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In this work we apply a quantum chemical framework, recently designed in our labo-

ratories, to rationalize the low-energy electronic spectrum and the magnetic properties of

an homo-valent trinuclear [Mn(IV)
3 O4]4+ model of the oxygen-evolving center in photosystem

II. The method is based on chemically motivated molecular orbital unitary transforma-

tions, and the optimization of spin-adapted many-body wave functions, both for ground-

and excited-states, in the transformed MO basis. In this basis, the configuration interaction

Hamiltonian matrix of exchange-coupled multi-center clusters is extremely sparse and char-

acterized by a unique block diagonal structure. This property leads to highly compressed

wave functions (oligo- or single-reference) and crucially enables state-specific optimizations.

The reduced multi-reference character of the wave function greatly simplifies the interpreta-

tion of the ground- and excited-state electronic structures, and provides a route for the direct

rationalization of magnetic interactions in these compounds, often considered a challenge in

polynuclear transition-metal chemistry.
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In this study, strong electron correlation effects have explicitly been described by conven-

tional and stochastic multiconfigurational methodologies, while dynamic correlation effects

have been accounted for by multiconfigurational second order perturbation theory, CASPT2.

Ab initio results for the [Mn(IV)
3 O4]4+ system have been mapped to a three-site Heisenberg

model with two magnetic coupling constants. The magnetic coupling constants and the tem-

perature dependence of the effective magnetic moment predicted by the ab initio calculations

are in good agreement with the available experimental data, and confirm the antiferromag-

netic interaction among the three magnetic centers, while providing a simple and rigorous

description of the non-collinearity of the local spins, that characterize most of the low-energy

states for this system.

1 Introduction

Key chemical processes, such as the water-splitting reaction and the nitrogen reduction –

of potential interest in H2 and NH3 industrial production – occur in nature through photo-

enzymatic reactions catalyzed by polynuclear transition-metal (PNTM) clusters. Iron-sulfur

clusters are involved in the biological reduction of N2, while the [Mn4O5Ca] cluster is respon-

sible for the photo-oxidation of water in the oxygen-evolving center (OEC) of photosystem

II (PS-II). These processes are clever examples of the biological utilization of solar energy.

Decades of accumulated knowledge have led to a deeper understanding of the structure, for-

mation, and reactivity of these bio-catalysts. However, many questions about the fundamen-

tal mechanisms that make these bio-catalysts highly effective remain unsolved, preventing

further development in the field of bio-mimetic design.

It is commonly accepted that the catalytic activity of these compounds is bound to

the large manifold of low-energy states that characterize their electronic structures. These

energetically accessible electronic states allow electronic transitions with ease, and in doing

so define the catalytic properties of these compounds. However, precisely these energetically
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low-lying electronic states are difficult to resolve and characterize, both at the experimental

and theoretical level.

The theoretical characterization of these states by modern quantum chemical methods

has been hindered by the computational complexity associated to the description of their

ground- and excited-state wave functions.

Density-functional theory in its Kohn-Sham formulation (KS-DFT) has allowed scientists

to accurately model chemical processes of unprecedented complexity, its applicability in

most cases being limited only by the choice of an approximated exchange-correlation (XC)

functional. The development of improved functionals has represented a practical route to

circumvent the limits bound to the XC functional approximation. However, when addressing

polynuclear transition metal clusters a different weakness of DFT arises.

In conventional KS-DFT the electron density is represented by a single Slater determinant

(SD), and the method is often referred to as single-configurational, or more precisely single-

determinantal. For low-spin open-shell systems, where unpaired electrons reside on different

metal centers, a single SD is not a spin eigenfunction. We refer to the corresponding KS-

DFT solutions as broken-symmetry (BS) states. BS states contain no physically meaningful

information about spin interactions among the magnetic centers, except perhaps for the

extreme collinear solutions, thus in general failing in qualitatively approximating exchange

interactions in these systems. This fundamental feature makes the method incompatible

with the investigation of the electronic structures of PNTM clusters. Even when they provide

correct energetics, BS-DFT methodologies do not provide a qualitatively correct description

of the electronic states, and interactions among magnetic centers can easily be misinterpreted.

Clear difficulties emerge when interactions among the magnetic centers of PNTM clusters

are not collinear, that is when local spin-vectors across sites are not parallel (ferromagnetic

alignment) or anti-parallel (anti-ferromagnetic alignment).1 This issue easily arises in PNTM

clusters whose magnetic centers have local spin Slocal > 1/2. This is precisely the case of the

[Mn(IV)
3 O4]4+ system presented in this document.
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For a dinuclear system with Slocal = 1/2, only two spin states are possible, with Stot = 0

(singlet) and Stot = 1 (triplet). Both these cases are collinear, and in general can be described

by BS-DFT techniques, upon a suitable choice of exchange-correlation functional. On the

contrary, when considering a dinuclear homo-valent system with Slocal > 1/2 the total spin

of the low-energy eigenstates will span the range:

S1
local + S2

local, S1
local + S2

local − 1, . . . , 0. (1)

While the extreme spin states (the collinear states) can be described by BS-DFT methodolo-

gies, the intermediate spin states (the non-collinear states) cannot be described by BS-DFT.

As an example, we consider two magnetic centers with S1 = S2 = 3/2. The total spin can

assume values in the range [3− 0]. In BS-DFT a total spin Stotal = 1, can only be obtained

by flipping spins in either of the two centers, leading to S1 = 1/2 and S2 = 3/2, or S1 = 3/2

and S2 = 1/2. Obviously these states do not represent physical states; in the best possible

scenario they correspond to high-energy non-Hund states, featuring unphysical on-site elec-

tron pairing or spin-flips. With more than two magnetic centers of local spin Slocal > 1/2

the inaccuracy in describing non-collinear pair-interactions negatively affects the accuracy

in describing competing low-energy states.

Weighted-average BS-DFT methodologies have been employed to mitigate the limitations

in the classical KS-DFT.2,3 In weighted-average methods physical states are approximated by

mixing, through diagonalization of effective Hamiltonians, BS states obtained from high-spin

states (correctly described by DFT as spins are fully aligned), and other BS states derived

from spin-flips at different magnetic centers. While each of the BS states utilized undergo a

self-consistent field (SCF) optimization of the orbitals, no SCF procedure is applied to the

weighed-averaged states, thus limiting the level of accuracy attainable.

