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Abstract 

The pandemic is here to stay- evident from the second wave that is severely affecting 

global population. Though vaccination is now available, the population size restricts its 

efficacy, especially in the third world countries. Therefore, to avoid a third wave, natural 

preventive therapeutics are the need of the hour. In this work the efficiency of phytochemicals 

from Withania somnifera to bind to a total of six SARS-CoV-2 targets have been shown.1 µs 

molecular dynamics simulations and essential dynamic analyses shed light on the changes 

induced by the phytochemicals and highlights their multipotent capabilities- 27-

Hydroxywithanolide B was able to bind to three targets. Relative free energy of binding for all 

the phytochemicals were calculated by MM/PBSA. Minimum energy structures were extracted 

from their free energy landscapes and were subjected to PSN-ENM-NMA and network 

centrality analysis. Results showed that the phytochemical binding changes the residue-residue 

interaction network. Network communities increase while hubs and links decrease. Metapath 

rewiring occurs through residues Phe456 in spike protein, Thr26 and Tyr118 in main protease, 

Val49 and Phe156 in NSP3, Leu98 in NSP9, Leu4345 in NSP10, Phe440 and Phe843 in 

NSP12. This work tries to understand the mechanism of possible inhibition by the 

phytochemicals to combat SARS-CoV-2 with their capability of targeting multiple proteins. 

The insight from this study can be of great relevance to explore the changes in network 

properties induced by reported potential inhibitors against SARS-CoV-2 targets.  
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Introduction 

 The average cost to develop a new drug is almost 2.6 billion U.S. dollars involving 6-

12 years (DiMasi et al., 2016), bulk of which goes into accessing drug safety. Acceleration of 

this process is required in the case of the COVID-19 pandemic which is caused by SARS-CoV-

2 and is associated with substantial morbidity and mortality rates. The cure to the infection is 

yet to reach global market. The resurgence in COVID-19 cases as part of the second wave has 

been observed globally. Additional concern is that neutralizing antibody mediated immunity 

related to SARS-CoV-2 is weak and starts to decrease after 2-3 months (Long et al., 2020). It 

has also been reported that asymptomatic or minimally symptomatic patients can spread the 

virus efficiently and it is difficult to clinically identify them without bulk testing (Long et al., 

2020). This has led to failure to contain the pandemic (Bai et al., 2020) and warrants the 

development of prophylactic measures to combat the viral infection by strengthening immunity 

against the virus. In this context, in silico research has progressed to identify potential chemical 

inhibitors and many such research report natural compounds for screening purposes to be 

effective against SARS-CoV-2 (Chen et al., 2020; Jin et al., 2020; Luo et al., 2020; Pang et al., 

2020; Parida et al., 2020; Xu et al., 2020; Yang et al., 2020; Zhang et al., 2020). The SARS-

CoV-2 virus primary transmission occurs due the priming of the heterotrimeric Spike protein 

S1 subunit with the ACE2 (angiotensin-converting enzyme 2) cellular receptor (Chen et al., 

2020; Tian et al., 2020). The main protease is another important target as it is vividly involved 

in viral replication process (Huynh et al., 2020; Joshi et al., 2020). The other important targets, 

partaking in viral replication, are 4 non-structural proteins (NSPs). The targeted NSPs were 

NSP3, NSP9, NSP10, and NSP12. NSP3 is papain-like proteinase, NSP9 is the RNA-binding 

protein as it is thought to mediate viral replication, NSP10 is a cofactor for the activation of 

the replicative enzyme in SARS-CoV, NSP16 is a 2′-O-ribose-methyltransferase in SARS-

CoV-2. NSP12 is the RNA-dependent RNA polymerase in SARS-CoV-2. Important sites 

in NSP12 that can be targeted by drugs are site D1 which is the active site of the polymerase 

and site D2 which is the NSP7 priming site. NSP7 and NSP8 are co-factors that stimulate 

polymerase activity (Subissi et al., 2014). 

Interestingly in our earlier, work by performing 100 ns classical molecular dynamics 

simulations of virtually screened phytocompounds, we realized that Withania somnifera 

compounds were with the lowest relative free energy of binding with these targets (Parida et 

al., 2020; Parida et al., 2021). Withanolides have been reported to possess diverse biological 

functions, for example anti-inflammatory (Kaileh et al., 2007), immunomodulatory (Malik et 
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al., 2007), anti-angiogenesis (Mohan et al., 2004), and anticancer activities (Yang et al., 2007). 

They have also been reported to reduce markers of inflammation (including IL-1 and TNF-α) 

in vivo (Howes & Houghton, 2009). A total 30 clinical studies documented the safety and 

efficacy of Withania somnifera (Tandon & Yadav., 2020). Further, withanolides from Withania 

somnifera, showed anti-viral activity for Human Papilloma Virus, influenza viruses, herpes 

simplex virus, sindbis virus, parainfuenze-3 virus, human cytomegalovirus, and dengue virus 

type-2 (Amoros et al., 1994; Cai et al., 2015; Kwon et al., 2020; Latheef et al., 2017; Lyu et 

al., 2005; Munagala et al., 2011; Serkedjieva et al., 1992; Zandi et al., 2011). Withanone from 

Withania somnifera was also observed to interact with main protease (Mpro) and spike protein 

of SARS-CoV-2 (Kumar et al., 2020; Tripathi et al., 2020; Balkrishna et al., 2021).  

