to the literature. 

𝑘𝑅𝐼𝑆𝐶
𝑛𝑟𝑇=0 = 𝑘𝑅𝐼𝑆𝐶

𝑛𝑟𝑆=0
(1 − 𝛷𝑃𝐹)𝛷𝑃𝐿𝑄𝑌

𝛷𝐷𝐹
. (S7.6) 
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8. Definition of 𝒌𝑰𝑺𝑪
𝑨𝒗𝒆. and 𝒌𝑹𝑰𝑺𝑪

𝑨𝒗𝒆.  

𝑘𝐼𝑆𝐶
𝐴𝑣𝑔.

≡
(𝑘𝐼𝑆𝐶

𝑛𝑟𝑆=0 + 𝑘𝐼𝑆𝐶
𝑛𝑟𝑇=0)

2
±
(𝑘𝐼𝑆𝐶

𝑛𝑟𝑆=0 − 𝑘𝐼𝑆𝐶
𝑛𝑟𝑇=0)

2
. (S8.1) 

𝑘𝑅𝐼𝑆𝐶
𝐴𝑣𝑔.

≡
(𝑘𝑅𝐼𝑆𝐶

𝑛𝑟𝑇=0 + 𝑘𝑅𝐼𝑆𝐶
𝑛𝑟𝑆=0)

2
±
(𝑘𝑅𝐼𝑆𝐶

𝑛𝑟𝑇=0 − 𝑘𝑅𝐼𝑆𝐶
𝑛𝑟𝑆=0)

2
. (S8.2) 
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9. Detail calculation for 𝒌𝑰𝑺𝑪
𝑨𝒗𝒆.  and 𝒌𝑹𝑰𝑺𝑪

𝑨𝒗𝒆.   for three-state analysis (approximating 𝜱𝑷𝒉𝒐𝒔 ≈ 𝟎  for 

simplification) 

    From Eqs. S5.1, S6.4, and S8.1 

𝑘𝐼𝑆𝐶
𝐴𝑣𝑔.

=
1

2
[𝑘𝑝(1 − 𝛷𝑃𝐹) + 𝑘𝑝

𝛷𝐷𝐹
𝛷𝑃𝐿𝑄𝑌

] ±
1

2
[𝑘𝑝(1 − 𝛷𝑃𝐹) − 𝑘𝑝

𝛷𝐷𝐹
𝛷𝑃𝐿𝑄𝑌

]

=
𝑘𝑝

2
∙
[𝛷𝑃𝐿𝑄𝑌(1 − 𝛷𝑃𝐹) + 𝛷𝐷𝐹] ± [𝛷𝑃𝐿𝑄𝑌(1 − 𝛷𝑃𝐹) − 𝛷𝐷𝐹]

𝛷𝑃𝐿𝑄𝑌
. (S9.1)

 

From Eqs. 7.4, 7.5, and 8.2, 

𝑘𝑅𝐼𝑆𝐶
𝐴𝑣𝑔.

=
1

2
[𝑘𝑑

𝛷𝑃𝐿𝑄𝑌

𝛷𝑃𝐹
+ 𝑘𝑑

𝛷𝐷𝐹
𝛷𝑃𝐹(1 − 𝛷𝑃𝐹)

] ±
1

2
[𝑘𝑑

𝛷𝑃𝐿𝑄𝑌

𝛷𝑃𝐹
− 𝑘𝑑

𝛷𝐷𝐹
𝛷𝑃𝐹(1 − 𝛷𝑃𝐹)

]

=
𝑘𝑑
2
∙
[𝛷𝑃𝐿𝑄𝑌(1 − 𝛷𝑃𝐹) + 𝛷𝐷𝐹] ± [𝛷𝑃𝐿𝑄𝑌(1 − 𝛷𝑃𝐹) − 𝛷𝐷𝐹]

𝛷𝑟
𝑆(1 − 𝛷𝑟

𝑆)
. (S9.2)

 

 

 

Because the relationship of Eq. S6.5, 𝑘𝐼𝑆𝐶
𝐴𝑣𝑒. can be obtained from reported 𝑘𝐼𝑆𝐶  by using S9.1 as 

𝑘𝐼𝑆𝐶
𝐴𝑣𝑔.

= 𝑘𝐼𝑆𝐶
𝑛𝑟𝑆=0

[𝛷𝑃𝐿𝑄𝑌(1 − 𝛷𝑃𝐹) + 𝛷𝐷𝐹] ± [𝛷𝑃𝐿𝑄𝑌(1 − 𝛷𝑃𝐹) − 𝛷𝐷𝐹]

2𝛷𝑃𝐿𝑄𝑌(1 − 𝛷𝑟
𝑆)

. (S9.3) 

𝑘𝐼𝑆𝐶
𝐴𝑣𝑔.