Noncollinear DFT represents an alternative DFT strategy that aims at accurate de-

scriptions of the non-local nature of spin correlations.4–8 The extended BS-DFT represents
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another route to cope with the symmetry breaking limitations.9

The noncollinear strategy has been applied by Truhlar and coworkers to a [Mn(IV)
3 O4]4+

model system, that in the present work are considered for comparison.7 Only the low-spin

ground state (LS), with Stotal = 1/2, and the first excited state (HS), with an Stotal = 3/2,

have been discussed in Truhlar’s work.7 This data is sufficient to make a minimal comparison

with the work presented here, but not sufficient to obtain simulated magnetic properties, such

as extraction of magnetic coupling constants and magnetic susceptibility simulations. In this

work the manifold of low-energy states are computed through conventional and stochastic

multiconfigurational (MC) procedures, and the extracted magnetic properties are directly

compared to the available experimental data.10

Ab initio wave function based methods allow for an unbiased evaluation of magnetic

interactions in PNTM clusters. However, their broad applicability has been hindered by

the exponential scaling of the many-body wave function with respect to the number of

correlated electrons. The density matrix renormalization group (DMRG) approach has

been widely utilized for circumventing the exponential scaling limitations, and for studying

exchange-coupled transition metal clusters.11–18 Recently also full-CI Quantum Monte-Carlo

(FCIQMC),19–26 and the related Stochastic-CASSCF approach,27–30 have successfully been

applied to TM complexes with one or more metal centers.27,31–36

Within wave function based methods, low-spin states consisting of a large number of

unpaired electrons, in general exhibit a strong multi-reference character, meaning that in

the configuration interaction (CI) expansion of the wave function, there are numerous elec-

tronic configurations with large relative amplitudes. This property makes their optimization

difficult for approximated approaches such as DMRG, FCIQMC and selected-CI strate-

gies. These approximated methodologies partially circumvent the exponential scaling of the

Hilbert space with respect to the number of correlated electrons, but typically show slow

convergence with respect to the multi-reference character of the wave function.

Very recently, a theoretical strategy has been developed in our laboratories,34,35 that dras-
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tically reduces the multi-reference character in low-spin state wave functions. This strategy

is based on MO unitary transformations, consisting of MO localization and reordering, and

the expansion of the spin-adapted CI wave function in this transformed MO basis. We have

demonstrated that these MO transformations are beneficial to methods that only approxi-

mate full-CI wave functions, such as FCIQMC,19–25,27–30 within the Graphical Unitary Group

Approach (GUGA).26,34,35,37–40 Our protocol has successfully been applied towards the reso-

lution of ground- and excited- states of homo-valent iron-sulfur dimers and cubanes.34,35 In

our earlier work,34,35 up to 44 electrons have been correlated in a space of 32 orbitals for

[Fe4S4] cubane systems. This strategy drastically reduced the computational costs associated

to the FCIQMC algorithm, thus making large active space calculations routinely feasible.

We envision that this strategy will be key for the success of other methodologies that ap-

proximate the full-CI wave function, where a CI sub-space is selected and optimized, often

referred to as selected-CI procedures. There are a number of such procedures; a non-complete

list of examples includes Caffarel’s Selected-CI approach,41–44 the iterative-CI procedure by

Hoffmann and co-workers,45,46 and the generalized active space approach,36,47,48 as long as

spin-adaptation is available that relies on cumulative spin coupling of consecutive spins.

The cumulative spin-adaptation via GUGA has been available within the conventional mul-

ticonfigurational methodologies (CAS, RAS) implemented in the (Open)Molcas chemistry

software package28,29 since their early days. Spin adaptation has also been implemented

within the generalized active space SCF framework,47 and very recently made available in

Alavi’s FCIQMC algorithm.26

The interpretation of many-body wave functions and their energetics, once available,

represents another important challenge in the application of ab initio quantum chemical

methods to PNTM clusters. Crucially, the proposed strategy leads to extremely compact

many-electron wave functions, of simple and immediate physical interpretation, something

that is often difficult to do with other high-level ab initio methods. This aspect represents

the main focus of the present work.
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All low-energy states with total spin ranging from 1/2 to 9/2, of a [Mn(IV)
3 O4]4+ model

system have been optimized at the complete active space self-consistent field (CASSCF)

level of theory, within the framework of localized and reordered MOs. The MO unitary

transformations of the variationally optimized CASSCF wave functions, have allowed us to

uniquely characterize the low-energy electronic spectrum of this system. Important dynamic

correlation effects not captured by CASSCF have been included by the multiconfigurational

second-order perturbation theory (CASPT2) procedure. In order to better understand the

correlation effects outside the active space and accounted for at the CASPT2 level of theory,

larger active space calculations on selected states have also been performed using FCIQMC.

Having access to the entire low-energy spectrum, magnetic coupling parameters have

easily been extracted by mapping the ab initio energies to a three-site Heisenberg–Dirac–

vanVleck Hamiltonian49 with two anti-ferromagnetic coupling constants.

In Section 2, details on the model system and the computational procedures utilized

are discussed; a brief introduction on our theoretical strategy is also given. Our ab initio

results are summarized in Section 3, and compared to Truhlar’s noncollinear results7 and the

available experimental data.10 The agreement between the calculated and the experimentally

measured temperature dependence of the effective magnetic moment,10 µeff is of particular

relevance. In Section 4 our conclusions are offered.

2 Theoretical and Computational Details

The Model System. Truhlar’s model system has been chosen for the present work, to

facilitate the comparison of the respective results (Figure 1). In this model the [Mn(IV)
3 O4]4+

core system is surrounded by two water molecules and four N,N’-bis(methylene)-Z-1,2-

ethenediamine, to mimic the octahedral environment found in the synthetic [Mn3O4(bpy)4(OH2)2]4+

species.

Both the experimental complex and Truhlar’s model system exhibit a low-spin (LS,
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Figure 1: Structure of the [Mn(IV)
3 O4]4+ system used in the present work and made available

in Reference [7] .

Stotal = 1/2) ground-state, with the first excited state (HS, Stotal = 3/2) at only ∼ 65 cm−1

above. Experimentally,10 the LS ground-state has been characterized as a system with local

spins SA = SB = SC = 3/2, with A and B coupled to spin SAB = 1 (non-collinear), further

coupled (noncollinear) to the magnetic center C, leading to the Stotal = 1/2 total spin value.