 In this context and the knowledge that major conformational changes occur on 

timescales ranging from micro- seconds to seconds (Klepeis et al., 2009), through this work, 

we describe our efforts in establishing the interaction dynamics of important residues in SARS-

CoV-2 targets upon binding to these phytochemicals by performing 1 micro-second 

simulations. Essential dynamics analysis, free energy landscapes and residue interaction 

networks (PSN-ENM-NMA) were analysed in these complexes and compared to the free 

proteins for understanding the mechanism of inhibition induced by these phytochemicals. 

Residue interaction networks, graph theoretically, convert a protein’s residues to nodes and 

links (Di Paola et al., 2013). Based on this an impressive tool- Protein Structure Network (PSN) 

and Elastic Network Model-Normal Mode Analysis (ENM-NMA) based strategy was 

developed to study residue communication network in biomolecules (Felline et al., 2020). By 

this method differences in nodes, links, communication pathways, and metapaths were 

computed for the six SARS-CoV-2 targets in free and in complex with the phytochemicals. 

The differences obtained in residue network were correlated to the effect the phytochemicals 

can have in residue communication that define the correct functioning of the phytochemical 

free targets. As a protein’s function and stability, rely on complex network of inter-residue 

interactions, the all-atom weighted network centrality measures (degree, betweenness and 

interaction strength) were computed for each of the six targets (Chakrabarty & Parekh, 2016). 

The difference in the centrality measures defined the changes in residue interaction network 

brought about by the bound phytochemicals.  
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Methods 

All atom explicit solvent Molecular dynamics simulations  

 High Performance Computing resources of Amazon EC2 G4 instances were employed 

for carrying out computational work with the help of RONIN interface- Amazon web service 

research platform (https://ronin.cloud/) as an award granted by the COVID-19 High 

Performance Computing (HPC) Consortium for carrying out this work (https://covid19-hpc-

consortium.org/projects). 

A total of six SARS-CoV-2 and phytochemical docked complexes (main protease, 

spike protein, NSP3, NSP9, NSP10 and NSP12) were analysed by all atom molecular dynamics 

(MD) simulations. For ease of paper drafting and understanding, NSP3, NSP9, NSP10 and 

NSP12 will be referred as other targets in the following sections. The complexes were obtained 

from our previous work (Parida et al., 2021). All the simulations were carried out with Gromacs 

2020.2 software package (Lindahl et al., 2020) with AMBER99SB-ILDN force field for all 

atoms were chosen to run MD simulation. Complex charges were neutralized with sodium and 

chloride ions. Simulation was conducted at 300 K under a pressure of 1 bar. Each system was 

minimized with 5,000 steps by steepest descent algorithm. Electrostatic interactions were 

calculated with Particle-Mesh-Ewald summation (PME) (Darden et al., 1993). The systems 

were equilibrated by 1 ns position restraint simulations of 1000 kJ mol−1 nm−2 in the NVT and 

NPT ensembles. Equilibrated systems were used to simulate a 1µs no restraint production run.  

 

Trajectory analysis 

 Post-MD analyses included root mean square deviation (RMSD), root mean square 

fluctuations (RMSF) and the radius of gyration (Rg). RMSD and RMSF stabilities are essential 

to obtain good binding affinities (Doniach & Eastman, 1999; Chen & Shen, 2009; Dubey et 

al., 2013). Further, Principal component (PCA) and dynamic cross correlation (DCCM) 

analysis were performed. Essential dynamics allows the understanding of dominant and 

collective modes from the overall dynamics of the MD trajectory. To perform PCA, covariance 

matrices were constructed by calculating the eigenvectors and eigenvalues and their projection 

along with the first two principal components (PCs) were analysed. Principal component 

analysis (PCA) of the Cα Cartesian coordinates reflects overall difference in motions in the 

protein on binding ligands in comparison to the free-protein (Martens & Naes 1992; Islam et 

al., 2019). Like PCA, correlation in the protein residue atomic motions can be mapped with the 

help of Dynamic Cross Correlation Matrix (McCammon, 1984; Hünenberger et al., 1995). PCA 

and DCCM calculations were performed using Rstudio (RStudio Team, 2020) and Bio3d 
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(Grant et al., 2006). Additionally, Molecular Mechanics - Poisson Boltzmann Surface Area 

(MM-PBSA) was applied on snapshots obtained from MD trajectory to estimate the relative 

binding free energy using the GROMACS tool g_mmpbsa (Baker et al., 2001; Kumari et al., 

2014).  

 

Free Energy Landscapes and residue interaction network analysis 

The Free Energy landscape (FEL) was constructed from PC1 and PC2 projections using 

g_sham tool in GROMACS MD package. The global minimum conformations were extracted 

from the FEL bins. These structures acted as representatives for atom pair weighted network 

centrality measures, which was performed using the NAPS webserver (Chakrabarty & Parekh, 

2016). High centrality measures correlate to a node’s capacity to effect protein function. This 

analysis was performed to understand if the centrality measures of the essential residues in the 

SARS-CoV-2 targets change upon binding to the phytochemical inhibitors. This will affect the 

communication network required for the proper functioning of the proteins. The centrality 

measures were normalized between 0-1, by min-max scaling, to perform comparative analysis 

between the phytochemical free and bound form- minimum energy structures. The formula 

used has been represented below. In Eq 1, x represents the centrality measure; min(x) is the 

minimum value and max(x) is the maximum value. 

 

    𝑆𝑐𝑎𝑙𝑒 (0 − 1) =
𝑥 − (min(𝑥))

(max(𝑥) − min(𝑥))
                             Eq1 

 

The residues with values close to 1 were considered important for protein function and the 

difference in the centrality measures were correlated to the effect of phytochemical binding. 