= 𝑘𝐼𝑆𝐶
𝑛𝑟𝑇=0

[𝛷𝑃𝐿𝑄𝑌(1 − 𝛷𝑃𝐹) + 𝛷𝐷𝐹] ± [𝛷𝑃𝐿𝑄𝑌(1 − 𝛷𝑃𝐹) − 𝛷𝐷𝐹]

2𝛷𝐷𝐸
. (S9.4) 

 

Because the relationship of Eq. S7.6, 𝑘𝑅𝐼𝑆𝐶
𝐴𝑣𝑒.  can be obtained from reported 𝑘𝑅𝐼𝑆𝐶  by using S9.2 as 

𝑘𝑅𝐼𝑆𝐶
𝐴𝑣𝑔.

= 𝑘𝑅𝐼𝑆𝐶
𝑛𝑟𝑆=0

𝛷𝑃𝐿𝑄𝑌(1 − 𝛷𝑃𝐹) + 𝛷𝐷𝐹 ± 𝛷𝑃𝐹(1 + 𝛷𝑃𝐿𝑄𝑌)

2𝛷𝐷𝐹
. (S9.5) 

𝑘𝑅𝐼𝑆𝐶
𝐴𝑣𝑔.

= 𝑘𝑅𝐼𝑆𝐶
𝑛𝑟𝑇=0

𝛷𝑃𝐿𝑄𝑌(1 − 𝛷𝑃𝐹) + 𝛷𝐷𝐹 ± 𝛷𝑃𝐹(1 − 𝛷𝑃𝐿𝑄𝑌)

2𝛷𝑃𝐿𝑄𝑌(1 − 𝛷𝑃𝐹)
. (S9.6) 
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10. Detail derivation of rate constants for four-state analysis among 𝐒𝟎, 𝐒𝟏, 𝐓𝟏 and 𝐓𝐧 

    Here, we derived the rate equations for the four-state analysis considering higher triplet state (Tn ) as an 

intermediate state of RISC state with the generally expected assumptions for the emitters.  

 

Figure S1. Schematic diagram for four-state analysis of S0, S1, T1 and Tn. 

 

    When we assume direct ISC/RISC process between S1 and T1 state and direct radiative/nonradiative process 

from Tn to S0 are forbidden, those decay pass can be eliminated. These assumptions should be related to the El-Saied's 

and Kasha’s rules (Figure S1). The global decay rate from each excited state in the absence of exciton-formation 

processes can be formulated as 

𝑑[S1]

𝑑𝑡
= −𝑘𝑟

𝑆[S1] − 𝑘𝑛𝑟
𝑆 [S1] − 𝑘𝐼𝑆𝐶[S1] + 𝑘𝑅𝐼𝑆𝐶[Tn], (S10.1) 

𝑑[Tn]

𝑑𝑡
= −𝑘𝑅𝐼𝑆𝐶[Tn] − 𝑘𝐼𝐶[Tn] + 𝑘𝐼𝑆𝐶[S1] + 𝑘𝑅𝐼𝐶[T1], (S10.2) 

𝑑[T1]

𝑑𝑡
= −𝑘𝑟

𝑇[T1] − 𝑘𝑛𝑟
𝑇 [T1] − 𝑘𝑅𝐼𝐶[T1] + 𝑘𝐼𝐶[Tn], (S10.3) 

where [Tn] is the densities of Tn excitons, 𝑘𝐼𝐶  and 𝑘𝑅𝐼𝐶  are the rate constants for internal conversion (IC) and 

reverse-internal conversion (RIC) processes. In this system, all three components of [S1], [Tn], and [T1] should be 

provide as the tri-exponential curves. Therefore, the emission decay can be fit with a tri-exponential curve as, 

𝐼(𝑡) = 𝐴𝑝 exp(−𝑘𝑝𝑡) + 𝐴𝑑1 exp(−𝑘𝑑1𝑡) + 𝐴𝑑2 exp(−𝑘𝑑2𝑡) , (𝑆10.4) 

where 𝐴𝑝 , 𝐴𝑑1 , 𝐴𝑑2 , 𝑘𝑝 , 𝑘𝑑1, and 𝑘𝑑2 are the pre-exponential factors (𝐴) and decay rates (𝑘) for prompt (𝑝), 

primary delayed (𝑑1), and secondary delayed (𝑑2) components. To obtain the quantum efficiency of prompt (𝛷𝑃𝐹), 

primary delayed (𝛷𝐷𝐸1), and secondary (𝛷𝐷𝐸2) delayed components, Eq. S10.4 should be rewritten by, 

𝐼(𝑡) = (𝐴𝑝 + 𝐴𝑑1 + 𝐴𝑑2) exp(−𝑘𝑝𝑡)                                            

             +(𝐴𝑑1 + 𝐴𝑑2)[− exp(−𝑘𝑝𝑡) + exp(−𝑘𝑑1𝑡)]

                                               +𝐴𝑑2[− exp(−𝑘𝑑1𝑡) + exp(−𝑘𝑑2𝑡)]. (𝑆10.5)

 