On the contrary, in the HS state magnetic centers A and B are anti-ferromagnetically aligned

(collinear with SAB = 0).

Active Spaces. The three Mn(IV) magnetic centers are characterized by a d3 electronic

configuration. Each magnetic center is surrounded by an octahedral environment created

by the external ligands and the bridging oxygen atoms. The five 3 d orbitals are split into

the triply-degenerate and singly occupied t2g orbitals, and the empty doubly-degenerate eg

orbitals. Considering the large distance among the Mn atoms in the system (dAB = 2.68 Å

and dAC = dBC = 3.27 Å), ligand-field induced excited states (electron excitations among the

t2g and eg orbitals) are to be considered high-energy states relatively to the low-energy states

characterized by the very weak spin interactions across the metal sites of the [Mn(IV)
3 O4]4+
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model system. Thus, a small active space, that contains only the 9 singly occupied t2g

orbitals and their electrons, has been considered as the first inexpensive choice for resolving

the low-energy spectrum of the system. We refer to this active space as CAS(9,9). This

active space provides a qualitatively correct description of the states of interest, as exchange

interactions across the magnetic centers are explicitly considered in the MC wave function

for all energetically low-lying spin states. However, this active space is not sufficiently large

to account for other forms of correlation, such as the superexchange correlation (involving

the bridging atoms), and the above mentioned ligand-field effects (except that in a mean-

field manner), which are the two leading forms of many-body electron correlation after spin-

exchange interactions. The MC second order perturbation theory, CASPT2, that utilizes the

CASSCF(9,9) wave function as reference, has been chosen for accounting these other forms

of correlation. It has been demonstrated in one of our earlier works,31,33 that CASPT2 fails

in recovering high-order correlation effects, and the synchronized superexchange excitations

among the bridging oxygen atoms and the magnetic centers belong to this form of correlation.

Therefore, the CASPT2 results are to be considered cautiously, and only semi-quantitative

accuracy is to be expected from the CASSCF(9,9)/CASPT2 protocol. With this limitation in

mind, CASPT2 is proven a crucial component in the present work to obtain a qualitatively

correct description of correlation effects outside the chosen active space, and sufficient to

extract the key magnetic features of the low-energy spectrum for this system. A more reliable

procedure to account for the ligand-mediated correlation effects consists in considering these

other forms of correlation explicitly, by further enlarging the active space size and solving

the exponentially larger CAS wave function via the stochastic FCIQMC algorithm. Thus, a

larger active space choice has been made, that allows us to validate the capability of CASPT2

in recovering important correlation effects outside the small CAS(9,9). The converged state-

average CASSCF(9,9) natural orbitals for each spin symmetry have been further unitarily

transformed, via separate block localization of the inactive and the virtual orbitals – an

invariant transformation with respect to the preceding CASSCF(9,9) –. Thus, the 6 metal
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centered eg orbitals, 10 orbitals of the peripheral ligands (orbitals of σ type on the N and

O peripheral atoms, pointing directly to the three metal centers and carrying lone-pairs

electrons), and the 12 2 p orbitals of the four bridging O atoms have been added to the

CAS(9,9). This choice led to the much larger CAS(53,37). The 37 orbitals were sorted by

first listing the 10 peripheral σ orbitals, followed by the 12 2 p orbitals of the bridging O

atoms, the t2g orbitals (in site-ordering), that were already considered in the CAS(9,9), and

finally the empty eg orbitals, also site-ordered. Within this active space, the full-CI wave

function of the lowest state for each spin symmetry has been optimized via the spin-adapted

FCIQMC algorithm. Also, CASPT2 calculations have been performed within the same

CAS(53,37) active space, while considering the CASSCF(9,9) wave function as reference,

the doubly occupied ligand orbitals as inactive, and the eg orbitals as virtual orbitals. The

remaining orbitals outside the CAS(53,37) were frozen, and not involved in the CASPT2

procedure.

The Wave Function. In this section we discuss in greater details the conceptual frame-

work behind the main features of the wave functions of the low-energy states. Locally the

Mn(IV) d3 centers are formally considered in their high-spin state, SA = SB = SC = 3/2,

due to Hund’s rules. Combining two spin angular momenta with local spin Slocal = 3/2

results in the direct product of the 4 possible intermediate spin states, Sinterm, namely

Γ(3/2) ⊗ Γ(3/2) = Γ(3) ⊕ Γ(2) ⊕ Γ(1) ⊕ Γ(0). The resulting intermediate spins, Sinterm, further

couple to the third local spin, Slocal = 3/2, producing the spin states reported in Equation 2.

Γ(3) ⊗ Γ(3/2) = Γ(9/2) ⊕ Γ(7/2) ⊕ Γ(5/2) ⊕ Γ(3/2) −
Γ(2) ⊗ Γ(3/2) = − Γ(7/2) ⊕ Γ(5/2) ⊕ Γ(3/2) ⊕ Γ(1/2)

Γ(1) ⊗ Γ(3/2) = − − Γ(5/2) ⊕ Γ(3/2) ⊕ Γ(1/2)

Γ(0) ⊗ Γ(3/2) = − − − Γ(3/2) −

(2)

Thus, a total of 12 low-energy spin states are generated by the coupling of three Slocal =
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3/2 spin angular momenta, spanning total spin values from Stotal = 9/2 to Stotal = 1/2. For

Sinterm = 3, the spins on the first two centers are parallel (collinear). The third center can

couple to the previous two in a collinear manner, leading to Stotal = 9/2 (trivial wave function

with all spin parallel aligned), and Stotal = 3/2, with the spin on the third center anti-parallel

with respect to the intermediate subsystem (AB). Analogously, for Sinterm = 0 the first two

centers show anti-parallel spins (collinear), while the third center is left uncoupled. The

remaining 9 spin states are characterized by non-collinear spin-couplings, including the LS

state.

Within the ab initio methodologies the difficulty of representing non-collinear states is

circumvented, as the necessary degrees of freedom for the spin couplings are accounted for

by the components of the MC wave functions (CSFs are to be considered a complete set of

versors in the CI Hilbert space). How the spin couplings are represented in the many-body

wave function, however, depends on the one- and many-particle representation. When MOs

are delocalized over the magnetic centers the interaction among local spins is described at

the price of an highly multi-reference wave function. In the delocalized MO basis no leading

configurations can promptly be identified, and even upon optimization of the wave function

its interpretation is rather cumbersome.