The various centrality measures analysed in this work were: 

Degree centrality: This represents a highly connected amino acid residue (node) in a protein 

structure. High degree node is important for structural stability and information flow in a 

protein structure (Amitai et al., 2004; del Sol et al., 2006). 

Betweenness centrality: This indicates how central an edge between two residues is to the 

various communication pathways in a network (Amitai et al. 2004). A node with high 

betweenness, indicates that it is central to mediate interactions with other nodes. Thus, it may 

be of functional importance (Hu et al., 2014).  
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Interaction strength: Number of non-bonded interactions between two residues is captured 

in interaction strength values for an amino acid residue. Higher value is representative of higher 

strength (Chakrabarty & Parekh, 2016). 

 

Structure Network (PSN) and Elastic Network Model-Normal Mode Analysis (ENM-NMA) 

webPSN v2.0 was used to build protein structure networks for the six SARS-CoV-2 

free protein targets and in complex with the phytochemicals (Felline et al., 2020). The tool uses 

pairwise interaction energies to build the networks and cross-correlation of atomic motions is 

supplied by ENM-NM (Felline et al., 2020). The structures obtained from minimum energy 

bins in their FEL were used to construct the network. The network properties analysed were 

nodes, links, hubs, communities, shortest and longest paths, and global communication 

metapath. 

Nodes and Links: The amino acid residues in the protein form the nodes of the network graph 

and they are connected by edges based on the non-covalent interaction strength between 

residues and highly interconnected nodes form links (Felline et al., 2020). 

Hubs: Hubs represent highly connected residues (4 or more connections) in the protein 

structure network. The hubs are involved in maintaining structural stability and information 

flow in the protein structure network (Amitai et al., 2004; del Sol et al., 2006).  

Community: They are subgraphs in a network where residues are highly connected, with no 

connection with residues outside the community (Palla et al., 2005, Felline et al., 2020). 

Shortest path: Shortest communication paths are searched by Dijkstra’s algorithm (Felline et 

al., 2020). They represent allosteric signalling among the residues belonging to the shortest 

path (Ghosh & Vishveshwara, 2007).  

Metapath: Represents a global picture of the structural wiring due to residue communication 

(Felline et al., 2020).  

 

Results and Discussions 

MD simulation and Residue Interaction Network (RIN) analysis of Spike protein and its 

complex with 2,3-Dihydrowithaferin A 

The spike protein of SARS-CoV-2 docks human angiotensin-converting enzyme 2 

(ACE2), mediating viral cell entry (Huang et al., 2020). The S1 subunit and the S2 subunit are 

responsible for viral fusion. The receptor binding domain lies in the S1 subunit. The residues 

interacting with human ACE2 receptor are residues 436-506 (PDB ID: 6lzg) (Lan et al. 2020). 
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Leu455, Phe456, Tyr473, Ala475, and Tyr489 form hydrophobic contacts and residues 498 to 

505 form hydrogen bonding network with ACE2 receptor (Wang et al., 2020). The compound 

2,3-Dihydrowithaferin A was found to dock to the RBD region. This complex was subjected 

to MD simulation and protein structure network and centrality analysis.  

 

Trajectory analysis and study of essential dynamics 

First, Cα atoms root mean-square deviations (RMSD) of from the initial conformer 

were computed to find the overall stability and convergence of simulations. All the trajectories 

were stable as Cα RMSD were observed to converge over the 1µs trajectories (Figure 1A). 

Secondly, the Cα RMSF of the complex was computed to be higher than the free protein 

(Figure 1 B). In PCA the phytochemical complex (SP) was observed to explore much more 

conformational space than the free (SA) (Figure 1D, E). Analysis of difference in residue 

fluctuation in PC1 for SP – SA, showed that upon ligand binding fluctuations increased in the 

RBD (ACE2 receptor interacting region) of the spike protein (Figure 1F). DCCM analysis 

showed that both correlation and anti-correlation increased upon phytochemical binding at the 

RBD region (Figure 1E). Thus, it can be said that phytochemical binding results in higher 

fluctuations in the RBD of the spike protein. 
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Figure 1: Trajectory and PSN-ENM-NMA analysis of spike protein in free form (SA) and in 

complex with the phytochemical (SP). A) Cα RMSD, B) Cα RMSF (Red: SP, Black SA). C) 

Superimposed minimum energy structure obtained from FEL computed from PC1 and PC2 

eigenvectors. D) Community network of SA (green): 6 communities are observed. PCA, 

DCCM and FEL plots of SA are represented inside the green box. E) Community network of 

SP (cyan): 7 communities are observed. PCA, DCCM and FEL plots of SA are represented 

inside the cyan box. F) Difference in residue fluctuation over PC1 and PC2 space between SP-

SA. Positive values represent increased fluctuations in SP. G) Metapath of SP. Relative 

recurrence average interaction strength of their links: Black<Blue<Green<Yellow<Red. The 

ligand and RBD is marked in Figure. The residues in the metapath of phytochemical have also 

been labelled. 