In this form, the first, second, and third terms are exactly corresponding to the prompt, primary delayed and secondary 

delayed components, respectively, and each efficiency can be estimated as Eqs. S10.6-S10.8, 



38 

 

𝛷𝑃𝐹 =

𝐴𝑝 + 𝐴𝑑1 + 𝐴𝑑2
𝑘𝑝

𝐴𝑝 + 𝐴𝑑1 + 𝐴𝑑2
𝑘𝑝

+
𝐴𝑑1 + 𝐴𝑑2

𝑘𝑑1
−
𝐴𝑑1 + 𝐴𝑑2

𝑘𝑝
+
𝐴𝑑2
𝑘𝑑2

−
𝐴𝑑2
𝑘𝑑1

𝛷𝑃𝐿𝑄𝑌

=
(𝐴𝑝 + 𝐴𝑑1 + 𝐴𝑑2)𝑘𝑑1𝑘𝑑2

𝐴𝑝𝑘𝑑1𝑘𝑑2 + 𝐴𝑑1𝑘𝑝𝑘𝑑1 + 𝐴𝑑2𝑘𝑝𝑘𝑑2
𝛷𝑃𝐿𝑄𝑌. (10.6)

 

𝛷𝐷𝐸1 =

𝐴𝑑1 + 𝐴𝑑2
𝑘𝑑1

−
𝐴𝑑1 + 𝐴𝑑2

𝑘𝑝
𝐴𝑝 + 𝐴𝑑1 + 𝐴𝑑2

𝑘𝑝
+
𝐴𝑑1 + 𝐴𝑑2

𝑘𝑑1
−
𝐴𝑑1 + 𝐴𝑑2

𝑘𝑝
+
𝐴𝑑2
𝑘𝑑2

−
𝐴𝑑2
𝑘𝑑1

𝛷𝑃𝐿𝑄𝑌

=
(𝐴𝑑1 + 𝐴𝑑2)(𝑘𝑝 − 𝑘𝑑1)𝑘𝑑2

𝐴𝑝𝑘𝑑1𝑘𝑑2 + 𝐴𝑑1𝑘𝑝𝑘𝑑1 + 𝐴𝑑2𝑘𝑝𝑘𝑑2
𝛷𝑃𝐿𝑄𝑌. (10.7)

 

𝛷𝐷𝐸2 =

𝐴𝑑2
𝑘𝑑2

−
𝐴𝑑2
𝑘𝑑1

𝐴𝑝 + 𝐴𝑑1 + 𝐴𝑑2
𝑘𝑝

+
𝐴𝑑1 + 𝐴𝑑2

𝑘𝑑1
−
𝐴𝑑1 + 𝐴𝑑2

𝑘𝑝
+
𝐴𝑑2
𝑘𝑑2

−
𝐴𝑑2
𝑘𝑑1

𝛷𝑃𝐿𝑄𝑌

=
𝐴𝑑2(𝑘𝑑1 − 𝑘𝑑2)𝑘𝑝

𝐴𝑝𝑘𝑑1𝑘𝑑2 + 𝐴𝑑1𝑘𝑝𝑘𝑑1 + 𝐴𝑑2𝑘𝑝𝑘𝑑2
𝛷𝑃𝐿𝑄𝑌. (10.8)

 

    Under the assumption of 𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶 ≫ 𝑘𝑅𝐼𝑆𝐶  with the restriction condition of [S1] ≫ [Tn] (𝑡 ≪ 1 𝑘𝑝⁄ ), 

Eq. S10.1 can be rewritten as Eq. S10.9. Therefore, the singlet decay rate (𝑘𝑆) can be approximate to the prompt decay 

rate (𝑘𝑝), and the function of time can be written as Eq. S10.10. 

𝑑[S1]

[S1]
≈ (−𝑘𝑟

𝑆 − 𝑘𝑛𝑟
𝑆 − 𝑘𝐼𝑆𝐶)𝑑𝑡, (S10.9) 

[S1] ≈ 𝐴𝑆 exp[−(𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶)𝑡] = 𝐴𝑆 exp(−𝑘
𝑆𝑡) ≈ 𝐴𝑆 exp(−𝑘𝑝𝑡) , (S10.10) 

where 𝐴𝑆 is a pre-exponential factor. 

    Next, we focus on the exponential decay of [Tn]. Eq. S10.2 can be rewritten as Eq. S10.11 under the assumption 

of 𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶 ≫ 𝑘𝑅𝐼𝑆𝐶  and 𝑘𝑅𝐼𝑆𝐶 + 𝑘𝐼𝐶 ≫ 𝑘𝑅𝐼𝐶  with the restriction condition of [T1] ≪ [Tn]  and [S1] ≪

[Tn] (1 𝑘𝑝⁄ ≪ 𝑡 ≪ 1 𝑘𝑑1⁄ ). By the assumption of 𝑘𝑅𝐼𝑆𝐶 + 𝑘𝐼𝐶 ≫ 𝑘𝑅𝐼𝐶 , the term related to the T1 can be vanished. 