Localization of the MOs leads to more compact wave functions. This feature arises from

the fact that localized orbitals represent well the locality of spins. Within this one-electron

basis, however, if Slater determinants are used as many-particle basis the MC wave function

will still be characterized by a strong multi-reference character. We can relate this property

to the description of the H2 molecule at dissociation through atomic orbitals (1 sA and 1 sB),

instead of the symmetry adapted σg and σ∗u molecular orbitals. In the former basis, the

ground state wave function is single-configurational in the spin-adapted basis of configuration

state functions (CSFs), |1suA1sdB〉 (u and d superscripts refer to the up- and down- spin

couplings), while two Slater determinants are required to correctly describe the same state,

|(1sαA1sβB − 1sβA1sαB)〉. On the contrary, in the symmetry adapted MO representation, the
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ground state wave function is a perfect mixing of two electronic configurations, |σ2
g〉 and |σ2

u〉.

The number of leading CSFs – i.e. the number of spin adapted electronic configurations

with large CI amplitudes relatively to the entire CI vector – in the localized basis can be

estimated by the vanVleck-Sherman formula:50

g(no, S) =
(

no
no/2− S

)
−
(

no
no/2− S − 1

)
. (3)

where no and S refer to the number of singly occupied orbitals and the total spin, respectively.

In this basis the reference space consists, in general, of all possible distributions of spins

among the singly occupied orbitals, thus defining a system of interacting spins (spin-system).

Further compression can be achieved if the localized orbitals are site-ordered, meaning

that first we list all orbitals of magnetic center A, then we list all orbitals of the center B

and so on. By this ordering the unpaired electrons directly relate to the local spin angular

momentum within each magnetic center; they are not to be considered individually but

in groups, each group consisting of cumulatively coupled spins to match the local spin on

the fragments A, AB, ABC, and so on. This concept applies well as long as non-Hund

configurations are energetically well separated from the atomic ground-states (even upon

considering ligand field effects) and thus play a marginal role, which is to be expected for

most – if not all – low-energy states of high-valent polynuclear transition metal clusters. This

property is best described graphically by means of the genealogical branching diagrams, as

described in the following.

In Figure 2a, we show a general genealogical branching diagram, in which all leading

configuration state functions spanned by the MC wave function can be identified as paths

branching through the diagram. Genealogical branching diagrams only describe spin cou-

plings among unpaired electrons. Configurations with electron pairing, arising from charge

transfer excitations or local pairing are not represented by these diagrams. This feature

makes these diagrams extremely powerful in describing the leading configurations in systems
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mostly dominated by spin-exchange interactions. The node weights (number inside each

node) represent the number of paths (thus CSFs) for a given number of unpaired electrons,

Ne, coupled to a specific spin, S. The node weight can be derived from the vanVleck-Sherman

formula, or graphically by summing the node weights of the nodes connected from the left.

In the localized and site-ordered basis some paths in the branching diagram can trivially

be recognized as deadwood configurations. These are the ones that describe non-Hund

configurations, and have been marked in gray in Figure 2b and Figure 2c.
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Figure 2: Left: Generic genealogical branching diagram for up to 9 electrons (Ne). The node
weights represent the number of paths starting from the root node, (Ne, Stot) = (0, 0) to reach
the targeted node. This number is given by the vanVleck-Sherman formula, Equation 3. Top
right: in light blue the paths corresponding to the 9 leading CSFs of the Stot = 1/2 LS state.
Bottom right: in purple the single path that corresponds to the single-reference HS state.
The gray paths correspond to non-Hund CSFs that become deadwoods in the localized and
site-ordered MO basis.

The nodes of these deadwood configurations have their weights suppressed (set to zero),

thus leading to an overall reduction of the number of leading configurations for a given target

state, even with respect to the already reduced size given by Equation 3.

In Figures 2b and 2c only the significant paths leading to the LS and the HS states

(proposed by experiments) have been highlighted. Figure 2c shows the local spin SA = 3/2
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of the first magnetic center, the anti-ferromagnetic spin alignment of MnB with respect to

MnA, (SAB = 0), and the last three electrons on MnC with their spin aligned (Stotal = 3/2).

The negligible non-Hund configurations become apparent in this diagram (marked in gray).

The single magenta path of Figure 2c indicates that a MC wave function, optimized for

this state in the localized and site-ordered MO basis, is inherently single-reference (to the

leading terms). The unique single-reference character of this wave function is to be compared

to the highly dense wave functions obtained in other MO representations of the same state.

As shown in Figure 2a, this state would contain 48 leading configurations if represented in

localized and non-site-ordered basis, and thousands of CSFs with comparable amplitudes in

the delocalized basis (more details in Section 3).

In Figure 2b parallel spins are promptly recognized for the MnA site (SA = 3/2). MnB

is coupled to MnA leading to SAB = 1. This intermediate state can be reached via three

different paths. The coupling of MnC, leading to the final Stotal = 1/2 spin, arises via three

more paths. Thus, 9 CSFs are to be expected to be the leading terms of the CI expansion

for this state; a substantial simplification with respect to the 42 configurations in a localized

and non-reordered MO basis (as shown by Figure 2a), and a even larger compression with

respect to the expansion in delocalized basis.

The identification of vanishing paths is only possible in the site-ordered MO basis, as

consecutive spins (located on the same site) are directly coupled one to the other in a

cumulative way. If electrons located to the same magnetic site are not contiguous (for an

unfortunate choice of orbital ordering) their spin coupling will be mediated by the interposed

spins. This can only be done at the price of a more dense (multi-reference) wave function.

When maximal compression is reached (to the limit of single configurational wave func-

tions) interpretation of spin interaction becomes trivial, as it will be shown in Section 3.

This conceptual framework combines well with the stochastic optimization of wave func-

tions within FCIQMC. In FCIQMC, in its CAS form, no constraints are imposed to the wave

function optimization. At convergence, the leading configurations will generally correspond
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to the possible paths of the genealogical branching diagrams. If deviations from the spin-

system character exist for the system under investigation, these are promptly recognized.

For example, if strong ligand field effects are present, non-Hund contributions may increase,

and non-Hund configurations may populate the optimized wave function.