 

Free energy landscapes, network centrality analysis, Structure Network (PSN) and Elastic 

Network Model-Normal Mode Analysis (ENM-NMA) 

Analysis of the FEL contour maps, constructed using the projections of first (PC1) and 

second (PC2) eigenvectors, showed that SA and SP formed different energy clusters (Figure 

1D, E). The conformations found in the blue area are more stable than the red area. FEL 

revealed ΔG value 0 to 17 and 17.6 kJ/mol for SA and SP respectively. The global minimum 

energy conformations were obtained from FEL bins and superimposed (Figure 1 C). These 

conformations were then subjected to network centrality analysis, Structure Network (PSN) 

and Elastic Network Model-Normal Mode Analysis (ENM-NMA). Figure 1 D, E shows the 

residue community formed in the SA (green) and SP (cyan). The number of communities in 

spike protein increased upon phytochemical binding (SA: 6 communities, SP: 7 communities). 

Increase in community can imply difference in interacting pathways due to phytochemical 

binding. Similar trends of ligand induced changes were previously reported by Bhattacharyya 

& Vishveshwara (2010). The community architecture was also observed to change upon 

phytochemical binding -evident from the differences in the number of nodes, hubs and links 

that define a community (Figure 1D, E, Supplementary Table 1, 2). Increase in number of 

communities upon ligand binding have been reported earlier (Ghosh & Vishveshwara, 2008). 

Metapath analysis upon ligand binding showed that the ligand formed allosteric 

communications, with high recurrence (90-100%), with the RBD binding region (Figure 1G).  

A total of 72 interactions were lost and 92 new interactions formed in SP. The total number of 

shared interactions were 164. Among the lost interactions, the loss of Asn334-Val362 was with 

the maximum paths force (interaction strength with Imin cutoff 7.27 for SA and 6.29 for SP). 

Imin represents the lowest interaction strength needed to link two nodes (Felline et al. 2020). 

Among the shared interactions, the reduction in path force was remarkable for Val341-Val511. 

Among the new interactions formed the interaction with maximum path force was for Ile434-
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Tyr369. Phe456 was with the maximum paths force with the phytochemical followed by 

Tyr473 (Supplementary Data 2, Table 1).  

Further analysis of pathway recurrence was performed. Recurrence value represents the 

relative recurrence of nodes and links in the path pool (Felline et al., 2020). The high recurrence 

value obtained for the phytochemical implies that phytochemical binding can affect the 

interactions required in the RBD region, to bind to human ACE2 receptor. It can be said here 

that Phe486, Tyr505, Asn501, Tyr489, Gln493, Leu455 were reported to form strong 

interactions with the ACE2 receptor (Behloul et al., 2021). Therefore, disruption of allosteric 

interactions of these residues upon phytochemical binding can result in its inhibition to bind to 

ACE2 receptor. From PSN-ENM-NMA analysis it was observed that the number of intra-

residue interactions for Phe486, Asn501, Tyr505 increases in phytochemical complex 

compared to the free protein. It was also observed that residue Tyr489 formed 10 times stronger 

interaction with Thr500 in SA, this interaction was absent in SP. However, in the SP, Tyr498 

formed stronger interactions with residues Gly446, Gly447 and Asn501. Phe456 and Tyr489 

also formed interactions with phytochemical. Tyr505-Arg403 interaction was stronger in SA 

whereasTyr505-Asn501 was stronger in SP. Tyr449 and Asn450 interaction formed in SP 

whereas its interaction with Gly447 and Gly496, observed in SA was absent in the SP. This 

shows disruption of long-range interactions, required for binding of the spike protein with the 

ACE2 receptor, upon phytochemical binding. Interaction strength of residue Gln493 with 

Leu455 increases in SP. Thus, disruption of its allosteric communication network upon 

phytochemical binding can result in inhibition of its binding to the ACE2 receptor.  

Conclusively it can be said that residue interaction path, nodes, communities, hubs, and 

long-range interactions, especially in the RBD region, changes upon phytochemical binding, 

this may result in interruption of the spike protein interaction with the ACE2 receptor. 

 

MD simulation and Residue Interaction Network (RIN) analysis of main protease and its 

complex with Withanolide R 

This main protease is required for proteolytic processing of polyproteins (Estrada, 

2020; Morse et al., 2020). The 3D structure of main protease can be divided into Domain I 

(residues 8‐101), domain II (residues 102–184) and domain III (residues 201‐306) and the 

active site is in between domain I and II (His41‐Cys145 as catalytic dyad, Cys145, Gly143, 

Ser144, His163, Glu166 and Gln189). A loop (residues 185–200) connects domain II and 

domain III (Wu et al., 2020). The free form and the docked complex of Withanolide R with 

main protease was subjected to MD simulation and protein structure network analysis. 
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Trajectory analysis and study of essential dynamics 

Initially root mean-square deviation (RMSD) Cα atoms from the main protease free 

form and in complex with Withanolide R (PA and PP respectively) from the initial conformer 

were computed- to find the overall stability and convergence of simulations. All the trajectories 

were stable as Cα RMSD were observed to converge over the 1µs trajectories (Figure 2A). The 

Cα RMSD of PP was found to be lower than PA (Figure 2A). This indicates that the complex 

of main protease with the phytochemical was more stable than the free protein.  Analysis of 

Cα RMSF showed that PP had lower residue fluctuations than PA (Figure 2 B). Analysis of 

the 2D projection of PC1 and PC2 showed that PA explored much more conformational space 

than the PP (Figure 2D, E). Analysis of difference in residue fluctuation in PC1 and PC2 for 

PP – PA, showed that upon ligand binding fluctuations increased in PC1 but decrease in 

fluctuations were observed in PC2 especially around Met165 (Figure 2F). DCCM analysis 

showed that both correlation and anti-correlation increased upon phytochemical binding 

(Figure 2E). Thus, it can be said that phytochemical binding results in lower fluctuations in the 

main protease and results in higher conformational stability. 