𝑑[Tn]

[Tn]
= (−𝑘𝑅𝐼𝑆𝐶 − 𝑘𝐼𝐶 + 𝑘𝐼𝑆𝐶

[S1]

[Tn]
) 𝑑𝑡, (S10.11) 

The time dependent term of [S1] [Tn]⁄  can be obtained as non-time-dependent value by the steady state approximation 

(SSA) of Eq. S10.1, 𝑑[S1] 𝑑𝑡⁄ ≈ 0. 

[S1]

[Tn]
≈

𝑘𝑅𝐼𝑆𝐶

𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶
. (S10.12) 

This require the assumption some of 𝑘𝑟
𝑆, 𝑘𝑛𝑟

𝑆 , or 𝑘𝐼𝑆𝐶  is much larger than 𝑘𝑅𝐼𝑆𝐶 . When Tn level is lying below S1 

level, 𝑘𝐼𝑆𝐶 ≫ 𝑘𝑅𝐼𝑆𝐶  is always approved because the relationship of exo- and endothermic process. If 𝑘𝐼𝑆𝐶 ≫ 𝑘𝑅𝐼𝑆𝐶  

is satisfied as a consequence, it should not matter whether Tn level is lying above S1 level. By using Eq. S10.12, the 

time dependence for [Tn] is provided as Eq. S10.13. 

[Tn](𝑡) ≈ 𝐴𝑇𝑛 exp {− [(1 −
𝑘𝐼𝑆𝐶

𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶
) 𝑘𝑅𝐼𝑆𝐶 + 𝑘𝐼𝐶] 𝑡}

= 𝐴𝑇𝑛 exp(−𝑘
𝑇𝑛𝑡) ≈ 𝐴𝑇𝑛 exp(−𝑘𝑑1𝑡) , (𝑆10.13)

 

where 𝐴𝑇𝑛 is a pre-exponential factor, 𝑘𝑇𝑛  is a decay rate of Tn state. Therefore, 𝑘𝑑1 can be approximate as, 
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𝑘𝑑1 ≈ (1 −
𝑘𝐼𝑆𝐶

𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶
) 𝑘𝑅𝐼𝑆𝐶 + 𝑘𝐼𝐶 . (𝑆10.14) 

Further, we focus on the exponential decay of [T1]. Eq. S10.3 can be rewritten as Eq. S10.15 under the assumption of 

𝑘𝑅𝐼𝑆𝐶 + 𝑘𝐼𝐶 ≫ 𝑘𝑅𝐼𝐶  with the restriction condition of [Tn] ≪ [T1] 𝑡 ≫ 1 𝑘𝑑2⁄ . 

𝑑[T1]

[T1]
= (−𝑘𝑟

𝑇 − 𝑘𝑛𝑟
𝑇 − 𝑘𝑅𝐼𝐶 + 𝑘𝐼𝐶

[Tn]

[T1]
) 𝑑𝑡. (S10.15) 

The time dependent term of [Tn] [T1]⁄  can be obtained as non-time-dependent value by the steady state approximation 

(SSA) of Eqs. S10.1 and S10.2, 𝑑[S1] 𝑑𝑡⁄ ≈ 0 and 𝑑[Tn] 𝑑𝑡⁄ ≈ 0, respectively; this is necessary to assume 𝑘𝐼𝐶 ≫

𝑘𝑅𝐼𝐶  but it always approved because of the relationship of exo- and endothermic process. 

[Tn]

[T1]
≈

𝑘𝑅𝐼𝐶

(1 −
𝑘𝐼𝑆𝐶

𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶
) 𝑘𝑅𝐼𝑆𝐶 + 𝑘𝐼𝐶

. (S10.16)
 

By the similar process, observed 𝑘𝑑2 can be written as Eq. S10.17. 

𝑘𝑑2 ≈ 𝑘
𝑇1 = [1 −

𝑘𝐼𝐶

(1 −
𝑘𝐼𝑆𝐶

𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶
) 𝑘𝑅𝐼𝑆𝐶 + 𝑘𝐼𝐶

] 𝑘𝑅𝐼𝐶
𝑇 + 𝑘𝑟

𝑇 + 𝑘𝑛𝑟
𝑇 . (S10.17) 

    The total decay efficiency of singlet excitons generated by photo-excitation is the sum of 𝛷𝑟
𝑆 (≈ 𝛷𝑃𝐹), 𝛷𝑛𝑟

𝑆  and 

𝛷𝐼𝑆𝐶 . 

𝛷𝑟
𝑆 +𝛷𝑛𝑟

𝑆 + 𝛷𝐼𝑆𝐶 = 1. (S10.18) 

The decay efficiency of Tn excitons resulted from an ISC process is the sum of 𝛷𝑅𝐼𝑆𝐶  and the internal conversion 

(𝛷𝐼𝐶
𝑇 ). It should be noted again here, we assumed that the Tn excitons do not decay directly to the S0 state but rather 

through the T1 state, related to Kasha's rule. 