Additional Computational Details. Generally-contracted atomic natural orbitals (ANO-

RCC) basis sets51,52 have been utilized for all computations, obtained from the Mn (21s, 15p,

10d, 6f, 4g, 2h), C,N,O (14s, 9p, 4d, 3f, 2g), and H (8s, 4p, 3d, 1f) primitive functions. Basis

set dependence of the correlated calculations has been tested by employing two contraction

schemes. In one case the primitive functions have been contracted to Mn(5S4P2D), O(3S2P),

C,N(2S1P), H(1S), giving a basis set of double-ζ quality (VDZ). In a larger basis set (labeled

VTZ) the primitive functions have been contracted to Mn(6S5P3D2F1G), O(4S3P2D1F),

C,N(3S2P), H(2S), giving a basis set of split-valence triple-ζ plus polarization quality for the

core cluster, and bridging O atoms, and of double-ζ quality for the peripheral groups. This

second basis set choice led to a total of 629 basis functions. Scalar relativistic effects were

introduced via second order Douglas-Kroll-Hess integral correction. The evaluation of the

electron repulsion integrals has been greatly simplified by means of the resolution-of-identity

Cholesky decomposition technique,28,29 with a decomposition threshold of 10−4 a.u.53–57

Orbitals have been localized using the Pipek-Mezey localization scheme,58 thus, the point

group symmetry of the molecule was not enforced in our computations. State-Averaged

(SA) CASSCF(9,9) calculations were performed separately for each spin sector. Within

the OpenMolcas chemistry software package,29 utilized for the present investigation, it is

not possible to perform SA calculations across multiple spin-states. Thus, it has not been

possible to address the question of whether performing a global SA calculation over all 12

states, could possibly have some effects in the results and in their interpretation.

For the CASPT2(9,9) calculations the lowest 45 core orbitals have been kept frozen,

consisting of the 1s orbitals on C, N and O atoms, and 1s2s2p shells on the Mn centers.
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The default IPEA shift value of 0.25 a.u. has been utilized for the CASPT2 calculations

used in extracting the magnetic spin constants. However, for probing the stability of the

method a number of IPEA shift values (0.4, 0.3, 0.25, 0.2 and 0.1) have been utilized for the

CASPT2(9,9)//(53,37). For the stochastic-CAS(53,37) calculations up to 108 walkers have

been utilized. All spin-adapted FCIQMC dynamics have been performed using the NECI

code.30

3 Results

Structure of the CAS(9,9) wave functions. In this section the wave functions of the

two lowest spin states are discussed, namely the LS ground state, with |SAB, Stotal〉 = |1, 1/2〉,

and the HS state, with |SAB, Stotal〉 = |0, 3/2〉, as well as the excited states within the

same spin sectors. Two low-energy doublets and four quartet states have been computed

at the state-average (SA) CASSCF/PT2(9,9) level of theory, corresponding to the doublet

and quartet states summarized in Equation 2. The leading configurations of the optimized

CASSCF(9,9) wave functions for these states are summarized in Table 1. For the LS ground

state 9 leading configurations are identified, while for the HS state the wave function is

dominantly single-reference within the localized and site-ordered MO basis, and the GUGA

genealogical spin-coupling scheme. Most interestingly, within the localized and site-ordered

MO basis, the leading terms of the optimized wave functions of the LS and the HS states,

correspond to the highlighted paths reported in Figure 2b and Figure 2c, that we can predict

by theoretical arguments based on simple rules of the spin couplings.

All leading CSFs, independently of the targeted spin state, are characterized by a local

SA = 3/2 spin value, indicating that no mixing with non-Hund states has occurred, and

that non-Hund states are energetically well separated from the low-energy states. Moreover,

for the LS state an intermediate SAB = 1 spin value is promptly identified from inspection

of the leading CSFs, while the HS state is characterized by an intermediate SAB = 0 spin
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value. These results confirm the experimental data10 and provide additional details on the

electronic structures, complementary to Truhlar’s non-collinear approach.7

In Figure 3 we report the weights of the CASSCF(9,9) wave function for the LS state,

|SAB, Stotal〉 = |1, 1/2〉, in three different MO representations, namely, the delocalized natural

orbitals, the localized orbitals with an arbitrary MO ordering, and the localized and site-

ordered orbitals. The multi-reference character of the |1, 1/2〉 state in the delocalized natural

0 100 200 300 400 500 600 700 800

CSFs

0.000

0.002

0.004

0.006

0.008

0.010

W
ei

gh
ts

Delocalized Natural MOs

Localized Not Site-Ordered MOs

Localized Site-Ordered MOs

Figure 3: Weights in decreasing order of the CASSCF(9,9) wave function of the |1, 1/2〉 state
in three different MO basis: delocalized natural orbitals (blue), localized non-site-ordered
orbitals (yellow) and localized and site-ordered orbitals.

orbital basis (blue curve in Figure 3) is demonstrated by the very slowly decreasing of

the CI weights; 1332 CSFs out of the 8820 CSFs of the entire configurational space have

weights larger than 10−4. The wave function is more compact within the two localized

basis. However, in the localized basis without site-ordering (yellow curve) 42 elements with

weights larger than 10−4 can be identified. Not surprising, this number corresponds to the

node weight in Figure 2a for a system with 9 unpaired electrons and Stotal = 1/2. On the

contrary, in the localized and site-ordered MO basis (green curve) there are only 9 leading

CSFs, corresponding to the ones shown in Figure 2b and Table 1. The level of compression

is substantial. This represents a numerical proof that in the site ordering non-Hund CSFs

become deadwood configurations and a natural compression of the wave function is obtained.

Moreover, in the site-ordered basis the structure of these wave functions directly provide

information on the intermediate spin couplings, as shown in Table 1, information that is not
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available in other orbital representations. Similar observations apply to all other spin states

in their ground- or excited-states.

Relative energies. This section focuses on the CASSCF and CASPT2 relative energies of

the 12 low-energy states of the Mn3O4 model system. While the CASSCF(9,9) wave functions

have correct spin coupling structures, an incorrect energy ordering of states is obtained at

this level of theory. Within each symmetry sector, states with higher SAB values are predicted

at lower energy than states with a lower SAB value. For example, the |SAB, Stot〉 = |3, 3/2〉

state is predicted at lower energy than the |SAB, Stot〉 = |0, 3/2〉 state. Similarly, the |2, 1/2〉

state is predicted the lowest doublet state by CASSCF(9,9), with the |1, 1/2〉 at 69 cm−1

above. The higher spin states are over-stabilized with respect to the low-spin states, and the

Stot = 9/2 is erroneously predicted to be the ground state.