 

 

 

Figure 2: Trajectory and PSN-ENM-NMA analysis of main protease (NSP5) in free form (PA) 

and in complex with the phytochemical (PP). A) Cα RMSD, B) Cα RMSF (Red: PP, Black 

PA). C) Superimposed minimum energy structure obtained from FEL computed from PC1 and 

PC2 eigenvectors. D) Community network of PA (green): 5 communities are observed. PCA, 
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DCCM and FEL plots of PA are represented inside the green box. E) Community network of 

PP (cyan): 8 communities are observed. PCA, DCCM and FEL plots of PA are represented 

inside the cyan box. F) Difference in residue fluctuation over PC1 and PC2 space between PP-

PA. Positive values represent increased fluctuations in PP. G) Metapath of PP. Relative 

recurrence average interaction strength of their links: Black<Blue<Green<Yellow<Red.The 

ligand is marked in Figure. Two residues in the active site have been labelled. 

 

Free energy landscapes, Structure Network (PSN) and Elastic Network Model-Normal 

Mode Analysis (ENM-NMA) 

Analysis of the FEL contour maps, constructed using 2D projections of PC1 and PC2 

eigenvectors, showed that PA and PP formed different energy clusters (Figure 2D, E). The 

conformations found in the blue area are more stable than the red area. FEL revealed ΔG value 

0 to 16.5 and 18.2 kJ/mol for PA and PP respectively. The global minimum energy 

conformations were obtained from FEL bins and superimposed (Figure 2 C).  

The global energy minimum conformation obtained from FEL bin were subjected to 

network centrality analysis, protein structure network (PSN) and elastic network model-normal 

mode analysis (ENM-NMA). Figure 2 D, E shows the residue community formed in the PA 

(green) and PP (cyan). The number of communities in main protease increased upon 

phytochemical binding (PA: 5 communities, PP: 8 communities). Most of the community 

changes occur in domain I, II and the loop that connects domain II and III. Increase in 

community can imply functional communication among residues get rewired, due to 

phytochemical binding. The community architecture was rewired as evident from the changes 

in the number of nodes, hubs and links that define a community (Figure 2D, E, Supplementary 

Table 3, 4). A total of 144 interactions were lost and 135 new interactions formed upon 

phytochemical binding. The total number of shared interactions were 245 (Supplementary 

material 2 Table 2). 

Metapath analysis upon ligand binding showed that the ligand formed allosteric 

communication with high recurrence (90-100%), with the catalytic site (Figure 1G). The high 

recurrence obtained implies that phytochemical binding can affect the interactions required in 

the catalytic region. This metapath of Withanolide R involves Thr26, Leu27, His41, Val42, 

Cys145, Met165, Leu167, Arg131, Asn133, Thr135 and Asp197. The interaction strength of 

Thr26 with the phytochemical was maximum followed by Tyr118. Most of these residues were 

also found to be important in binding to existing promising and potential molecules (Singh et 

al., 2020). Leu67-Arg76 interaction formed with the highest paths force in PP. The largest 

interaction strength difference was obtained for Phe66-Leu89 in domain I, Leu268-Val204 in 

domain 3, and the interaction with high paths force lost in PP was for Leu242-Val247 
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(Supplementary material 2 Table 2). Therefore, it can be believed that change in PA’s metapath 

allosteric communications, brought about by these residues, can result in inhibition of the main 

protease. 

 

MD simulation and Residue Interaction Network (RIN) analysis of the other targets and 

their complex with phytochemicals 

The other targets referred here represents NSP3, NSP9, NSP10 and NSP12. NSP3 is a 

papain-like proteinase and component of the replication–transcription complexes in SARS-

CoV-2 (Khan et al., 2021a). The adenosine-5-diphohoribose binding site is where the 27-

Hydroxywithanolide B was docked (Parida et al., 2021). NSP9 is RNA-binding protein and 

mediates viral replication (Yoshimoto, 2020). The NSP9 dimerization interface, docked with 

27-Hydroxywithanolide B, was used in this work for further analysis (Parida et al., 2021). 

NSP10 is the cofactor to NSP16 (2′-O-RNA methyltransferase) (Krafcikova et al., 2020). 

NSP10-NSP16 interface is where the 27-Hydroxywithanolide B bound to the structure (Parida 

et al., 2021). NSP12 is the RNA dependent RNA polymerase is involved in viral replication 

(Neogi et al., 2020). Two sited D1: the catalytic site and D2: NSP7 binding interface, docked 

with 27-Hydroxywithanolide B and Withanolide R respectively, were used in this study (Parida 

et al., 2021). 

 

Trajectory analysis of the other targets  

The Cα RMSD were found to be stable for the other targets (Supplementary Figure 8-

10A). In the case of NSP3 and NSP10, the Cα RMSF was similar for the free proteins and the 

complexes with the phytochemicals. For NSP9, the Cα RMSF decreased for the phytochemical 

complex at the C-terminal. For NSP12 the fluctuations decreased at the ligand binding sites. 

Analysis of essential dynamics showed that phytochemical binding modulates local 

protein motions. PCA analysis of these targets (Supplementary Figure 8-9 D, E, 10 D, E, F) 

showed that N3P explored lesser conformational space compared to N3A, N9P explored lesser 

conformational space than N9A, N10P explored more conformational space compared to 

N10A, and N12D1 explored lesser conformational space compared to N12D2 and N12A 

(Supplementary Figure 8-9 D, E, 10 D, E, F).  

Further, to analysis residue contribution to PC1 and PC2, their RMSF were calculated. 