𝛷𝑅𝐼𝑆𝐶 + 𝛷𝐼𝐶
𝑇 = 1. (S10.19) 

Because of 𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶 ≫ 𝑘𝑅𝐼𝑆𝐶 , the RISC process controls the decay of Tn excitons via the S1 state and S1 

excitons generated by the RISC process rapidly decayed to S0 or Tn states according to Eq. S10.18. Therefore, the 

multiple ISC/RISC cycle is present. In this case, the efficiencies in Eq. S10.19 should be modified by using overall 

efficiencies (OEs), which are the final distributed exciton ratio between S1 and Tn population via ISC/RISC cycles; 

those are 𝛷𝑅𝐼𝑆𝐶
𝑂𝐸 > 𝛷𝑅𝐼𝑆𝐶  and 𝛷𝐼𝐶

𝑇 𝑂𝐸
> 𝛷𝐼𝐶

𝑇 . Observed decay rate is an apparent value of Tn  decays, OEs are 

employed to the analysis. Therefore, 𝛷𝐼𝑆𝐶  can be divided into  𝛷𝑅𝐼𝑆𝐶
𝑂𝐸 and 𝛷𝐼𝐶

𝑇 𝑂𝐸, and the total efficiency is given 

by,  

𝛷𝑅𝐼𝑆𝐶
𝑂𝐸 + 𝛷𝐼𝐶

𝑇 𝑂𝐸 = 1. (S10.20) 

Similarly, the RIC process controls the decay of T1 excitons via the Tn state and Tn excitons generated by the RIC 

process rapidly decayed to S1 or T1 states according to Eq. S10.20 because of 𝑘𝑅𝐼𝑆𝐶 + 𝑘𝐼𝐶 ≫ 𝑘𝑅𝐼𝐶 . Therefore, the 

multiple IC/RIC cycle is present. The efficiencies related to T1 and its OEs are written by Eqs. S10.21 and S10.22; 

those are 𝛷𝑟
𝑇𝑂𝐸 > 𝛷𝑟

𝑇, 𝛷𝑛𝑟
𝑇 𝑂𝐸

> 𝛷𝑛𝑟
𝑇  and 𝛷𝑅𝐼𝐶

𝑂𝐸 < 𝛷𝑅𝐼𝐶 . Observed decay rate is an apparent value of T1 decay, OEs 

are employed to the analysis. Therefore, 𝛷𝐼𝑆𝐶𝛷𝐼𝐶
𝑂𝐸 can be divided into 𝛷𝑟

𝑇𝑂𝐸, 𝛷𝑛𝑟
𝑇 𝑂𝐸

 and 𝛷𝑅𝐼𝐶
𝑂𝐸.  

𝛷𝑟
𝑇 + 𝛷𝑛𝑟

𝑇 + 𝛷𝑅𝐼𝐶 = 1. (S10.21) 
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𝛷𝑟
𝑇𝑂𝐸 + 𝛷𝑛𝑟

𝑇 𝑂𝐸
+ 𝛷𝑅𝐼𝐶

𝑂𝐸 = 1. (S10.22) 

The fraction of Tn exciton decay event via S1 (𝛷𝐼𝑆𝐶𝛷𝑅𝐼𝑆𝐶
𝑂𝐸) can decay either radiatively (𝛷𝑟

𝑆) or non-radiatively (𝛷𝑛𝑟
𝑆 ), 

because 𝛷𝑅𝐼𝑆𝐶
𝑂𝐸 is the finally distributed exciton ratio after considering the ISC/RISC cycle. Therefore, the primary 

delayed fluorescence (𝛷𝐷𝐹1, i.e., primary delayed emission 𝛷𝐷𝐸1) can be formulated as a function of the radiative 

fraction to the total efficiency, 𝛷𝑟
𝑆 + 𝛷𝑛𝑟

𝑆 . 

𝛷𝐷𝐹1 = 𝛷𝐷𝐸1 = 𝛷𝐼𝑆𝐶𝛷𝑅𝐼𝑆𝐶
𝑂𝐸 𝛷𝑟

𝑆

𝛷𝑟
𝑆 +𝛷𝑛𝑟

𝑆 = 𝛷𝐼𝑆𝐶𝛷𝑅𝐼𝑆𝐶
𝑂𝐸 𝛷𝑟

𝑆

1 − 𝛷𝐼𝑆𝐶
. (S10.23) 

Similarly, the fraction of T1 exciton decay event via S1 (𝛷𝐼𝑆𝐶𝛷𝐼𝐶
𝑂𝐸𝛷𝑅𝐼𝐶

𝑂𝐸) can decay either 𝛷𝑟
𝑆 or 𝛷𝑛𝑟

𝑆 , because 

𝛷𝑅𝐼𝐶
𝑂𝐸 is the finally distributed exciton ratio after considering both IC/RIC and ISC/RISC cycles (see Eq. S10.17). 