CASPT2(9,9) corrects the energy ordering of the states. The CASPT2 correction is large

and qualitative in character. The lowest doublet state corresponds to the |1, 1/2〉 state,

with the |2, 1/2〉 state at 158 cm−1 above, in qualitative agreement with the experimental

predictions.10 Moreover, higher spin states are predicted at higher energy by CASPT2.

This result represents a strong indication that the small CASSCF(9,9) does not contain

the important correlation mechanisms, which are recovered by the subsequent CASPT2

correction. Important correlation effects exist, which are outside the CAS(9,9) wave function,

that are responsible for the correct ordering of states; the superexchange mechanism, which

involves the bridging oxygen atoms, and ligand field effects (both arising from correlation

bound to the peripheral ligands, and the ligand field splitting between the t2g and the eg

orbitals), are certainly the most important of these effects. The superexchange mechanism

across the di-µ-oxo bridge is to be expected to play a crucial role in stabilizing the low

intermediate and total spin-states over the high spin couplings.

Larger active spaces, CAS(53,37). The role of the charge-transfer excitations, involving

the bridging O atoms and the peripheral ligands, and of the d − d excitations between the
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t2g and the eg orbitals has been investigated by the larger CAS(53,37), where the above

mentioned orbitals and their electrons have explicitly been correlated. Due to the size of

this active space, prohibitive for conventional CAS eigensolvers, the FCIQMC algorithm

has been chosen to optimize the lowest state for each spin symmetry. For comparison, also

a CASPT2(9,9)/(53,37) calculation has been performed, that is a conventional CASPT2

calculation that uses the CASSCF(9,9) wave function as reference, and in which any orbital

outside the CAS(53,37) space has been frozen and not included in the PT2 excitations for

generating the perturber space.

The Stochastic-CAS(53,37) wave function of the lowest state of each spin symmetry

has been selectively optimized by choosing the highest weighted CSF of the CAS(9,9) as

reference for the FCIQMC dynamics. For example, the (uuudduddu) CSF has been chosen

as reference for the LS ground state, as shown in Table 1. In the (uuudduddu) nomenclature

the occupancy of the doubly occupied peripheral and bridging orbitals, and the empty eg

orbitals of the CAS(53,37) are implied. The highest weights of the optimized LS and HS

wave functions are reported in parenthesis in Table 1, next to the corresponding weights of

the smaller CAS(9,9). The relative weights of the leading CSFs of the CAS(53,37) reflect the

ordering obtained for the CAS(9,9), albeit all weights appear substantially reduced. This

reduction follows directly from the fact that in the large CAS(53,37) important excitations

exist outside the 9 formally singly occupied orbitals. In the CAS(9,9), after the leading CSFs

reported in Table 1, CSFs with low weights (∼ 0.02%) are found, that represent metal-to-

metal charge-transfer excitations. On the contrary, in the CAS(53,37) numerous CSFs with

weights of ∼ 0.1% are found, that correspond to single excitations from the bridging O to the

t2g orbitals. These configurations describe explicitly the superexchange mechanism, whose

excitations are absent in the CAS(9,9). Also, single and double excitations from the bridging

O atoms to the empty eg orbitals can be identified. This latter class of excitations are a

clear reminder of how ligand field effect is a form of many-body electron correlation. Direct

metal-to-metal charge transfer excitations exist also for the CAS(53,37) wave function, and
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similarly to the CAS(9,9) their weights are relatively low ≤ 0.02%. Excitations from the

peripheral ligands to the metal centered orbitals are also low-weighted (≤ 0.01%).

Figure 4 shows the relative energy of the spin-ladder from Stot = 1/2 to Stot = 9/2.
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Figure 4: Relative energy [cm−1] of the spin-ladder for the Mn(IV)
3 O4 model system at the

CAS-CI(53,37) and CASPT2(9,9)//(53,37) level of theory. For the CASPT2 energies the
default IPEA shift value of 0.25 a.u. has been utilized (solid yellow curve) along with a
lower (0.1 a.u., dashed red curve) and a higher (0.4 a.u., dashed green curve) values.

The CASCI(53,37) and the CASPT2(9,9)//(53,37) span an identical correlation space.

It is therefore surprising to observe the quantitative discrepancy reported in Figure 4. At

the CASPT2 level, a number of parameters might be responsible for the deviations from

the optimal spin-ladder energies. We have probed the dependency on the IPEA shift value

and found that larger and smaller IPEA shift values increase and decrease the lowest-to-

highest spin-gap, respectively, by ∼ 100 cm−1, which is not sufficiently large to justify the

difference of about 350 cm−1 between the CASPT2 and the FCIQMC highest spin-state

energies. Even more surprising is that the discrepancy is such that the CASPT2 lowest-to-

highest spin-gap is substantially larger than the FCIQMC values. In fact, it is well known

that CASPT2 generally over-stabilizes high-spin states over lower-spin states; the Fe(II)-

porphyrin case studied in Reference [31] is an example of the high-spin over-stabilization

by CASPT2. However, in the present case the low-spin state is over-stabilized by CASPT2

when compared to FCIQMC predictions. The rationale behind this quantitative discrepancy

remains an open question.
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Independently of the quantitative considerations, both approaches indicate a doublet

ground state, with increased energies for higher spin states. The qualitatively correct

CAS(53,37) results are to be directly compared to the incorrect spin ordering obtained at the

CASSCF(9,9) level of theory, for which an inverted spin-ladder ordering is observed, with

the highest spin-state (Stot = 9/2) as ground state. This result numerically demonstrates the

important difference between the small CAS(9,9), that describe solely direct spin-exchange

interactions, and the much larger CAS(53,37), where ligand mediated correlation effects are

explicitly considered in the multi-configurational wave function. In our previous work on

Fe4S4 cubanes a similar behavior was observed, when comparing the CAS(20,20) to the

CAS(44,32). However, in that case the effect was mainly a quantitative effect. In fact, al-

ready the CAS(20,20) showed the correct ordering of the six singlet spin-states investigated.