Loop regions contributed to most variations. It was observed that in PC1, residue fluctuations 

increased whereas in PC2 space, residue fluctuations decreased in NSP3 (Supplementary 

https://www.sciencedirect.com/science/article/pii/S2667031320300026#bib0051
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Figure 8F). Both PC1 and PC2 residue fluctuations decreased for NSP9 at the phytochemical 

binding site (Supplementary Figure 9F). For NSP10, PC2 residue fluctuations decreased at the 

ligand binding site (Supplementary Figure 10F). For NSP12, both PC1 and PC2 fluctuation 

decreased at the phytochemical binding site (Supplementary Figure 11G). The decrease in 

residue fluctuations shows that the phytochemicals restricted residue movements. DCCM plots 

reveal that anti-correlated motions increased for N3P at ligand binding site, correlated motions 

increased for N9P, N10P, N12D1 and N12D2. Increase in anticorrelated motions in may arise 

due to ligand binding causing structural perturbation (Henzler-Wildman & Kern, 2007). 

Enhancement in correlated motions shows that the phytochemical binding created a more 

structurally stable environment in the targets.  

 

Free energy landscapes, Structure Network (PSN) and Elastic Network Model-Normal 

Mode Analysis (ENM-NMA) of the other targets 

Analysis of free energy landscapes showed that NSP3 had two low energy bins in the 

free state, while one at the phytochemical bound state (Supplementary Figure 8 D, E). Free 

NSP9 had three low energy bins, while the bound state had two such bins (Supplementary 

Figure 9 D, E). Free NSP10, free and bound form had two minimum energy bins 

(Supplementary Figure 10 D, E). The free form had much more intermediate states compared 

to the bound form. NSP12 phytochemical-bound forms explored lesser low energy 

intermediates compared to the free form (Supplementary Figure 11 D, E, F). FEL revealed ΔG 

value 0 to 15 and 21.4 kJ/mol for N3A and N3P respectively. ΔG value of 0 to 15.3 and 16.5 

were obtained for N3A and N3P respectively. Similarly, ΔG value 0 to 17.8 and 17.2 were 

obtained for N10A and N10P respectively. ΔG value 0 to 15.6, 16 and 17.2 were obtained for 

N12A, N12D1 and N12D2 respectively. 

Minimum energy conformers were extracted from these low energy bins and subjected 

to PSN-ENM-NMA and network centrality analysis. The number of communities increased 

for N3P and N12D2, no change for N9P and decreased for N10P and N12D1 (Supplementary 

Figure 8-10 D, E, 11D, E, F).  The number of interactions lost, shared, and formed have been 

presented in Table 2 (Supplementary Data 2). The residues with highest interaction strength 

with the ligand have also been presented in Table 2. The strongest interacting residues that 

were absent in the phytochemical-bound form, also have been presented in Table 1. 
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Table 1: Linked interactions in the other targets 

Target Unique 

links 

free 

form 

Shared 

links 

Unique links 

phytochemical-

bound form 

Residue with 

highest path 

force with 

phytochemical 

Linked residues 

with highest force 

in free form 

NSP3 60 133 47 Val49, Phe156,  Leu88-Val24 

NSP9 58 83 47 Leu99, Val8 Arg40-Tyr33 

NSP10 56 72 44 Leu4345, 

Gln4306 

Leu4328-Tyr4280 

N12D1 466 570 478 Phe440, Phe437 Leu498-Val495 

N12D2 516 520 468 Phe843 Leu498-Val495 

 

Engagement of functionally important residues with the phytochemicals ensures that 

these phytochemicals can be developed into good inhibitors. In NSP3, residues with highest 

path force with phytochemical have functional importance. It was reported that V49 hydrogen 

bonds with the α-phosphate and Phe156 also interacts with ADP ribose (Alhammad et al., 2021; 

Brosey et al., 2021). Similarly, Val8 and Leu99 are involve in dimerization of NSP9 and 

interacts with Ala108 and Asn97 (PDBID: 6w4b). Interaction strength of residues in the 

‘G101XXXG105’ motif was also observed to decrease in the phytochemical bound form 

(Supplementary Data2). Disruption of this motif in SARS-CoV-2 has been reported to reduce 

RNA binding (Litter et al., 2020). Leu4345 and Gln4306 were reported to form van der Waals 

interaction with reported plausible inhibitors (Khan et al., 2021b). Phe440, Phe437 and Phe843 

were reported to interact with possible inhibitors against NSP12 (Rehman et al., 2020). Specific 

functional roles of these residues are not clear. 

The metapaths of the phytochemicals with the other targets have been illustrated in 

Supplementary Figure 8-10D, E, 11 D, E, F. The high recurrence metapath with the 

phytochemical involves residues in NSP3: Val155, Leu126, Leu153, Val151, Val147, Phe166, 

and Leu122, in NSP9: Asn99 and Leu43, in NSP10: Leu4328 and Ile4352, in NSP12 the 

residues in the binding pocket were involve in the metapath. 
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Analysis of global network properties of the six targets from SARS-CoV-2 

The purpose of this analysis was to see how the number of hubs, linked nodes, shortest 

paths, links, average path length and length of the longest path, in global network and metapath, 

changes upon phytochemical binding. Rich literature relating to changes in network properties 

upon inhibitor binding is unavailable. One study by Fanelli et al. shows the reduction in number 

of hubs and links upon antagonist binding (Bhattacharyya & Vishveshwara, 2010; Fanelli et 

al., 2010;). The global pathway differences showed varying trends among the different SARS-

CoV-2 targets. The details of the global network properties can be found at Supplementary 

Table 1- 13. Number of linked nodes showed slight increase or no change for all the targets 

(Figure 3). The number of links and hubs decreased for all the targets except for spike protein 

and NSP12D1. The number links in metapath showed decrease for main protease, NSP10, 

NSP12D1 and NSP12D2. The average path length showed decrease in spike, NSP3, NSP10, 

N12D1 and N12D2. The length of the longest path showed decrease in spike, NSP10 and 

N12D1. The number of shortest paths showed decrease in all the targets except for the main 

protease. The increase in number of shortest paths in main protease can be correlated to 

increase in average path length of its network (Supplementary Table 3, 4). All these suggests 

phytochemical induced- residue interaction rewiring in the SARS-CoV-2 targets. 