Therefore, the secondary delayed fluorescence (𝛷𝐷𝐹2) can be formulated as a function of 𝛷𝑟
𝑆 to the 𝛷𝑟

𝑆 + 𝛷𝑛𝑟
𝑆 . 

𝛷𝐷𝐹2 = 𝛷𝐷𝐸2𝑅𝐷𝐸2
𝐷𝐹2 = 𝛷𝐼𝑆𝐶𝛷𝐼𝐶

𝑂𝐸𝛷𝑅𝐼𝐶
𝑂𝐸 𝛷𝑟

𝑆

𝛷𝑟
𝑆 + 𝛷𝑛𝑟

𝑆 = 𝛷𝐼𝑆𝐶𝛷𝐼𝐶
𝑂𝐸𝛷𝑅𝐼𝐶

𝑂𝐸 𝛷𝑟
𝑆

1 − 𝛷𝐼𝑆𝐶
. (S10.24) 

where 𝑅𝐷𝐸2
𝐷𝐹2 is a ratio in of secondary delayed fluorescence in secondary delayed emission, 𝛷𝐷𝐹2 𝛷𝐷𝐸2⁄ . In the four-

state analysis model, the observed lifetime of secondary delayed fluorescence and phosphorescence are exactly the 

same (1 𝑘𝑑2⁄ ) since they occur from the same origin of the T1 state. Therefore, both 𝛷𝐷𝐹2 and 𝛷𝑃ℎ𝑜𝑠 contribute to 

the secondary delayed emission (𝛷𝐷𝐸2). The total PL quantum efficiency (𝛷𝑃𝐿𝑄𝑌) is the sum of 𝛷𝑟
𝑆, 𝛷𝐷𝐹1, and 𝛷𝐷𝐸2. 

Based on the above analysis, all of the efficiencies related to the TADF process were presented in Eqs. S10.25-S10.32. 

𝛷𝑟
𝑆 =

𝑘𝑟
𝑆

𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶
=
𝑘𝑟
𝑆

𝑘𝑝
. (S10.25) 

𝛷𝑛𝑟
𝑆 = 1 −𝛷𝑟

𝑆 − 𝛷𝐼𝑆𝐶 =
𝑘𝑛𝑟
𝑆

𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶
=
𝑘𝑛𝑟
𝑆

𝑘𝑝
. (S10.26) 

𝛷𝐼𝑆𝐶 =
𝑘𝐼𝑆𝐶

𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶
=
𝑘𝐼𝑆𝐶
𝑘𝑝

. (S10.27) 

𝛷𝑅𝐼𝑆𝐶
𝑂𝐸 =

𝛷𝐷𝐸1(1 − 𝛷𝐼𝑆𝐶)

𝛷𝑟
𝑆𝛷𝐼𝑆𝐶

=
(1 − 𝛷𝐼𝑆𝐶)𝑘𝑅𝐼𝑆𝐶

(1 − 𝛷𝐼𝑆𝐶)𝑘𝑅𝐼𝑆𝐶 + 𝑘𝐼𝐶
=
(1 − 𝛷𝐼𝑆𝐶)𝑘𝑅𝐼𝑆𝐶

𝑘𝑑1
. (S10.28) 

𝛷𝐼𝐶
𝑂𝐸 =

𝑘𝑑2

𝑘𝑅𝐼𝐶
𝑇 ∙

𝛷𝐷𝐹2
𝛷𝐷𝐹1

=
𝑘𝐼𝐶

(1 − 𝛷𝐼𝑆𝐶)𝑘𝑅𝐼𝑆𝐶 + 𝑘𝐼𝐶
= 1 −𝛷𝑅𝐼𝑆𝐶

𝑂𝐸 . (S10.29) 

𝛷𝑅𝐼𝐶
𝑂𝐸 =

𝛷𝑅𝐼𝑆𝐶
𝑂𝐸𝑘𝑅𝐼𝐶

𝑇

𝛷𝑅𝐼𝑆𝐶
𝑂𝐸𝑘𝑅𝐼𝐶

𝑇 + 𝑘𝑟
𝑇 + 𝑘𝑛𝑟

𝑇
=
𝛷𝑅𝐼𝑆𝐶

𝑂𝐸𝑘𝑅𝐼𝐶
𝑇

𝑘𝑑2
. (S10.30) 

𝛷𝑟
𝑇𝑂𝐸 =

𝛷𝑃ℎ𝑜𝑠

𝛷𝐼𝑆𝐶𝛷𝐼𝐶
𝑂𝐸 =

𝛷𝐷𝐸2(1 − 𝑅𝐷𝐸2
𝐷𝐹2)

𝛷𝐼𝑆𝐶𝛷𝐼𝐶
𝑂𝐸 =

𝑘𝑟
𝑇

𝛷𝑅𝐼𝑆𝐶
𝑂𝐸𝑘𝑅𝐼𝐶 + 𝑘𝑟

𝑇 + 𝑘𝑛𝑟
𝑇
=
𝑘𝑟
𝑇

𝑘𝑑2
. (S10.31) 