Model Hamiltonian. The CASSCF(9,9)/PT2 states have been mapped to a three-site

Heisenberg model with two magnetic coupling constants

Ĥmod = J2µ (SA · SB) + J1µ (SA · SC + SB · SC) , (4)

where J2µ and J1µ are the two non-equivalent coupling constants, one representing the mag-

netic interaction across the di-µ-oxo bridge (J2µ = JAB) and one the magnetic interactions

across the mono-µ-oxo bridges (J1µ = JAC = JBC). The model Hamiltonian has been sim-

plified by considering equivalent MnA −MnC and MnB −MnC magnetic interactions, thus

assuming JAC = JBC. The analytical expression for the eigenvalues can be obtained following

the vector model suggested by Kambe.59 We consider:

SA = SB = SC = Sloc, (5)

SAB = SA + SB, (6)

SAB(SAB + 1) = 2SA · SB + 2Sloc(Sloc + 1), (7)
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Stot(Stot+1) =

2SA · SB + 2SA · SC + 2SB · SC + 3Sloc(Sloc + 1).
(8)

Replacing Equation 7 and 8 in Equation 4 directly leads to the eigenvalue equation:

E(Sloc,SAB, Stot) =
J2µ

2 [SAB(SAB + 1)− 2Sloc(Sloc + 1)] +

J1µ

2 [Stot(Stot + 1)− SAB(SAB + 1)− Sloc(Sloc + 1)] .

(9)

This equation applies whenever eigenstates of the total spin are also eigensolutions of the

intermediate spin, SAB, and as discussed in the previous section, the wave functions of all

low-energy states of the model system satisfy this condition.

We have evaluated the exchange coupling parameters by fitting the eigenvalues of the

model Hamiltonian to the corresponding CASPT2 energies. The values obtained, J2µ =

152.3 cm−1 and J1µ = 92.1 cm−1, are in good agreement with the ones derived experimentally

(J2µ = 182 cm−1 and J1µ = 98 cm−1), and clearly indicate anti-ferromagnetic coupling for

both pair-interactions, with the coupling between the two Mn centers interacting via the

di-µ-oxo bridges (AB) substantially stronger than the coupling between the metal centers

connected via the mono-µ-oxo bridges. This result reflects the geometry of the system, with

the MnA−MnB bond distance (2.68 Å) shorter than the MnA−MnC and the MnB−MnC

atomic distances (3.27 Å).

The energy splittings of the 12 states obtained from Equation 9 and using the ab initio

magnetic coupling constants are shown in Figure 5, along with the ones derived experimen-

tally and mapped to the same model Hamiltonian.

The spin gap between the LS and the HS states is 85 cm−1 for the TZ basis set (78 cm−1

for the DZ basis set), in very good agreement with the magnetic constants obtained from

experiments (63.0 cm−1) and suggested by Truhlar’s noncollinear approach7 (∼ 70 cm−1, in

Reference [7] reported as 0.2 kcal/mol). The fitted magnetic coupling constants and the
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Figure 5: Energies [cm−1] of the 12 low-energy states of the model system here investigated,
relative to the LS ground state, |Sloc, SAB, Stot〉 = |3/2, 1, 1/2〉, obtained from Equation 9,
and using the experimental10 (dashed lines) and the ab initio (solid lines) magnetic coupling
constants. (a) uses the DZ basis CASPT2 energetics, while (b) uses the TZ basis CASPT2
energetics for the mapping. The individual curves identify one specific total spin sector,
while the intermediate spin coupling (SAB) is given by the x-axis.

energy ordering of states, summarized in Figure 5 show that the basis set plays a marginal

role in describing the magnetic interactions in this model system, despite the basis set has

been substantially enlarged, with a total of 283 and 629 basis functions for the DZ and the

TZ basis set, respectively.

When compared to experiments, the ab initio relative energies of the higher spin states

are partially under-estimated. The largest deviation occurs for the highest spin state, Stotal =

9/2. Experimentally this state is at 1596 cm−1 above the LS ground state, while it is only

1372 cm−1 above for the ab initio counterpart within the TZ basis set (1406 cm−1 for the

DZ basis set).

Within a given spin sector (states lying on the same curve in Figure 5), energy splittings

are directly proportional to the (J2µ − J1µ) difference, and for J2µ > J1µ, states with lower

intermediate spin SAB are more stable than states with higher SAB. Energy splittings among

states with same SAB value and varying in total spin (states on the same vertical line of

Figure 5), are directly proportional to the J1µ value. Larger J1µ values would increase the

gaps between these states. The ab initio spin gaps among states with same SAB and different
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Stot, are in good agreement with the experimental data available. Thus, the deviations of

our results from the experimental values can mostly be ascribed to the fact that the J2µ

value has been partially underestimated relatively to J1µ. In turn, this can be related to the

fact that higher-order excitations with respect to the reference CAS wave function are not

described by CASPT2.

The finding that spin gaps within the same total spin sector are under-estimated, while

spin-gaps within the same SAB sector are well represented, suggests that the underlying

reason for this deviations are not to be related to the state-averaging procedure across

multiple spin states, but rather to a quantitatively incorrect description of correlation energy

for the excited states with respect to the ground state within the same total spin sector.

Paramagnetic Susceptibility. The dependency of the magnetization, M, of a material

in an homogeneous external magnetic field, with respect to the strength of the magnetic

field, H, known as the magnetic susceptibility, χ,

χ = ∂M

∂H
, (10)

depends on the magnetic properties of the material, at the microscopic level.49

The connection of the magnetic susceptibility to the low-energy states can be described

by the vanVleck formula for the Susceptibility (Equation 11).49,60 In Equation 11, NA is

χ = NAµ0µ
2
Bg

2

3kT

2SA∑
SAB=0

SAB+SB∑
Stot=|SAB−SB|

S(S + 1)(2S + 1) exp (−E[S, SAB]/kT )

2SA∑
SAB=0

SAB+SB∑
Stot=|SAB−SB|

(2S + 1) exp (−E[S, SAB]/kT )
, (11)

Avogadro’s number, µ0 and µB are the vacuum permeability and the Bohr magneton con-

stants, respectively, k refers to Boltzmann’s constant (0.695034800 cm−1/K), and T refers to

the absolute temperature. A g = 1.97 value has been chosen, to reflect the one experimen-
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tally determined.10 With the eigenvalues of the low-energy states available, this equation

describes the magnetic susceptibility temperature dependence. Equation 11 is related to the

effective magnetic moment, µeff, by the following equation:61

µeff = ( 3kT
NAµ0µ2

B

χ)1/2. (12)

In Figure 6 we compare the temperature dependence of the experimental10 and the ab

initio effective magnetic moments.
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Figure 6: The ab initio temperature dependence of the effective magnetic moment, µeff,
compared to the the one observed experimentally.