 

 

Figure 3: Difference in global network properties between free-protein and complexes with 

phytochemical among the SARS-CoV-2 targets. 
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The global metapath differences have been illustrated in Supplementary Figure 1-7. 

The rewiring of the pathway communication upon phytochemical binding, among amino acid 

residues is clear. In the case of spike protein, the RBD region undergoes rewiring. For example, 

network connections of Phe456 and Ile402 in SA are altered (Supplementary Figure 1). In the 

case of main protease complete rewiring in the metapath of the active site, domains II and III 

were observed (Supplementary Figure 2). Similarly, network rewiring upon phytochemical 

binding was observed for the other targets (Supplementary Figure 3-7). In the case of 

NSP3rewiring was observed at the Adenosine-5-Diphosphoribose binding site; in NSP9 at the 

dimerization interface; in NSP10 at NSP10-NSP16 binding interface; in NSP12D1 at the RNA 

binding site and in NSP12D2 at the NSP7-NSP12 interface. Conclusively it can be said here 

that change in residue interaction and rewiring of residue network related to functionally 

important residues can cause SARS-CoV-2 target inhibition.  

 

Network centrality analysis for the six targets from SARS-CoV-2 

For ease of data integration only the network centrality measure differences for spike 

and the main protease have been illustrated in Figure 4. The centrality differences of the other 

targets have been illustrated in Supplementary Figure 11-14. In the case of spike protein, the 

difference in network centrality measure between SP-SA (Figure 4) showed that the degree 

centrality and residue interaction strength decreased upon phytochemical binding whereas the 

betweenness centrality increased for the residues interacting with the phytochemical and in the 

N-terminal of the RBD region. Significant decrease in interaction strength were observed for 

residues Leu455-Lys458 and Tyr473. Lys458 and Tyr473 were found to interact with the 

phytochemical in SP metapath. Significant increase in interaction strength were observed for 

residues Lys386 with Thr385 in the SP. Betweenness centrality increased for residues Tyr351-

Trp353, Phe490, Leu492 and Gln493 in SP. These residues were observed to have allosteric 

communications upon ligand binding as shown in the difference in their global metapath 

(Supplementary Figure 1) and the filtered metapath for the phytochemical (Figure 1D, E). This 

also corroborates with the results obtained by PCA and DCCM analysis (Figure 1D, E). 
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Figure 4: Network centrality analysis of SARS-CoV-2 spike and main protease. A) difference 

in degree and betweenness centrality between SP and SA (positive values indicate increase in 

centrality measure for SP). B) Difference in interaction strength in the atom pair network 

between SP and SA (positive values indicate increase in centrality measure for SP). C) 

Difference in degree and betweenness centrality between PP and PA (positive values indicate 

increase in centrality measure for PP). D) Difference in interaction strength in the atom pair 

network between PP and PA (positive values indicate increase in centrality measure for PP).  

 

In the case of main protease in complex with phytochemical, degree centrality slightly 

increased for most of the residues. However, the betweenness centrality was observed to have 

a decreasing trend (Figure 4 C), especially in the active site region and the loop that connects 

domain II and domain III of the main protease. Most of the residues also showed increase in 

interaction strength upon phytochemical binding (Figure 4 D). The interaction strength 

significantly decreased for Leu141, Asn142, Glu166, 172, 188in the active site region, in the 

loop that connects domain II to III, and residues 263, 298 in domain III.  

 

Free energy of binding of phytochemicals with SARS-CoV-2 targets as computed by 

MM/PBSA 

The phytochemicals from Withania somnifera were with the lowest relative binding 

free energy with the 6 SARS-CoV-2 target sites (Table 2). 27-Hydroxywithanolide B had the 

lowest relative binding free energy with 3 targets (NSP9, NSP10 and NSP12D1). Withanolide 

R had the lowest relative binding free energy with two targets (Main protease and NSP12D2).  

The best inhibitors for spike and NSP 3 were found to be 2,3-Dihydrowithaferin A and 27-

Deoxy-14-hydroxywithaferin A. This result interestingly reflects the multi-site binding 

capability of the phytochemicals. Multi-site binding capacity of natural compounds have been 
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reported by Efferth & Koch (2011), this can increase therapeutic efficiency as SARS-CoV-2 

has been reported to have high mutational rates. 