𝛷𝑛𝑟
𝑇 𝑂𝐸

=
1 − 𝛷𝑃𝐿𝑄𝑌

𝛷𝐼𝑆𝐶𝛷𝐼𝐶
𝑂𝐸 − 𝛷𝑛𝑟

𝑆
1 − 𝛷𝐼𝑆𝐶𝛷𝐼𝐶

𝑂𝐸(1 − 𝛷𝑅𝐼𝐶
𝑂𝐸)

𝛷𝐼𝑆𝐶𝛷𝐼𝐶
𝑂𝐸(1 − 𝛷𝐼𝑆𝐶)

=
𝑘𝑛𝑟
𝑇

𝛷𝑅𝐼𝑆𝐶
𝑂𝐸𝑘𝑅𝐼𝐶 + 𝑘𝑟

𝑇 + 𝑘𝑛𝑟
𝑇
=
𝑘𝑛𝑟
𝑇

𝑘𝑑2
. (S10.32) 

The corresponding rate constants are described by Eqs. S10.33-S10.40. 

𝑘𝑟
𝑆 = 𝑘𝑝𝛷𝑟

𝑆. (S10.33) 

𝑘𝑛𝑟
𝑆 = 𝑘𝑝𝛷𝑛𝑟

𝑆 = 𝑘𝑝(1 − 𝛷𝑟
𝑆 − 𝛷𝐼𝑆𝐶). (S10.34) 
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𝑘𝐼𝑆𝐶 = 𝑘𝑝𝛷𝐼𝑆𝐶 . (S10.35) 

𝑘𝑅𝐼𝑆𝐶 = 𝑘𝑑1
𝛷𝑅𝐼𝑆𝐶

𝑂𝐸

(1 − 𝛷𝐼𝑆𝐶)
=
𝛷𝐷𝐹1

𝛷𝑟
𝑆 ⋅

𝑘𝑝𝑘𝑑1

𝑘𝐼𝑆𝐶
. (S10.36) 

𝑘𝐼𝐶
𝑇 = 𝑘𝑑1 − (1 − 𝛷𝐼𝑆𝐶)𝑘𝑅𝐼𝑆𝐶 . (S10.37) 

𝑘𝑅𝐼𝐶
𝑇 = 𝑘𝑑2

𝛷𝑅𝐼𝐶
𝑇 𝑂𝐸

𝛷𝑅𝐼𝑆𝐶
𝑂𝐸 = 𝑘𝑑2

(1 − 𝛷𝐼𝑆𝐶)𝛷𝐷𝐸2𝑅𝐷𝐸2
𝐷𝐹2

𝛷𝑟
𝑆𝛷𝐼𝑆𝐶𝛷𝑅𝐼𝑆𝐶

𝑂𝐸𝛷𝐼𝐶
𝑇 𝑂𝐸

. (S10.38) 

𝑘𝑟
𝑇 = 𝑘𝑑2𝛷𝑟

𝑇𝑂𝐸 = 𝑘𝑑2
𝛷𝐷𝐸2(1 − 𝑅𝐷𝐸2

𝐷𝐹2)

𝛷𝐼𝑆𝐶𝛷𝐼𝐶
𝑇 𝑂𝐸 . (S10.39) 

𝑘𝑛𝑟
𝑇 = 𝑘𝑑2𝛷𝑛𝑟

𝑇 𝑂𝐸
= 𝑘𝑑2

1 − 𝛷𝑃𝐿𝑄𝑌

𝛷𝐼𝑆𝐶𝛷𝐼𝐶
𝑇 𝑂𝐸

− 𝑘𝑑2𝛷𝑛𝑟
𝑆
1 + 𝛷𝐼𝑆𝐶𝛷𝐼𝐶

𝑇 𝑂𝐸
(𝛷𝑅𝐼𝐶

𝑇 𝑂𝐸
− 1)

𝛷𝐼𝑆𝐶𝛷𝐼𝐶
𝑇 𝑂𝐸

(1 − 𝛷𝐼𝑆𝐶)
. (S10.40) 

The value of 𝑅𝐷𝐸2
𝐷𝐹2 can be estimated by fitting the secondary delayed emission spectrum with the prompt fluorescence 

and phosphorescence spectra to provide the contribution of the phosphorescence to the secondary delayed emission. 

For the data collected at high temperature, 𝑅𝐷𝐸2
𝐷𝐹2 can be approximate as 1. 

    Because we obtained above rate equations by minimum assumptions. We can employ the constraint 𝛷𝑛𝑟
𝑆 = 0 or 

𝛷𝑛𝑟
𝑇 = 0 as limit conditions to provide the 𝛷𝐼𝑆𝐶  values of 𝛷𝐼𝑆𝐶

𝑛𝑟𝑆=0 and 𝛷𝐼𝑆𝐶
𝑛𝑟𝑇=0, respectively, as below. 