The agreement between the effective magnetic moment experimentally measured and

the one computed in this work is generally good, despite the quantitative limitations of the

CASPT2 methodology discussed above. The discrepancy between the DZ and TZ basis set

results is small.

4 Conclusions and Final remarks

In this work, an efficient procedure has been presented, based on MO unitary transformations

(localizations of the singly occupied MOs and their site-reordering) and the cumulative spin

coupling of adjacent spins, here obtained via the GUGA approach. This strategy provides
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extremely compact many-body wave functions for the low-energy states of exchange-coupled

homo-valent systems, such as the Mn(IV)3O4 system investigated in this work. Within this

strategy optimized multi-configurational wave functions are obtained that show a limited

number of configurations with relatively large CI coefficients (oligo-reference wave functions),

to the limit of being single-reference, such as the wave function of the HS state. The locality

of the spins has been known for decades in the inorganic chemistry community, starting from

the pioneering work of Anderson and Hasegawa62 Mouesca and Noodleman63 and Girerd.64

Our strategy allows us to take advantage of spin locality in the context of many-body wave

function representations, and allows non-Hund configurations to become deadwood configu-

rations (configurations with vanishingly small CI coefficients). This strategy has been proven

extremely beneficial in the application of the spin-adapted FCIQMC algorithm, as demon-

strated by the present study and our earlier works on Fe2S2 and Fe4S4 model systems.34,35

We expect that similar effects are to be observed in other selected-CI approaches, as long as

a cumulative spin coupling scheme is employed, for example via GUGA.

Three crucial features emerge from the proposed strategy: (1) an extreme compression

of ground- and excited-state wave functions, (2) an unprecedented (quasi-) block-diagonal

structure of the CI Hamiltonian, that allows state-specific optimizations, and (3) a simple

characterization of the targeted states. These properties make of the proposed approach

a powerful tool in electronic structure theory, to understand spin interactions in PNTM

clusters and extract magnetic properties of practical interest.

In this work, through the investigation of the low-energy states of theMn(IV )3O4 system

(spin-ladder), the applicability of our strategy is extended to states with total spin Stot 6= 0,

and for systems whose valence orbitals (the 3 d orbitals in the present case) are not necessarily

half-filled. These results are very promising and suggest the generality of the proposed

strategy, and its potential application to homo- and ethero-nuclear mixed-valence systems.

This topic will be discussed in greater detail in a separate work.

Our strategy makes large CAS calculations on ground- and excited-states of PNTM
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clusters computationally inexpensive, and the associated magnetic properties of easy inter-

pretation, two aspects to date considered very challenging.

In the localized and site-ordered basis the noncollinear nature of the spin interactions

within the three magnetic sites of the [Mn(IV)
3 O4]4+ model system is promptly obtained, with

the doublet LS ground state featuring an intermediate SAB = 1 spin coupling, in agree-

ment with the experimental results. Additionally, an anti-parallel spin alignment (perfectly

collinear), SAB = 0, is predicted for the first excited state (quartet, HS state).

The magnetic coupling constants extracted from the ab initio procedure are in good

agreement with the experimentally extracted values, and the calculated temperature depen-

dence of the effective magnetic moment reproduces well the experimental function, despite

the simplicity of the method.

Truhlar’s noncollinear procedure applied to the same model system provided an equally

accurate HS-LS spin gap, and wave functions that qualitatively reflect the correct physics.

Angles among the local spins of the three sites greater than 90◦ have been obtained, which

have been associated to anti-ferromagnetic spin couplings among the three sites for the

LS state. However, results on the higher portion of the spin-ladder using the noncollinear

approach are not available. It is therefore not possible to extract the magnetic coupling

constants predicted by the noncollinear procedure, and make direct comparisons.

Our strategy provides precise details on the spin interactions among the three local spins,

that are in perfect agreement with the experimental data available. From a qualitative and

quantitative standpoint our strategy is proven robust, and provides a very accurate prediction

of the LS-HS spin gap. Moreover, having access to the entire manifold of low-energy states,

reliable magnetic coupling constants can be extracted, and a satisfactory effective magnetic

moment dependency from the temperature.
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Table 1: Leading CSFs of the two doublet and four quartet states within the CASSCF(9,9).
Values in parenthesis refer to the weights within the larger active space, CAS(53,37). Symbols
u and d refers to the cumulative up (u) and down (d) spin couplings, respectively.

MnA MnB MnC Weight [%]
|LS〉 = |SAB, Stotal〉 = |1, 1/2〉

uuu ddu ddu 37.1 (27.1)
uuu ddu dud 12.2 ( 8.8)
uuu ddu udd 6.1 ( 4.5)
uuu dud ddu 18.5 (13.8)
uuu dud dud 6.1 ( 4.5)
uuu dud udd 3.0 ( 2.2)
uuu udd ddu 10.9 ( 8.0)
uuu udd dud 3.6 ( 2.6)
uuu udd udd 1.8 ( 1.3)

|SAB, Stotal〉 = |2, 1/2〉
uuu duu ddd 50.0
uuu udu ddd 29.8
uuu uud ddd 19.5

|HS〉 = |SAB, Stotal〉 = |0, 3/2〉
uuu ddd uuu 99.5 (76.7)

|SAB, Stotal〉 = |1, 3/2〉
uuu ddu duu 30.7
uuu ddu udu 15.3
uuu ddu uud 09.0
uuu dud duu 15.6
uuu dud udu 07.8
uuu dud uud 04.6
uuu udd duu 09.2
uuu udd udu 04.6
uuu udd uud 02.7

|SAB, Stotal〉 = |2, 3/2〉
uuu duu ddu 25.2
uuu duu dud 14.9
uuu duu udd 9.9
uuu udu ddu 14.9
uuu udu dud 8.7
uuu udu udd 5.8
uuu uud ddu 10.2
uuu uud dud 6.0
uuu uud udd 4.0

|SAB, Stotal〉 = |3, 3/2〉
uuu uuu ddd 99.636
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