 

Table 2: Relative lowest free binding energy calculated by MM/PBSA 
Inhibitor 

(PubChem CID) 

van der 

Waal 

energy 

(kJ/Mol)    

Electrostatic 

energy     

(kJ/Mol)    

Polar 

solvation 

energy   

(kJ/Mol)    

 SASA 

energy  

(kJ/Mol)    

Relative 

Binding 

Free 

energy  

(kJ/Mol)          

Residue 

contribution 

Binding 

Free energy  

(kJ/Mol)          

Spike (PDB ID: 6lzg)  

2,3-Dihydrowithaferin A 

(15411208)  

-219.314   

+/-   

40.940 

-5.563   +/-    

4.961 

80.847   

+/-   

18.219 

-20.822   

+/-    

3.436 

-164.852   

+/-   

35.403 

Phe342 

Phe338 

Leu368 

Trp436 

                                                    Main Protease (PDB ID: 6lu7) 

Withanolide R 

(101281364)  

-217.460 

+/- 22.154 

-5.388   +/-    

2.422 

95.300   

+/-   

10.631 

-19.142   

+/-    

1.304 

-146.690   

+/-   

18.439 

MET-165 

LEU-27 

CYS-145 

NSP3 (PDB ID: 6w02)  

27-Deoxy-14-

hydroxywithaferin A 

(23266158)  

-182.278   

+/-   

22.493 

-24.154   +/-    

9.225 

88.830   

+/-   

16.848 

-18.540   

+/-    

1.882 

-136.142   

+/-   

18.419 

ILE-131 

PHE-132 

NSP9 (PDB ID: 6w4b)  

27-Hydroxywithanolide 

B (44576309)  

-126.541   

+/-   

18.008 

-4.818   +/-    

3.464 

41.390   

+/-   

13.171 

-12.998   

+/-    

1.474 

-102.966   

+/-   

18.012 

MET-102 

LEU-98 

NSP10 (PDB ID: 6w4h)  

27-Hydroxywithanolide 

B (44576309)  

-220.693   

+/-   

29.625 

-7.138   +/-    

5.653 

106.788   

+/-   

18.209 

-21.296   

+/-    

1.873 

-142.339   

+/-   

27.485 

ILE-4308 

LEU-4345 

NSP12D1 (PDB ID: 6m71)  

27-Hydroxywithanolide 

B (44576309)  

-129.997   

+/-   

14.826 

-2.992   +/-    

5.193 

44.279   

+/-   

17.873 

-12.794   

+/-    

1.516 

-101.503   

+/-   

20.820 

PHE-440 

PHE-415 

NSP12D2 (PDB ID: 6m71)  

Withanolide R 

(101281364)  

-213.228   

+/-   

17.937 

-11.073   +/-    

3.831 

97.941   

+/-   

15.457 

-20.048   

+/-    

1.136 

-146.409   

+/-   

19.994 

PHE-843 

ALA-840 

*The standard error (Std Error) was calculated after 500 step bootstrap analysis. The 

purchasable chemical compounds have been marked with # 

 

Residue contribution towards binding free energy led to the observation that the 

catalytic residue Cys145, Leu 27 (domain I) and Met165 (domain II) of main protease were 

interacting with Withanolide R with the lowest binding free energy. Leu27 and Met165 has 

been reported to be important in completing the active site by forming interdomain nonpolar 

interactions (Suárez & Díaz, 2020). These residues were also reported multiple times to interact 

with various published inhibitors (Singh et al., 2020; Suárez & Díaz, 2020; Mengist et al., 
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2021). The residues with lowest binding energy in spike protein were Phe342, Phe338 and 

Trp436. These residues were observed to interact with various inhibitors identified till date 

(Kadioglu et al., 2021). In NSP3 the residues reported to interact with (Ile131, Phe132) were 

with the lowest binding free energy. In NSP9 the dimer interface residues Met102 and Leu98in 

helix 1 were with the lowest binding free energy with 27-Hydroxywithanolide B. The residues 

with lowest binding free energy in NSP10 were among the residues known to stimulate methyl 

transferase activity of NSP 16 (Asn4293-Tyr4349). In NSP 12 D1 (catalytic pocket) and D2 

(NSP12-NSP7) binding interface the residues with highest contribution towards relative 

binding free energy were Phe415, Phe440 and Ala840, Phe843, respectively. 

 

Conclusions 

In this work phytochemicals from Withania somnifera were analysed to be potential 

inhibitors of a total of six protein targets from SARS-CoV-2. This work shows the application 

of 1µs all atom MD simulations, protein residue interaction network and network centrality 

measures to analyse changes in six SARS-CoV-2 targets upon phytochemical binding. MD 

simulations trajectory analyses showed that the simulations converged, and the systems were 

stable with the bound phytochemicals with low relative binding free energies calculated by 

MM/PBSA. From essential dynamics analysis (PCA and DCCM) it could be inferred that 

conformations dominant in the simulations differed in free and phytochemical-bound SARS-

CoV-2 targets. Protein structure network analysis revealed changes in community architecture 

by different number of nodes, hubs and links. Decrease in the number of hubs and links, either 

in the global pathway or filtered metapath for the phytochemicals, were also observed. 

Metapath analysis revealed the residues important in allosteric communication with the 

phytochemicals. Global metapath differences showed that the metapath of free and 

phytochemical-bound form differed considerably in their network communications and 

resulted in global network rewiring. The perturbed residue-residue interaction path of 

functionally important residues due to phytochemical binding were also identified. Network 

centrality analysis showed that overall degree and betweenness centrality which is related to 

importance of a residue in a protein network, decreased upon phytochemical binding. Network 

strength of residues were also observed to alter. Moreover, these phytochemicals were 

observed to have multipotency- a character required to combat infectious diseases like COVID-

19 as its protein targets are prone to high mutagenesis rates. Conclusively it can be said that 
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phytochemicals from Withania somnifera can be developed into potential SARS-CoV-2 

inhibitors.  
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