𝛷𝐼𝑆𝐶
𝑛𝑟𝑆=0 = 1 −𝛷𝑟

𝑆. (S10.41) 

𝛷𝐼𝑆𝐶
𝑛𝑟𝑇=0 =

𝛷𝑃𝐿𝑄𝑌 −𝛷𝑟
𝑆 − (1 − 𝛷𝑟

𝑆)𝛷𝑃ℎ𝑜𝑠

𝛷𝑃𝐿𝑄𝑌 −𝛷𝑃ℎ𝑜𝑠
≈
𝛷𝑃𝐿𝑄𝑌 − 𝛷𝑟

𝑆

𝛷𝑃𝐿𝑄𝑌
,     (∵ 𝑅𝐷𝐸2

𝐷𝐹2 ≈ 1). (S10.42) 

We can also calculate the average 𝑘𝐼𝑆𝐶 , 𝑘𝑅𝐼𝑆𝐶 , 𝑘𝐼𝐶
𝑇  and 𝑘𝑅𝐼𝐶

𝑇  values with the range between the limit conditions 

(𝛷𝑛𝑟
𝑆 = 0 or 𝛷𝑛𝑟

𝑇 = 0), when it is difficult to estimate 𝛷𝐼𝑆𝐶 . By using 𝛷𝐼𝑆𝐶
𝑛𝑟𝑆=0 and 𝛷𝐼𝑆𝐶

𝑛𝑟𝑇=0, 𝛷𝑅𝐼𝑆𝐶
𝑛𝑟𝑆=0 and 𝛷𝑅𝐼𝑆𝐶

𝑛𝑟𝑇=0 

are estimated from Eq. S10.36. The average rate constants for ISC and RISC can be obtained from Eqs. S8.1 and S8.2, 

respectively. The average rate constants for ISC and RISC can be obtained by Eqs. S10.43 and S10.44. 

𝑘𝐼𝐶
𝐴𝑣𝑔.

≡
(𝑘𝐼𝐶

𝑛𝑟𝑆=0 + 𝑘𝐼𝐶
𝑛𝑟𝑇=0)

2
±
(𝑘𝐼𝐶

𝑛𝑟𝑆=0 − 𝑘𝐼𝐶
𝑛𝑟𝑇=0)

2
. (S10.43) 

𝑘𝑅𝐼𝐶
𝐴𝑣𝑔.

≡
(𝑘𝑅𝐼𝐶

𝑛𝑟𝑇=0 + 𝑘𝑅𝐼𝐶
𝑛𝑟𝑆=0)

2
±
(𝑘𝑅𝐼𝐶

𝑛𝑟𝑇=0 − 𝑘𝑅𝐼𝐶
𝑛𝑟𝑆=0)

2
. (S10.44) 

    When 𝛷𝑃ℎ𝑜𝑠 is approximated as 0 (i.e., 𝑅𝐷𝐸2
𝐷𝐹2 ≈ 1) for the simplification, these average values can be estimated 

as followed. 

𝑘𝐼𝑆𝐶
𝐴𝑣𝑔.

=
𝑘𝑝[2𝛷𝑃𝐿𝑄𝑌 − 𝛷𝑃𝐹(1 + 𝛷𝑃𝐿𝑄𝑌) ± 𝛷𝑃𝐹(1 − 𝛷𝑃𝐿𝑄𝑌)]

2𝛷𝑃𝐿𝑄𝑌
. (S10.45) 

𝑘𝑅𝐼𝑆𝐶
𝐴𝑣𝑔.

=
𝑘𝑑1𝛷𝐷𝐹1[2𝛷𝑃𝐿𝑄𝑌 − 𝛷𝑃𝐹(1 + 𝛷𝑃𝐿𝑄𝑌) ± 𝛷𝑃𝐹(1 − 𝛷𝑃𝐿𝑄𝑌)]

2𝛷𝑟
𝑆(1 − 𝛷𝑃𝐹)(𝛷𝑃𝐿𝑄𝑌 − 𝛷𝑃𝐹)

. (S10.46) 

𝑘𝐼𝐶
𝐴𝑣𝑔.

= 𝑘𝑑1 −
𝑘𝑑1𝛷𝐷𝐹1[1 + 𝛷𝑃𝐿𝑄𝑌 − 2𝛷𝑃𝐹 ± (1 − 𝛷𝑃𝐿𝑄𝑌)]

2(1 − 𝛷𝑃𝐹)(𝛷𝑃𝐿𝑄𝑌 −𝛷𝑃𝐹)
. (S10.47) 

𝑘𝑅𝐼𝐶
𝐴𝑣𝑔.

=
𝑘𝑑2[2𝛷𝐷𝐹2(1 − 𝛷𝑃𝐹) + 𝛷𝐷𝐹1(1 − 𝛷𝑃𝐿𝑄𝑌)±𝛷𝐷𝐹1(1 − 𝛷𝑃𝐿𝑄𝑌)]

2𝛷𝐷𝐹1(1 − 𝛷𝑟
𝑆 − 𝛷𝐷𝐹1)

. (S10.48) 


